1
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
2
|
Zhang H, Wu X, Wang H, Mikheev AM, Mao Q, Unadkat JD. Effect of pregnancy on cytochrome P450 3a and P-glycoprotein expression and activity in the mouse: mechanisms, tissue specificity, and time course. Mol Pharmacol 2008; 74:714-23. [PMID: 18509067 PMCID: PMC2574889 DOI: 10.1124/mol.107.043851] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasma concentrations of orally administered anti-human immunodeficiency virus protease inhibitors are significantly reduced during human and mouse pregnancy. We have shown that in the mouse, at gestational day 19, this reduction is due to increased hepatic cytochrome P450 3a (Cyp3a) protein expression and activity. In the current study, we investigated the mechanisms by which Cyp3a activity is increased by pregnancy and the time course of change in expression of Cyp3a and P-glycoprotein (P-gp) in various tissues. We found that hepatic transcripts of Cyp3a16, Cyp3a41, and Cyp3a44 were significantly increased during pregnancy, whereas those of Cyp3a11 and Cyp3a25 were significantly decreased. This resulted in a net increase in Cyp3a protein expression and activity in the liver during pregnancy. The increase in Cyp3a41 and Cyp3a44 transcripts was positively correlated (p < 0.05) with hepatocyte nuclear factor 6 and estrogen receptor-alpha transcripts. The pregnancy-related factors that transcriptionally activated mouse Cyp3a isoforms also activated the human CYP3A4 promoter in pregnant CYP3A4-promoter-luciferase transgenic (CYP3A4-tg) mice. In contrast, intestinal Cyp3a protein expression was not significantly affected by pregnancy. No change in P-gp protein expression was observed in the liver or kidney during pregnancy, although a significant decrease was observed in the placenta. Because hepatic CYP3A activity also seems to be induced during human pregnancy, the mouse (including CYP3A4-tg mouse) seems to be an excellent animal model to determine the molecular mechanisms for such an induction.
Collapse
Affiliation(s)
- Huixia Zhang
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
3
|
Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA. Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 2008; 36:4549-64. [PMID: 18611952 PMCID: PMC2504304 DOI: 10.1093/nar/gkn382] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Foxa2 (HNF3β) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP–Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the ∼11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function.
Collapse
|
4
|
DeLozier TC, Tsao CC, Coulter SJ, Foley J, Bradbury JA, Zeldin DC, Goldstein JA. CYP2C44, a new murine CYP2C that metabolizes arachidonic acid to unique stereospecific products. J Pharmacol Exp Ther 2004; 310:845-54. [PMID: 15084647 DOI: 10.1124/jpet.104.067819] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human CYP2Cs have been studied extensively with respect to the metabolism of clinically important drugs and endogenous chemicals such as arachidonic acid (AA). Five members of the mouse CYP2C family have previously been described that metabolize arachidonic acid into regio- and stereospecific epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids, which have many important physiological roles. Herein, we describe the cloning and characterization of a new mouse cytochrome P450 (P450), CYP2C44, which has the lowest homology with other known mouse CYP2Cs. Western blotting and real-time polymerase chain reaction detected CYP2C44 mRNA and protein in liver >> kidney > adrenals. Kidney contained approximately 10% of the CYP2C44 mRNA content of liver. CYP2C44 metabolized AA to unique stereospecific products, 11R,12S-EET and 8R, 9S-EET, which are similar to those produced by rat CYP2C23. CY2C23 is highly expressed in rat kidney and has been suggested to be important in producing compensatory renal artery vasodilation in response to salt-loading in this species. Immunohistochemistry showed the presence of CYP2C44 in hepatocytes, biliary cells of the liver, and the proximal tubules of the kidney. Unlike mouse CYP2C29, CYP2C38, and CYP2C39, CYP2C44 did not metabolize the common CYP2C substrate tolbutamide. CYP2C44 was not induced by phenobarbital or pregnenolone-16alpha-carbonitrile, two prototypical inducers of hepatic P450s. The presence of CYP2C44 in mouse liver, kidney, and adrenals and the unique stereospecificity of its arachidonic acid metabolites are consistent with the possibility that it may have unique physiological roles within these tissues, such as modulation of electrolyte transport or vascular tone.
Collapse
Affiliation(s)
- Tracy C DeLozier
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, 111 T.W. Alexander Drive, Building 101, Research Triangle Park, NC 27709
| | | | | | | | | | | | | |
Collapse
|
5
|
Bort R, Gómez-Lechón MJ, Castell JV, Jover R. Role of hepatocyte nuclear factor 3γ in the expression of human CYP2C genes. Arch Biochem Biophys 2004; 426:63-72. [PMID: 15130783 DOI: 10.1016/j.abb.2004.03.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/24/2004] [Indexed: 11/17/2022]
Abstract
Hepatocyte nuclear factor 3 gamma (HNF-3 gamma) is an important transcription factor for the maintenance of specific liver functions. However, its relevance in the expression of human cytochrome P450 (CYP) genes has not yet been explored. Several HNF3 putative binding sites can be identified in human CYP2C 5'-flanking regions. Gene reporter experiments with proximal promoters revealed that HNF-3 gamma transactivated CYP2C8, CYP2C9, and CYP2C19 (25-, 4-, and 4-fold, respectively), but it did not transactivate CYP2C18. However, overexpression of HNF-3 gamma in hepatoma cells by means of a recombinant adenovirus induced CYP2C9, CYP2C18, and CYP2C19 mRNA (4.5-, 20-, and 50-fold, respectively) but did not activate endogenous CYP2C8. The lack of effect of HNF-3 gamma on endogenous CYP2C8 could be reversed by treating cells with the deacetylase inhibitor, trichostatin A, suggesting the existence of chromatin condensation around functional HNF3 elements in this gene. We conclude that HNF3 gamma is an important transcription factor for the hepatic-specific expression of human CYP2C genes. Our results also evidence that efficient transfection tools, such as adenoviral vectors, may be decisive for assessing the role of transcription factor on chromatin organized genes.
Collapse
Affiliation(s)
- Roque Bort
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe. Avda. Campanar 21, E-46009, Valencia, Spain
| | | | | | | |
Collapse
|
6
|
Divine JK, McCaul SP, Simon TC. HNF-1alpha and endodermal transcription factors cooperatively activate Fabpl: MODY3 mutations abrogate cooperativity. Am J Physiol Gastrointest Liver Physiol 2003; 285:G62-72. [PMID: 12646418 DOI: 10.1152/ajpgi.00074.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor (HNF)-1alpha plays a central role in intestinal and hepatic gene regulation and is required for hepatic expression of the liver fatty acid binding protein gene (Fabpl). An Fabpl transgene was directly activated through cognate sites by HNF-1alpha and HNF-1beta, as well as five other endodermal factors: CDX-1, C/EBPbeta, GATA-4, FoxA2, and HNF-4alpha. HNF-1alpha activated the Fabpl transgene by as much as 60-fold greater in the presence of the other five endodermal factors than in their absence, accounting for up to one-half the total transgene activation by the group of six factors. This degree of synergistic interaction suggests that multifactor cooperativity is a critical determinant of endodermal gene activation by HNF-1alpha. Mutations in HNF-1alpha that result in maturity onset diabetes of the young (MODY3) provide evidence for the in vivo significance of these synergistic interactions. An R131Q HNF-1alpha MODY3 mutant exhibits complete loss of synergistic activation in concert with the other endodermal transcription factors despite wild-type transactivation ability in their absence. Furthermore, whereas wild-type HNF-1alpha exhibited pairwise cooperative synergy with each of the other five factors, the R131Q mutant could synergize only with GATA-4 and C/EBPbeta. Selective loss of synergy with other endodermal transcription factors accompanied by retention of native transactivation ability in an HNF-1alpha MODY mutant suggests in vivo significance for cooperative synergy.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
7
|
Rodríguez-Antona C, Bort R, Jover R, Tindberg N, Ingelman-Sundberg M, Gómez-Lechón MJ, Castell JV. Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein alpha and hepatocyte nuclear factor-3 gamma. Mol Pharmacol 2003; 63:1180-9. [PMID: 12695546 DOI: 10.1124/mol.63.5.1180] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more than 50% of currently used therapeutic drugs, yet the mechanisms that control CYP3A4 basal expression in liver are poorly understood. Several putative binding sites for CCAAT/enhancer-binding protein (C/EBP) and hepatic nuclear factor 3 (HNF-3) were found by computer analysis in CYP3A4 promoter. The use of reporter gene assays, electrophoretic mobility shift assays, and site-directed mutagenesis revealed that one proximal and two distal C/EBP alpha binding sites are essential sites for the trans-activation of CYP3A4 promoter. No trans-activation was found in similar reporter gene experiments with a HNF-3 gamma expression vector. The relevance of these findings was further explored in the more complex DNA/chromatin structure within endogenous CYP3A4 gene. Using appropriate adenoviral expression vectors, we found that both hepatic and nonhepatic cells overexpressing C/EBP alpha had increased CYP3A4 mRNA levels, but no effect was observed when HNF-3 gamma was overexpressed. In contrast, overexpression of HNF-3 gamma simultaneously with C/EBP alpha resulted in a greater activation of the CYP3A4 gene. This cooperative effect was hepatic-specific and also occurred in CYP3A5 and CYP3A7 genes. To investigate the mechanism for HNF-3 gamma action, we studied its binding to CYP3A4 promoter and the effect of the deacetylase inhibitor trichostatin A. HNF-3 gamma was able to bind CYP3A4 promoter at a distal position, near the most distal C/EBP alpha binding site. Trichostatin A increased C/EBP alpha effect but abolished HNF-3 gamma cooperative action. These findings revealed that C/EBP alpha and HNF-3 gamma cooperatively regulate CYP3A4 expression in hepatic cells by a mechanism that probably involves chromatin remodeling.
Collapse
Affiliation(s)
- C Rodríguez-Antona
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Akiyama TE, Gonzalez FJ. Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:223-34. [PMID: 12573481 DOI: 10.1016/s0304-4165(02)00480-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cytochrome P450s (P450s) constitute a superfamily of heme-proteins that play an important role in the activation of chemical carcinogens, detoxification of numerous xenobiotics as well as in the oxidative metabolism of endogenous compounds such as steroids, fatty acids, prostaglandins, and leukotrienes. In addition, some P450s have important roles in physiological processes, such as steroidogenesis and the maintenance of bile acid and cholesterol homeostasis. Given their importance, the molecular mechanisms of P450 gene regulation have been intensely studied. Direct interactions between transcription factors, including nuclear receptors, with the promoters of P450 genes represent one of the primary means by which the expression of these genes is controlled. In this review, several liver-enriched transcription factors that play a role in the tissue-specific, developmental, and temporal regulation of P450s are discussed. In addition, the nuclear receptors that play a role in the fine control of cholesterol and bile acid homeostasis, in part, through their modulation of specific P450s, are discussed.
Collapse
Affiliation(s)
- Taro E Akiyama
- Laboratory of Metabolism, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Rodríguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gómez-Lechón MJ. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 2002; 32:505-20. [PMID: 12160483 DOI: 10.1080/00498250210128675] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Cultured hepatic cells have reduced cytochrome P450 (CYP) activities in comparison with human liver, but the mechanism(s) that underlies this circumstance is not clear. We investigated the causes of this low CYP activity by analysing the activity, protein, mRNA and heterologous nuclear RNA contents of the most important CYPs involved in drug metabolism (1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5) in cultured human hepatocytes, and in HepG2 and Mz-Hep-1 hepatoma cell lines. 2. After 24 h of culture, hepatocytes retained most of their CYP activities and protein contents, but the mRNA decreased 20-fold. However, the mRNA content of most CYPs in 24-h hepatocytes was still 400-fold higher than in hepatoma cells. When we examined the transcriptional activity of the CYP genes, this decreased during culture time in hepatocytes and it was poor in hepatoma cell lines. 3. We investigated the abundance of key hepatic transcription factors that govern CYP transcription (C/EBP-beta: LAP and LIP, HNF-3alpha, HNF-4alpha, RXR-alpha) and observed that the expression of some factors was altered in the hepatoma cells. 4. In conclusion, the loss of biotransformation activity in cultured hepatic cells is caused by a decrease in CYP transcription, which correlates with an alteration in the expression of key transcription factors.
Collapse
Affiliation(s)
- C Rodríguez-Antona
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Avenida Blasco Ibáñez, 20, E-46010, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
|
11
|
Gómez-Lechón MJ, Jover R, Donato T, Ponsoda X, Castell JV. Expression of liver specific-genes in hepatocytes cultured in collagen gel matrix. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:89-104. [PMID: 10986720 DOI: 10.1007/978-3-642-59766-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M J Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Valencia, Spain
| | | | | | | | | |
Collapse
|
12
|
Borlak J, Thum T. Induction of nuclear transcription factors, cytochrome P450 monooxygenases, and glutathione S-transferase alpha gene expression in Aroclor 1254-treated rat hepatocyte cultures. Biochem Pharmacol 2001; 61:145-53. [PMID: 11163329 DOI: 10.1016/s0006-2952(00)00537-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aroclor 1254 is a complex mixture of polychlorinated biphenyls and is well known for its potency to induce drug-metabolising enzymes, but little is known about its ability to modulate gene expression of transcription factors, which code for proteins that bind to the regulatory elements of DNA and facilitate transcriptional activation. We therefore investigated the gene expression of the liver-specific transcription factors CCAAT/enhancer-binding protein alpha (c/EBPalpha), hepatic nuclear factor (HNF) 1 and 4, and major cytochrome P450 (CYP) isozymes in addition to glutathione S-transferase alpha 2 (GSTA-2) in cultures of primary rat hepatocytes. We found highly significant and dose-dependent increases of c/EBPalpha (up to 62-fold), HNF-1 (up to 7-fold), HNF-4 (up to 8-fold), and 50- and 4-fold inductions of GSTA-2 and CYP monooxygenases, respectively. Based on the ethoxyresorufin-O-deethylase assay, the gene expression and enzyme activity for CYP1A1 were in good agreement, but for other CYP isozymes similar correlations could not be obtained. In conclusion, the simultaneous induction of liver-specific TFs and of several detoxifying enzymes may point to a coordinate genomic response in cultures of rat hepatocytes upon treatment with Aroclor 1254.
Collapse
Affiliation(s)
- J Borlak
- Fraunhofer Institute of Toxicology and Aerosol Research, Department of Molecular Toxicology and Pharmacokinetics, Hannover, Germany.
| | | |
Collapse
|
13
|
Kanamura S, Watanabe J. Cell biology of cytochrome P-450 in the liver. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:109-52. [PMID: 10804462 DOI: 10.1016/s0074-7696(00)98004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes P-450 (P-450) are members of a multigene superfamily of hemoproteins consisting the microsomal monooxygenase system with NADPH P-450 reductase (reductase) and/or reducing equivalents. Expression of many P-450 isoforms in hepatocytes is shown to be regulated at the level of transcription through interaction between cis-acting elements in the genes and DNA-binding (transacting) factors. Some isoforms of the CYP1A, 2B, 2E, and 3A subfamilies are regulated at the posttranscriptional level. For the topology of P-450 and reductase molecules in ER membrane of hepatocytes, models from stopped flow analysis and electron spin resonance are proposed. The densities of total P-450 and reductase molecules are revealed to be high enough to support the cluster model, suggesting that about ten P-450 molecules form an aggregate and surround one reductase molecule, and therefore the two enzymes form large micelles. ER proliferation after PB administration, which had been correlated with increase in P-450 level, is shown to be probably independent of the increase in P-450 level. There are considerable discrepancies among results reported on sublobular expression of various P-450 isoforms. Causes of the discrepancies are likely to be differences in experimental conditions of histochemical detection carried out and/or in species, strain, and/or sex.
Collapse
Affiliation(s)
- S Kanamura
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
14
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
Affiliation(s)
- P Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
15
|
Sladek R, Giguère V. Orphan nuclear receptors: an emerging family of metabolic regulators. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 47:23-87. [PMID: 10582084 DOI: 10.1016/s1054-3589(08)60109-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Sladek
- Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
16
|
Contreras B, Talamantes F. Growth hormone (GH) and 17beta-estradiol regulation of the expression of mouse GH receptor and GH-binding protein in cultured mouse hepatocytes. Endocrinology 1999; 140:4725-31. [PMID: 10499531 DOI: 10.1210/endo.140.10.7059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, primary mouse hepatocytes from 8- to 10-week-old virgin female Swiss-Webster mice were perfused with collagenase (100 U/ml) using the two-step method. Isolated hepatocytes were plated in a rat tail type I collagen sandwich configuration to examine the regulation of GH receptor (GHR) and GH-binding protein (GHBP) expression by GH and 17beta-estradiol (E2). After 48 h of initial plating, hepatocytes were divided into groups of five replicates and treated for 24 h with medium containing no hormones (controls), GH (100 ng/ml), E2 (10(-9) M), E2 (10(-9) M) plus GH (100 ng/ml), or E2 plus GH and ICI 182-780 at different concentrations. Treatment of hepatocytes with GH or E2 alone did not have any effect on the cellular concentrations of GHBP and GHR. However, the combination of E2 and GH up-regulated the cellular concentrations of GHBP and GHR 2- to 3-fold. GHBP and GHR messenger RNA concentrations were also up-regulated 2- to 3-fold. ICI 182-780, a competitive inhibitor of E2 for the estrogen receptor (ER), at different concentrations inhibited the E2 and GH-induced stimulation of GHBP and GHR. Furthermore, ER concentrations increased 5- to 7-fold in hepatocytes treated with E2 and GH compared with those in untreated cells or cells treated with either E2 or GH alone. In the present study we have shown that in cultured hepatocytes from virgin female mice, GH or E2 alone did not affect the concentrations of GHBP and GHR. However, E2 and GH together significantly up-regulated GHR and GHBP expression.
Collapse
Affiliation(s)
- B Contreras
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- V Giguère
- Molecular Oncology Group, McGill University Health Centre.
| |
Collapse
|
18
|
Everett LM, Crabb DW. Sensitivity of virally-driven luciferase reporter plasmids to members of the steroid/thyroid/retinoid family of nuclear receptors. J Steroid Biochem Mol Biol 1999; 70:197-201. [PMID: 10622408 DOI: 10.1016/s0960-0760(99)00109-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During a series of transfection experiments, the pRSV-luc plasmid used as an internal control was found to be sensitive to cotransfection with expression vectors for several members of the steroid/thyroid/retinoid superfamily of nuclear receptors. Therefore, a survey of the effect of these expression vectors on the activity of four reporter plasmids was conducted. In CV-1 cells, the activity of pRSV-luc, which contains the P. pyralis luciferase gene, was repressed by co-transfection of PPARalpha and ARP-1 and was activated by COUP-TFI. Expression of pSV40-luc, containing the same luciferase gene, was repressed by PPARalpha and HNF-4 and activated by both COUP-TFI and ARP-1. All four of these expression vectors reduced the expression of the pRL-TK plasmid, which contains the luciferase gene from Renilla reniformis. RXR expression vectors had no effect on luciferase activity in CV-1 cells but induced luciferase activity in H4IIEC3 hepatoma cells. This activation was blocked by the addition of ligand, 9-cis retinoic acid. pSV2-CAT, which contains the chloramphenicol acetyltransferase gene, was insensitive to all receptor expression vectors tested. Both the P. pyralis and R. reniformis luciferase genes appear to contain sequences that render them responsive to steroid/thyroid/retinoid nuclear receptors.
Collapse
MESH Headings
- Animals
- Binding Sites
- COUP Transcription Factor I
- COUP Transcription Factors
- Cell Line
- Chlorocebus aethiops
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Reporter
- Luciferases/biosynthesis
- Luciferases/genetics
- Plasmids
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Retinoid X Receptors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- L M Everett
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
19
|
Clarkson RW, Shang CA, Levitt LK, Howard T, Waters MJ. Ternary complex factors Elk-1 and Sap-1a mediate growth hormone-induced transcription of egr-1 (early growth response factor-1) in 3T3-F442A preadipocytes. Mol Endocrinol 1999; 13:619-31. [PMID: 10194767 DOI: 10.1210/mend.13.4.0266] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In our search for transcription factors induced by GH, we have analyzed immediate early gene activation in a model of GH-dependent differentiation. Here we describe the activation of early growth response factor-1 (egr-1) in GH-stimulated 3T3-F442A preadipocytes and the transcription factors responsible for its transactivation. Binding activity of egr-1 in electrophoretic mobility shift assay (EMSA) increased transiently 1 h after GH stimulation, accompanied by a concomitant increase in egr-1 mRNA. egr-1 induction appeared not to be related to proliferation since it was amplified in quiescent preadipocytes at a time when cells were refractive to GH-stimulated DNA synthesis. Truncations of the proximal 1 kb of the egr-1 promoter revealed that a 374-bp region (-624 to -250) contributes about 80% of GH inducibility in 3T3-F442A cells and approximately 90% inducibility in CHO-K1 cells. This region contains three juxtaposed SRE (serum response element)/Ets site pairs known to be important for egr-1 activity in response to exogenous stimuli. Site-specific mutations of individual SRE and Ets sites within this region each reduced GH inducibility of the promoter. Use of these site-specific mutations in EMSA showed that disruption of either Ets or SRE sites abrogated ternary complex formation at the composite sites. DNA binding of ternary complexes, but not binary complexes, in EMSA was rapidly and transiently increased by GH. EMSA supershifts indicated these ternary complexes contained serum response factor (SRF) and the Ets factors Elk-1 and Sap-1a. Coexpression of Sap-1a and Elk-1 resulted in a marked increase in GH induction of egr-1 promoter activity, although transfection with expression vectors for either Ets factor alone did not significantly enhance the GH response. We conclude that GH stimulates transcription of egr-1 primarily through activation of these Ets factors at multiple sites on the promoter and that stabilization of ternary complexes with SRF at these sites maximizes this response.
Collapse
Affiliation(s)
- R W Clarkson
- Department of Physiology and Pharmacology, University Queensland, St. Lucia, Australia
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mitochondrial and cytosolic HMG-CoA synthases are encoded by two different genes. Control of ketogenesis is exerted by transcriptional regulation of mitochondrial HMG-CoA synthase. Fasting, cAMP, and fatty acids increase its transcriptional rate, while refeeding and insulin repress it. Fatty acids increase transcription through peroxisomal proliferator regulatory element (PPRE), to which peroxisome proliferator activated receptor (PPAR) can bind. Other transcription factors such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF-4) compete for the PPRE site, modulating the response of PPAR.
Collapse
Affiliation(s)
- F G Hegardt
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| |
Collapse
|
21
|
Luo G, Zeldin DC, Blaisdell JA, Hodgson E, Goldstein JA. Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys 1998; 357:45-57. [PMID: 9721182 DOI: 10.1006/abbi.1998.0806] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five murine cytochrome P450 (CYP) 2C cDNAs were cloned and characterized, including four new members of this subfamily: CYP2C37, CYP2C38, CYP2C39, and CYP2C40. The cDNAs ranged from 1716 to 1812 bp in length and encoded polypeptides of 490 amino acid residues except for CYP2C40, which contained an additional glutamic acid residue at the carboxyl terminus. The amino acid identity of the murine CYP2Cs ranged from 69 to 92%, while the overall amino acid identity was 60%; however, within the six putative substrate recognition sites the identity was only 25 to 41%, suggesting possible differences in substrate specificity and product profiles. The CYP2C cDNAs were expressed in Escherichia coli following modification of the N-terminus. All five recombinant CYP2Cs metabolized arachidonic acid, but with different metabolic profiles and catalytic rates. Based on coelution with authentic standards on reverse-phase HPLC, themajor metabolites were tentatively identified asfollows: CYP2C29 and CYP2C39 produced 14, 15-cis-epoxyeicosatrienoic acid (EET); CYP2C37 produced 12-hydroxyeicosatetraenoic acid (HETE); CYP2C38 produced 11,12-EET; and CYP2C40 produced an unidentified metabolite that coeluted with 16-,17-, and 18-HETEs. The turnover numbers for CYP2C29, CYP2C37, CYP2C38, CYP2C39, and CYP2C40 were 0.34, 1.12, 5.15, 0.51, and 0.15 nmol/nmol/min, respectively. Reverse transcriptase-polymerase chain reaction demonstrated the presence of CYP2C29 mRNA in liver as well as in extrahepatic tissues including brain, kidney, lung, heart, and intestine. CYP2C38 and CYP2C40 were found in liver, brain, kidney, and intestine, with trace amounts in lung and heart, while CYP2C37 and CYP2C39 appeared to be liver specific.
Collapse
Affiliation(s)
- G Luo
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
22
|
Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res 1998; 26:2491-9. [PMID: 9580705 PMCID: PMC147560 DOI: 10.1093/nar/26.10.2491] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of nuclear receptors, including retinoic acid receptors (RARs), retinoid-X receptors (RXRs), hepatocyte nuclear factor 4 (HNF-4), chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), apolipoprotein regulatory protein 1 (ARP-1) and peroxisome proliferator-activated receptor (PPAR), bind to response elements comprised of two core motifs, 5'-RG(G/T)TCA, or a closely related sequence separated by 1 nt (DR1 elements). The potential role of the precise sequence of the core motif as well as the spacer nucleotide in determining specificity and promiscuity of receptor-response element interactions was investigated. We show here that nucleotides at base positions 1, 2 and 4 of the core motif as well as the spacer nucleotide determine the binding preference of HNF-4 and ARP-1 homodimers and RAR:RXR and PPAR:RXR heterodimers. In transfection experiments transcriptional activation by HNF-4 and PPAR:RXR and repression by ARP-1 correlated with the relative in vitro binding affinity provided the element was located within the proper promoter context. Furthermore, promoter context also determined whether an element that binds to HNF-4 and PPAR:RXR with equal affinity functions as an HNF-4 response element or PPAR response element. Thus, apart from the element-specific differences in affinity for the receptors, additional promoter-specific transcription factors that interact with HNF-4 and PPAR:RXR determine the specificity of transcriptional response through DR1-type elements.
Collapse
Affiliation(s)
- H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
23
|
Mode A, Ahlgren R, Lahuna O, Gustafsson JA. Gender differences in rat hepatic CYP2C gene expression--regulation by growth hormone. Growth Horm IGF Res 1998; 8 Suppl B:61-7. [PMID: 10990136 DOI: 10.1016/s1096-6374(98)80025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A Mode
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
24
|
Abstract
The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver.
Collapse
Affiliation(s)
- T Oinonen
- National Public Health Institute, Alcohol Research Center, PB 719, 00101 Helsinki, Finland
| | | |
Collapse
|
25
|
Lahuna O, Fernandez L, Karlsson H, Maiter D, Lemaigre FP, Rousseau GG, Gustafsson J, Mode A. Expression of hepatocyte nuclear factor 6 in rat liver is sex-dependent and regulated by growth hormone. Proc Natl Acad Sci U S A 1997; 94:12309-13. [PMID: 9356445 PMCID: PMC24918 DOI: 10.1073/pnas.94.23.12309] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.
Collapse
Affiliation(s)
- O Lahuna
- Hormone and Metabolic Research Unit, International Institute of Cellular and Molecular Pathology and Louvain University Medical School, 75 Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez JC, Ortiz JA, Hegardt FG, Haro D. Chicken ovalbumin upstream-promoter transcription factor (COUP-TF) could act as a transcriptional activator or repressor of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Biochem J 1997; 326 ( Pt 2):587-92. [PMID: 9291136 PMCID: PMC1218709 DOI: 10.1042/bj3260587] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chicken ovalbumin upstream-promoter transcription factor (COUP-TF) has a dual effect on the regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene. COUP-TF could act as a transcriptional activator or repressor of this gene through different DNA sequences. COUP-TF induces expression of a reporter gene linked to the mitochondrial HMG-CoA synthase gene promoter in human hepatoma HepG2 cells, but represses it in a Leydig tumour cell line (R2C); in both these cell lines the expression of the mitochondrial HMG-CoA synthase gene mimics that of liver and testis. The activation is promoted by a fragment of the gene from coordinates -62 to +28, which contains a GC box and a TATA box, and where no COUP-TF binding site was observed by in vitro DNA binding studies. On the other hand, the COUP-TF inhibitory effect is mainly due to repression of peroxisome-proliferator-activated receptor-dependent activation of the gene, interacting with the region from -104 to -92. To our knowledge this work represents the second example of a target gene for COUP-TF I that could be either activated or repressed by the action of this receptor through different DNA sequences of the same gene.
Collapse
Affiliation(s)
- J C Rodríguez
- Unitat de Bioquímica, Facultat de Farmàcia, Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Lazennec G, Kern L, Valotaire Y, Salbert G. The nuclear orphan receptors COUP-TF and ARP-1 positively regulate the trout estrogen receptor gene through enhancing autoregulation. Mol Cell Biol 1997; 17:5053-66. [PMID: 9271383 PMCID: PMC232356 DOI: 10.1128/mcb.17.9.5053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rainbow trout estrogen receptor (rtER) is a positively autoregulated gene in liver cells. In a previous report, we showed that upregulation is mediated by an estrogen response element (ERE) located in the proximal promoter of the gene and that a half binding site for nuclear receptors (5'-TGACCT-3') located 15 bp upstream of the ERE is involved in the magnitude of the estrogen response. We now report that the human orphan receptor COUP-TF and a COUP-TF-like protein from trout liver are able to bind to the consensus half-site. When cotransfected with the rtER gene proximal promoter, COUP-TF had no regulatory functions on its own. Interestingly, COUP-TF enhanced rtER transactivation properties in the presence of estradiol in a dose-dependent manner when cotransfected with the rtER gene promoter. Unliganded retinoid receptor heterodimers had the same helper function as COUP-TF in the presence of estradiol but were switched to repressors when the ligand all-trans-retinoic acid was added. Mutation of the consensus half-site only slightly reduced COUP-TF helper function, suggesting that it actually results from a complex mechanism that probably involves both DNA binding of COUP-TF to the promoter and protein-protein interaction with another transcription factor bound to the promoter. Nevertheless, a DNA-binding-defective mutant of COUP-TF was also defective in ER helper function. Competition footprinting analysis suggested that COUP-TF actually establishes contacts with the consensus upstream half-site and the downstream ERE half-site that would form a DR-24-like response element. Interaction of COUP-TF with the DR-24 element was confirmed in footprinting assays by using nuclear extracts from Saccharomyces cerevisiae expressing COUP-TF. Finally, interaction of COUP-TF with mutants of the rtER gene promoter showed that COUP-TF recognizes the ERE when the upstream half-site is mutated. These data show that COUP-TF may activate transcription through interaction with other nuclear receptors. This cross-talk between liganded nuclear receptors and orphan receptors is likely to modulate the spectrum of action of a particular ligand-receptor complex and may participate in the cell-type specificity of the ligand effect.
Collapse
Affiliation(s)
- G Lazennec
- UPRES-A CNRS 6026, Equipe Associée d'Endocrinologie Moléculaire des Poissons, INRA, Université de Rennes I, France
| | | | | | | |
Collapse
|
28
|
Hansen AJ, Lee YH, Gonzalez FJ, Mackenzie PI. HNF1 alpha activates the rat UDP glucuronosyltransferase UGT2B1 gene promoter. DNA Cell Biol 1997; 16:207-14. [PMID: 9052741 DOI: 10.1089/dna.1997.16.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The rat UDP glucuronosyltransferase UGT2B1 is expressed mainly in the liver where it glucuronidates steroids and environmental toxins and carcinogens. A region between -42 and -55 bp upstream from the UGT2B1 gene transcription start site was previously identified as sharing sequence similarity with the hepatocyte nuclear factor 1 (HNF1) consensus binding site. In this study, the importance of this region in the regulation of the UGT2B1 gene was confirmed by functional and DNA binding assays. A minimal UGT2B1 gene promoter containing the putative HNF1 binding site was fused to the CAT reporter gene and transfected into HepG2 cells. Only low levels of CAT activity were detected. This activity was increased 50-fold when an HNF1 alpha expression vector was co-transfected with the UGT2B1 promoter CAT construct but was not altered when a HNF1 beta expression vector was used. A UGT2B1 promoter construct with the HNF1-like region deleted was not activated by either co-transfected HNF1 expression vector. DNase 1 footprinting and gel-shift analysis demonstrated that nuclear proteins present in both HepG2 cells and rat liver bind to the HNF1-like element. The presence of HNF1 alpha in these nuclear proteins that bind to the HNF1-like element was confirmed by supershift analysis with antisera to HNF1 alpha. Specific binding of nuclear proteins to the HNF1-like element was not seen in extracts from three cell lines derived from nonhepatic tissues. These data strongly suggest that the liver-enriched factor HNF1 alpha binds to, and activates, the UGT2B1 gene promoter
Collapse
Affiliation(s)
- A J Hansen
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, South Australia
| | | | | | | |
Collapse
|
29
|
Nolten LA, Steenbergh PH, Sussenbach JS. The hepatocyte nuclear factor 3beta stimulates the transcription of the human insulin-like growth factor I gene in a direct and indirect manner. J Biol Chem 1996; 271:31846-54. [PMID: 8943227 DOI: 10.1074/jbc.271.50.31846] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Promoter 1 (P1) of the human insulin-like growth factor I (IGF-I) gene is most active in adult liver. In this study we show that HNF-3beta, a member of the winged helix protein family of liver-enriched transcription factors, has a strong stimulatory effect on the activity of P1. Transient transfection experiments in combination with bandshift and DNase I footprinting analysis revealed the presence of two HNF-3 binding sites in the proximal promoter region of P1. Both binding sites, which are well conserved in evolution, are required for maximal transactivation. Studies employing HNF-3 mutant constructs indicated that IGF-I expression is also regulated indirectly by HNF-3beta as a consequence of enhanced expression of HNF-1alpha. This liver-enriched transcription factor has previously been shown to transactivate P1. Thus, HNF-3beta regulates the expression of the human IGF-I gene via two distinct mechanisms.
Collapse
Affiliation(s)
- L A Nolten
- Laboratory for Physiological Chemistry, Utrecht University, Graduate School of Developmental Biology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
30
|
Samadani U, Costa RH. The transcriptional activator hepatocyte nuclear factor 6 regulates liver gene expression. Mol Cell Biol 1996; 16:6273-84. [PMID: 8887657 PMCID: PMC231630 DOI: 10.1128/mcb.16.11.6273] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The hepatocyte nuclear factor 3(alpha) (HNF-3(alpha)), -3(beta), and -3(gamma) proteins share homology in the winged-helix/fork head DNA binding domain and mediate hepatocyte-enriched transcription of numerous genes whose expression is necessary for organ function. In this work, we identify a liver-enriched transcription factor, HNF-6, which recognizes the -138 to -126 region of the HNF-3(beta) promoter and binds the original HNF-3 site of the transthyretin promoter (-94 to -106). We show that HNF-6 and HNF-3 possess different DNA binding specificities by competition and methylation interference studies and are immunologically distinct. Site-directed mutagenesis of the HNF-6 sites in the HNF-3(beta) and transthyretin promoters diminishes reporter gene expression, suggesting that HNF-6 activates transcription of these promoters. Using the HNF-6 binding sequence DHWATTGAYTWWD (where W = A or T, Y = T or C, H is not G, and D is not C) determined by sequence comparison and methylation interference, we predicted that HNF-6 will bind to 22 additional hepatocyte-enriched genes. Of these potential target genes, we selected seven of the HNF-6 binding sequences and demonstrated that they bind the HNF-6 protein. These include promoter sequences from alpha-2 urinary globulin, alpha-1 antitrypsin, cytochrome P-450 2C13, L-type 6-phosphofructo-2-kinase, mouse major urinary protein, tryptophan oxygenase, and alpha-fetoprotein genes. HNF-6 binding activity was also found in the intestinal epithelial cell line HT29, and potential HNF-6 binding sites were present in intestinal sucrase isomaltase, cdx-2 homeodomain protein, and intestinal fatty acid binding protein promoter regions. These studies suggest that HNF-6 may regulate hepatocyte-specific genes and may play a role in epithelial cell differentiation of gut endoderm via regulation of HNF-3(beta).
Collapse
Affiliation(s)
- U Samadani
- Department of Biochemistry, University of Illinois at Chicago, 60612-7334, USA
| | | |
Collapse
|
31
|
Roussel F, Marie S, Cresteil T. Gene structure and promoter analysis of the rat constitutive CYP2C23 gene. DNA Cell Biol 1995; 14:777-88. [PMID: 7669255 DOI: 10.1089/dna.1995.14.777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The CYP2C23 gene is expressed constitutively in the rat liver and kidney. It exhibits different profiles of expression in the two tissues, suggesting that several regulation processes could exist. In this paper, we report the structure of the 5'-flanking region of the CYP2C23 gene; 4.5 kbp were sequenced and analyzed. The CYP2C23 gene is present as a single copy into the rat genome and an unique transcription start site is used in both liver and kidney. Four DNase I hypersensitive sites have been mapped to the distal part of the hepatic promoter and three are detected in the kidney: only one site is present in the two tissues (L3/K1). In the proximal region, one site is specific for the kidney and one is detected in all the tissues tested. Footprint experiments allowed precise identification of the sequence of protected regions: HNF4 and CREB binding motifs are present in the distal liver-specific sites, motifs for AP-1, NF-1, and XRE-Bf are in the distal kidney site, and a Tf-LF1 binding site is localized in the L3/K1 protected site. In the proximal region, a sequence protected in all tissues contains a SP1/NF kappa B motif, whereas a sequence containing a HNF-4 binding motif is exclusively protected by kidney nuclear extracts. Altogether, the data clearly demonstrate that trans-acting factors involved in CYP2C23 gene expression differ in liver and kidney.
Collapse
Affiliation(s)
- F Roussel
- INSERM U75, Université René Descartes, Paris, France
| | | | | |
Collapse
|
32
|
Ström A, Westin S, Eguchi H, Gustafsson JA, Mode A. Characterization of orphan nuclear receptor binding elements in sex-differentiated members of the CYP2C gene family expressed in rat liver. J Biol Chem 1995; 270:11276-81. [PMID: 7744763 DOI: 10.1074/jbc.270.19.11276] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The HepG2-specific P450 2C factor motif (HPF1-motif) is conserved in many hepatic cytochrome P450 genes (CYP). Its functional importance for rabbit CYP2C genes has led to the proposal that the HPF1 motif acts as a common regulator for the liver-specific expression of CYP2 genes with hepatic nuclear factor (HNF)-4 being the corresponding trans-activator. The HPF1-like elements in the rat CYP2C genes 2C7, 2C11, 2C12, and 2C13 have been studied with regard to functional importance and binding of the orphan receptors HNF-4, apoAI regulatory protein-1 (ARP-1), and v-erbA-related receptors (EAR) 3 and 2. Binding activity in rat liver nuclear extracts includes these orphan receptors as judged from electromobility supershift experiments and from results obtained with expressed receptors, although the element in CYP2C11 did not bind HNF-4. Mutations of the HPF1-like elements in the CYP2C7, CYP2C11, and CYP2C12 promoters had marginal effects on the expression of luciferase reporter gene constructs transiently transfected into HepG2 cells, whereas for CYP2C13 the activity was reduced to 60% of the wild type construct. Coexpression of HNF-4 in COS-7 cells had limited effect on the luciferase activity generated from the 2C promoters, maximally 3-fold. Our data indicate that the HPF1 elements in the rat CYP2C genes have limited functional importance and that HNF-4 is not a major trans-activator for any of these genes.
Collapse
Affiliation(s)
- A Ström
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|