1
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Lipscomb WN, Kantrowitz ER. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Acc Chem Res 2012; 45:444-53. [PMID: 22011033 DOI: 10.1021/ar200166p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60 Å from the active site, inducing structural alterations that modulate catalytic activity. The delineation of the structure and function in this particular model system will help in understanding the molecular basis of cooperativity and allosteric regulation in other systems as well.
Collapse
Affiliation(s)
- William N. Lipscomb
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Evan R. Kantrowitz
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467-3860, United States
| |
Collapse
|
3
|
Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Arch Biochem Biophys 2011; 519:81-90. [PMID: 22198283 DOI: 10.1016/j.abb.2011.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.
Collapse
|
4
|
Mendes KR, Kantrowitz ER. The pathway of product release from the R state of aspartate transcarbamoylase. J Mol Biol 2010; 401:940-8. [PMID: 20620149 DOI: 10.1016/j.jmb.2010.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/24/2010] [Accepted: 07/02/2010] [Indexed: 11/25/2022]
Abstract
The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-l-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.
Collapse
Affiliation(s)
- Kimberly R Mendes
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467-3807, USA
| | | |
Collapse
|
5
|
West JM, Xia J, Tsuruta H, Guo W, O'Day EM, Kantrowitz ER. Time evolution of the quaternary structure of Escherichia coli aspartate transcarbamoylase upon reaction with the natural substrates and a slow, tight-binding inhibitor. J Mol Biol 2008; 384:206-18. [PMID: 18823998 DOI: 10.1016/j.jmb.2008.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/30/2022]
Abstract
Here, we present a study of the conformational changes of the quaternary structure of Escherichia coli aspartate transcarbamoylase, as monitored by time-resolved small-angle X-ray scattering, upon combining with substrates, substrate analogs, and nucleotide effectors at temperatures between 5 and 22 degrees C, obviating the need for ethylene glycol. Time-resolved small-angle X-ray scattering time courses tracking the T-->R structural change after mixing with substrates or substrate analogs appeared to be a single phase under some conditions and biphasic under other conditions, which we ascribe to multiple ligation states producing a time course composed of multiple rates. Increasing the concentration of substrates up to a certain point increased the T-->R transition rate, with no further increase in rate beyond that point. Most strikingly, after addition of N-phosphonacetyl-l-aspartate to the enzyme, the transition rate was more than 1 order of magnitude slower than with the natural substrates. These results on the homotropic mechanism are consistent with a concerted transition between structural and functional states of either low affinity, low activity or high affinity, high activity for aspartate. Addition of ATP along with the substrates increased the rate of the transition from the T to the R state and also decreased the duration of the R-state steady-state phase. Addition of CTP or the combination of CTP/UTP to the substrates significantly decreased the rate of the T-->R transition and caused a shift in the enzyme population towards the T state even at saturating substrate concentrations. These results on the heterotropic mechanism suggest a destabilization of the T state by ATP and a destabilization of the R state by CTP and CTP/UTP, consistent with the T and R state crystallographic structures of aspartate transcarbamoylase in the presence of the heterotropic effectors.
Collapse
Affiliation(s)
- Jay M West
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467-3807, USA
| | | | | | | | | | | |
Collapse
|
6
|
Fetler L, Kantrowitz ER, Vachette P. Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase. Proc Natl Acad Sci U S A 2007; 104:495-500. [PMID: 17202260 PMCID: PMC1766413 DOI: 10.1073/pnas.0607641104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signaling and metabolic pathways rely on the ability of some of the proteins involved to undergo a substrate-induced transition between at least two structural states. Among the various models put forward to account for binding and activity curves of those allosteric proteins, the Monod, Wyman, and Changeux model for allostery theory has certainly been the most influential, although a central postulate, the preexisting equilibrium between the low-activity, low-affinity quaternary structure and the high-activity, high-affinity quaternary structure states in the absence of substrates, has long awaited direct experimental substantiation. Upon substrate binding, allosteric Escherichia coli aspartate transcarbamoylase adopts alternate quaternary structures, stabilized by a set of interdomain and intersubunit interactions, which are readily differentiated by their solution x-ray scattering curves. Disruption of a salt link, which is observed only in the low-activity, low-affinity quaternary structure, between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain yields a mutant enzyme that is in a reversible equilibrium between at least two states in the absence of ligand, a major tenet of the Monod, Wyman, and Changeux model. By using this mutant as a magnifying glass of the structural effect of ligand binding, a comparative analysis of the binding of carbamoyl phosphate (CP) and analogs points out the crucial role of the amine group of CP in facilitating the transition toward the high-activity, high-affinity quaternary state. Thus, the cooperative binding of aspartate in aspartate transcarbamoylase appears to result from the combination of the preexisting quaternary structure equilibrium with local changes induced by CP binding.
Collapse
Affiliation(s)
- Luc Fetler
- *Centre de Recherche, Institut Curie, F-75248 Paris, France
- Laboratoire Physico-Chimie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, F-75248 Paris, France
| | - Evan R. Kantrowitz
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467; and
| | - Patrice Vachette
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, Centre National de la Recherche Scientifique, Université Paris-Sud, Bâtiment 430, F-91405 Orsay Cedex, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Tsuruta H, Kihara H, Sano T, Amemiya Y, Vachette P. Influence of nucleotide effectors on the kinetics of the quaternary structure transition of allosteric aspartate transcarbamylase. J Mol Biol 2005; 348:195-204. [PMID: 15808863 DOI: 10.1016/j.jmb.2005.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
We report the effects of allosteric effectors, ATP, CTP and UTP on the kinetics of the quaternary structure change of Escherichia coli ATCase during the enzyme reaction with physiological substrates. Time-resolved, small-angle, X-ray scattering of solutions allows direct observation of structural transitions over the entire time-course of the enzyme reaction initiated by fast mixing of the enzyme and substrates. In the absence of effectors, all scattering patterns recorded during the reaction are consistent with a two-state, concerted transition model, involving no detectable intermediate conformation that differs from the less active, unliganded T-state and the more active, substrate-bound R-state. The latter predominates during the steady-state phase of enzyme catalysis, while the initial T-state is recovered after substrate consumption. The concerted character of the structural transition is preserved in the presence of all effectors. CTP slightly shifts the dynamical equilibrium during a shortened steady state toward T while the additional presence of UTP makes the steady state vanishingly short. The return transition to the T conformation is slowed significantly in the presence of inhibitors, the effect being most severe in the presence of UTP. While ATP increases the apparent T to R rate, it also increases the duration of the steady-state phase, an apparently paradoxical observation. This observation can be accounted for by the greater increase in the association rate constant of aspartate, promoted by ATP, while the nucleotide produces a lesser degree of increase in the dissociation rate constant. Under our experimental conditions, using high concentrations of both enzyme and substrate, it appears that this very mechanism of activation turns the activator into an efficient inhibitor. The scattering patterns recorded in the presence of ATP support the view that ATP alters the quaternary structure of the substrate-bound enzyme, an effect reminiscent of the reported modification of PALA-bound R-state by Mg-ATP.
Collapse
Affiliation(s)
- Hiro Tsuruta
- Stanford Synchrotron Radiation Laboratory, SLAC, MS 69, 2575 Sand Hill Rd, Menlo Park, CA 94025-7015, USA.
| | | | | | | | | |
Collapse
|
8
|
West JM, Kantrowitz ER. Trapping specific quaternary states of the allosteric enzyme aspartate transcarbamoylase in silica matrix sol-gels. J Am Chem Soc 2003; 125:9924-5. [PMID: 12914446 DOI: 10.1021/ja0360440] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extreme T and R quaternary structures of the allosteric enzyme aspartate transcarbamoylase have been trapped by encapsulation in a silica sol-gel matrix. Detection of the specific quaternary structure present in the sol-gel was accomplished using a pyrene-labeled version of the enzyme that exhibited monomer fluorescence in the T quaternary structure and excimer fluorescence in the R quaternary structure. Using thin films of the encapsulated enzyme, kinetics of the T and R states could be determined without interconversion of the states. Using a monolith form of the encapsulated enzyme, the transition from the T or the R structure was monitored. Within the sol-gel matrix, the rate of the transition was slowed approximately 105 over that observed in solution.
Collapse
Affiliation(s)
- Jay M West
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
9
|
Vachette P, Koch MHJ, Svergun DI. Looking behind the Beamstop: X-Ray Solution Scattering Studies of Structure and Conformational Changes of Biological Macromolecules. Methods Enzymol 2003; 374:584-615. [PMID: 14696389 DOI: 10.1016/s0076-6879(03)74024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
|
11
|
Tsuruta H, Vachette P, Kantrowitz ER. Direct observation of an altered quaternary-structure transition in a mutant aspartate transcarbamoylase. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980601)31:4<383::aid-prot5>3.0.co;2-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Svergun DI, Barberato C, Koch MHJ, Fetler L, Vachette P. Large differences are observed between the crystal and solution quaternary structures of allosteric aspartate transcarbamylase in the R state. Proteins 1997. [DOI: 10.1002/(sici)1097-0134(199701)27:1<110::aid-prot11>3.0.co;2-q] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Baker DP, Fetler L, Vachette P, Kantrowitz ER. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Protein Sci 1996; 5:2276-86. [PMID: 8931146 PMCID: PMC2143294 DOI: 10.1002/pro.5560051114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aspartate transcarbamoylase from Escherichia coli shows homotropic cooperativity for aspartate as well as heterotropic regulation by nucleotides. Structurally, it consists of two trimeric catalytic subunits and three dimeric regulatory subunits, each chain being comprised of two domains. Glu-50 and Ser-171 are involved in stabilizing the closed conformation of the catalytic chain. Replacement of Glu-50 or Ser-171 by Ala in the holoenzyme has been shown previously to result in marked decreases in the maximal observed specific activity, homotropic cooperativity, and affinity for aspartate (Dembowski NJ, Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:3716-3723; Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). We have constructed a double mutant enzyme combining both mutations. The resulting Glu-50/ser-171-->Ala enzyme is 9-fold less active than the Ser-171-->Ala enzyme, 69-fold less active than the Glu-50-->Ala enzyme, and shows 1.3-fold and 1.6-fold increases in the [S]0.5Asp as compared to the Ser-171-->Ala and Glu-50-->Ala enzymes, respectively. However, the double mutant enzyme exhibits some enhancement of homotropic cooperativity with respect to aspartate, relative to the single mutant enzymes. At subsaturating concentrations of aspartate, the Glu-50/Ser-171 -->Ala enzyme is activated less by ATP than either the Glu-50-->Ala or Ser-171-->Ala enzyme, whereas CTP inhibition is intermediate between that of the two single mutants. As opposed to the wild-type enzyme, the Glu-50/Ser-171 -->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes by solution X-ray scattering indicates that both mutants exist in the same T quaternary structure as the wild-type enzyme in the absence of ligands, and in the same R quaternary structure in the presence of saturating N-(phosphonoacetyl)-L-aspartate. However, saturating concentrations of carbamoyl phosphate and succinate are unable to convert a significant fraction of either mutant enzyme population to the R quaternary structure, as has been observed previously for the Glu-50-->Ala enzyme. The curves for both the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes obtained in the presence of substoichiometric amounts of PALA are linear combinations of the two extreme T and R states. The structural consequences of nucleotide binding to these two enzymes were also investigated. Most surprisingly, the direction and amplitude of the effect of ATP upon the double mutant enzyme were shown to vary depending upon the substrate analogue used.
Collapse
Affiliation(s)
- D P Baker
- Merkert Chemistry Center, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167-3860, USA
| | | | | | | |
Collapse
|
14
|
Lee BH, Ley BW, Kantrowitz ER, O'Leary MH, Wedler FC. Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism. J Biol Chem 1995; 270:15620-7. [PMID: 7797560 DOI: 10.1074/jbc.270.26.15620] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The closure of the two domains of the catalytic chains of Escherichia coli aspartate transcarbamoylase, which is critical for completion of the T-->R transition, is stabilized by salt-bridges between Glu-50 and both Arg-167 and Arg-234. Mutation of Glu-50 to Ala shifts the enzyme toward a low activity, low affinity state (Newton, C. J., and Kantrowitz, E. R. (1990) Biochemistry, 29, 1444-1451). Kinetic isotope effects (KIE) and equilibrium isotope exchange kinetics (EIEK) have been used to probe the dynamic properties of the Glu-50-->Ala enzyme. Unlike the behavior of the wild-type enzyme, the observed kinetic isotope effect for 13C versus 12C at the carbonyl group of carbamoyl phosphate (CP) increased upon the binding of ligands which promote the formation of the R-state (Asp, N-phosphonacetyl-L-aspartate (PALA), or ATP). The maximum rate for the [14C]Asp<-->Carbamoyl aspartate (CAsp) exchange with the Glu-50-->Ala enzyme was 500-fold slower than for the wild-type enzyme; however, the rate for the [14C]CP<-->CAsp exchange was only 50-fold slower, reversing the relative rates observed with the wild-type enzyme. In addition, upon variation of substrate pairs involving Asp or CAsp, loss of inhibition effects in the CP<-->CAsp exchange indicated that the Glu-50-->Ala substitution caused the kinetic mechanism for the mutant enzyme to shift from ordered to random. Computer simulations of the EIEK data indicate that the Glu-50-->Ala mutation specifically causes strong decreases in the rates of catalysis and association-dissociation for Asp and CAsp, with minimal effects on the CP and Pi on-off rates. With substrates bound, the Glu-50-->Ala enzyme apparently does not attain a full R-state conformation. The PALA-activated Glu-50-->Ala enzyme, however, exhibits substrate affinities comparable to those for the wild-type enzyme, but fails to restore the preferred order substrate binding. Unlike the wild-type enzyme, both the T and R-states of the Glu-50-->Ala enzyme contribute to catalysis. A third state, I, is proposed for the Glu-50-->Ala enzyme, in which random order substrate binding is exhibited, and the catalytic step contributes significantly to overall rate limitation.
Collapse
Affiliation(s)
- B H Lee
- Department of Biochemistry, University of Nebraska, Lincoln 68583, USA
| | | | | | | | | |
Collapse
|
15
|
Baker DP, Fetler L, Keiser RT, Vachette P, Kantrowitz ER. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Protein Sci 1995; 4:258-67. [PMID: 7757014 PMCID: PMC2143059 DOI: 10.1002/pro.5560040212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aspartate transcarbamoylase from Escherichia coli is a dodecameric enzyme consisting of two trimeric catalytic subunits and three dimeric regulatory subunits. Asp-100, from one catalytic chain, is involved in stabilizing the C1-C2 interface by means of its interaction with Arg-65 from an adjacent catalytic chain. Replacement of Asp-100 by Ala has been shown previously to result in increases in the maximal specific activity, homotropic cooperativity, and the affinity for aspartate (Baker DP, Kantrowitz ER, 1993, Biochemistry 32:10150-10158). In order to determine whether these properties were due to promotion of domain closure induced by the weakening of the C1-C2 interface, we constructed a double mutant version of aspartate transcarbamoylase in which the Asp-100-->Ala mutation was introduced into the Glu-50-->Ala holoenzyme, a mutant in which domain closure is impaired. The Glu-50/Asp-100-->Ala enzyme is fourfold more active than the Glu-50-->Ala enzyme, and exhibits significant restoration of homotropic cooperativity with respect to aspartate. In addition, the Asp-100-->Ala mutation restores the ability of the Glu-50-->Ala enzyme to be activated by succinate and increases the affinity of the enzyme for the bisubstrate analogue N-(phosphonacetyl)-L-aspartate (PALA). At subsaturating concentrations of aspartate, the Glu-50/Asp-100-->Ala enzyme is activated more by ATP than the Glu-50-->Ala enzyme and is also inhibited more by CTP than either the wild-type or the Glu-50-->Ala enzyme. As opposed to the wild-type enzyme, the Glu-50/Asp-100-->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Glu-50/Asp-100-->Ala enzyme by solution X-ray scattering indicates that the double mutant exists in the same T quaternary structure as the wild-type enzyme in the absence of ligands and in the same R quaternary structure in the presence of saturating PALA. However, saturating concentrations of carbamoyl phosphate and succinate only convert a fraction of the Glu-50/Asp-100-->Ala enzyme population to the R quaternary structure, a behavior intermediate between that observed for the Glu-50-->Ala and wild-type enzymes. Solution X-ray scattering was also used to investigate the structural consequences of nucleotide binding to the Glu-50/Asp-100-->Ala enzyme.
Collapse
Affiliation(s)
- D P Baker
- Merkert Chemistry Center, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167-3860, USA
| | | | | | | | | |
Collapse
|
16
|
Tauc P, Keiser RT, Kantrowitz ER, Vachette P. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure. Protein Sci 1994; 3:1998-2004. [PMID: 7703847 PMCID: PMC2142631 DOI: 10.1002/pro.5560031112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glu-50 of aspartate transcarbamoylase from Escherichia coli forms a set of interdomain bridging interactions between the 2 domains of the catalytic chain; these interactions are critical for stabilization of the high-activity high-affinity form of the enzyme. The mutant enzyme with an alanine substituted for Glu-50 (Glu-50-->Ala) exhibits significantly reduced activity, little cooperativity, and altered regulatory behavior (Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). A study of the structural consequences of replacing Glu-50 by alanine using solution X-ray scattering is reported here. Correspondingly, in the absence of substrates, the mutant enzyme is in the same, so-called T quaternary conformation as is the wild-type enzyme. In the presence of a saturating concentration of the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA), the mutant enzyme is in the same, so-called R quaternary conformation as the wild-type enzyme. However, the Glu-50-->Ala enzyme differs from the wild-type enzyme, in that its scattering pattern is hardly altered by a combination of carbamoyl phosphate and succinate. Addition of ATP under these conditions does result in a slight shift toward the R structure. Steady-state kinetic studies indicate that, in contrast to the wild-type enzyme, the Glu-50-->Ala enzyme is activated by PALA at saturating concentrations of carbamoyl phosphate and aspartate, and that PALA increases the affinity of the mutant enzyme for aspartate. These data suggest that the enzyme does not undergo the normal T to R transition upon binding of the physiological substrates and verifies the previous suggestion that the interdomain bridging interactions involving Glu-50 are critical for the creation of the high-activity, high-affinity R state of the enzyme.
Collapse
Affiliation(s)
- P Tauc
- LURE, CNRS-CEA-MESR, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|