1
|
Xu C, Sun L, Mei Y, Sun G, Li W, Wang D, Li X, Wang NN. Domain Swapping between AtACS7 and PpACL1 Results in Chimeric ACS-like Proteins with ACS or C β-S Lyase Single Enzymatic Activity. Int J Mol Sci 2023; 24:ijms24032956. [PMID: 36769285 PMCID: PMC9917878 DOI: 10.3390/ijms24032956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The gaseous hormone ethylene plays a pivotal role in plant growth and development. In seed plants, the key rate-limiting enzyme that controls ethylene biosynthesis is ACC synthase (ACS). ACS has, for a long time, been believed to be a single-activity enzyme until we recently discovered that it also possesses Cβ-S lyase (CSL) activity. This discovery raises fundamental questions regarding the biological significance of the dual enzymatic activities of ACS. To address these issues, it is highly necessary to obtain ACS mutants with either ACS or CSL single activity. Here, domain swapping between Arabidopsis AtACS7 and moss CSL PpACL1 were performed. Enzymatic activity assays of the constructed chimeras revealed that, R10, which was produced by replacing AtACS7 box 6 with that of PpACL1, lost ACS but retained CSL activity, whereas R12 generated by box 4 substitution lost CSL and only had ACS activity. The activities of both chimeric proteins were compared with previously obtained single-activity mutants including R6, AtACS7Q98A, and AtACS7D245N. All the results provided new insights into the key residues required for ACS and CSL activities of AtACS7 and laid an important foundation for further in-depth study of the biological functions of its dual enzymatic activities.
Collapse
Affiliation(s)
- Chang Xu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Wenjing Li
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
2
|
Xu C, Hao B, Sun G, Mei Y, Sun L, Sun Y, Wang Y, Zhang Y, Zhang W, Zhang M, Zhang Y, Wang D, Rao Z, Li X, Shen QJ, Wang NN. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. SCIENCE ADVANCES 2021; 7:eabg8752. [PMID: 34757795 PMCID: PMC8580319 DOI: 10.1126/sciadv.abg8752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowei Hao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunmei Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyuan Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Han SW, Kim J, Cho HS, Shin JS. Active Site Engineering of ω-Transaminase Guided by Docking Orientation Analysis and Virtual Activity Screening. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03242] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sang-Woo Han
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Juyeon Kim
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Hyun-Soo Cho
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Jong-Shik Shin
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| |
Collapse
|
4
|
Sun L, Dong H, Mei Y, Wang NN. Functional investigation of two 1-aminocyclopropane-1-carboxylate (ACC) synthase-like genes in the moss Physcomitrella patens. PLANT CELL REPORTS 2016; 35:817-30. [PMID: 26743426 DOI: 10.1007/s00299-015-1923-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 05/16/2023]
Abstract
Two ACC synthase-like (ACL) proteins in the moss Physcomitrella patens have no ACS activity, and PpACL1 functions as an L -cystine/ L -cysteine C-S lyase. The ethylene biosynthetic pathway has been well characterized in higher plants, and homologs of a key enzyme in this pathway, ACS, have been reported in several algae and mosses, including Physcomitrella patens. However, the function of the ACS homologs in P. patens has not been investigated. In this research, we cloned two putative ACS genes from the P. patens genome, namely PpACS-Like 1 and 2, and investigated whether their encoded proteins had in vitro and in vivo ACS activity. In vitro biochemical assays using purified PpACL1 and PpACL2 showed that neither protein had ACS activity. Subsequently, we generated transgenic Arabidopsis lines expressing 35S:PpACL1 and 35S:PpACL2, and found that the transgenic etiolated seedlings that overexpressed either of these proteins lacked the constitutive triple response phenotype and did not emit excess levels of ethylene, indicating that neither of the PpACS-Like proteins had in vivo ACS activity. Furthermore, we found that PpACL1 functions as a C-S lyase that uses L-cystine and L-cysteine as substrates, rather than as an aminotransferase. Together, these results indicated that PpACL1 and PpACL2 are not true ACS genes as those found in higher plants.
Collapse
Affiliation(s)
- Lifang Sun
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Dong
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Biocatalysts for the formation of three- to six-membered carbo- and heterocycles. Biotechnol Adv 2015; 33:457-80. [DOI: 10.1016/j.biotechadv.2015.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022]
|
6
|
Zhang TC, Qiao Q, Zhong Y. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase (ACS) gene family. Comput Biol Chem 2012; 38:10-6. [PMID: 22543105 DOI: 10.1016/j.compbiolchem.2012.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Ethylene is an essential plant gaseous hormone that controls many aspects of plant growth and development, especially the fruit ripening. It is important to know how this hormone is synthesized and how its production is regulated to understand the roles of ethylene in plant development. The aminocyclopropane-1-carboxylate synthase (ACS) gene is a rate-limiting enzyme in the ethylene biosynthesis pathway, which is encoded by a highly divergent multi-gene family in plant species. Although many ACS genes have been cloned from a wide variety of plant species previously, their origin and evolutionary process are still not clear. In this study, we conducted a phylogenetic analysis based on an updated dataset including 107 members of plant ACS genes and eight ACS-like genes from animal as well as six AATase genes. The motifs were identified and the positive selection and functional divergence in the ACS gene family were detected. The results obtained from these analyses are consistent with previous division of the ACS gene family in angiosperm, i.e., three distinct clades, and show that the duplications of three subclades (I, II and III) ACS genes have occurred after the divergence of gymnosperm and angiosperm. We conclude that the ACS genes could have experienced three times significant positive selection as they underwent expansion in land plants and gain the full-scale ethylene biosynthesis and regulatory functions, and all plant ACS genes originated from plant-ACS-like genes which come from AATase genes.
Collapse
Affiliation(s)
- Ti-Cao Zhang
- School of Life Sciences, Fudan University, Shanghai 20043, China.
| | | | | |
Collapse
|
7
|
Schärer MA, Eliot AC, Grütter MG, Capitani G. Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS Lett 2010; 585:111-4. [DOI: 10.1016/j.febslet.2010.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
8
|
Kozbial PZ, Mushegian AR. Natural history of S-adenosylmethionine-binding proteins. BMC STRUCTURAL BIOLOGY 2005; 5:19. [PMID: 16225687 PMCID: PMC1282579 DOI: 10.1186/1472-6807-5-19] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. RESULTS Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. CONCLUSION We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
Collapse
Affiliation(s)
- Piotr Z Kozbial
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Arcady R Mushegian
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Gallie DR, Young TE. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 2004; 271:267-81. [PMID: 14760521 DOI: 10.1007/s00438-004-0977-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/31/2003] [Indexed: 01/22/2023]
Abstract
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| | | |
Collapse
|
10
|
Ko S, Eliot AC, Kirsch JF. S-Methylmethionine is both a substrate and an inactivator of 1-aminocyclopropane-1-carboxylate synthase. Arch Biochem Biophys 2004; 421:85-90. [PMID: 14678788 DOI: 10.1016/j.abb.2003.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
S-methyl-L-methionine (SMM) is ubiquitous in the tissues of flowering plants, but its precise function remains unknown. It is both a substrate and an inhibitor of the pyridoxal 5(')-phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase, due to its structural similarity to the natural substrate of this enzyme, S-adenosyl-L-methionine. In the reaction with ACC synthase, SMM can either be transaminated to yield 4-dimethylsulfonium-2-oxobutyrate; converted to alpha-ketobutyrate, ammonia, and dimethylsulfide; or inactivate the enzyme covalently after elimination of dimethylsulfide. These results suggest a previously unrecognized role for SMM in the regulation of ACC synthase activity in plants.
Collapse
Affiliation(s)
- SaeHee Ko
- Department of Chemistry, University of California, 239 A Hildebrand Hall 3206, Berkeley, CA 94720-3206, USA
| | | | | |
Collapse
|
11
|
Bertoldi M, Cellini B, Paiardini A, Di Salvo M, Borri Voltattorni C. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications. Biochem J 2003; 371:473-83. [PMID: 12519070 PMCID: PMC1223284 DOI: 10.1042/bj20020875] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 12/20/2002] [Accepted: 01/08/2003] [Indexed: 11/17/2022]
Abstract
To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed.
Collapse
Affiliation(s)
- Mariarita Bertoldi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
12
|
Koch KA, Capitani G, Gruetter MG, Kirsch JF. The human cDNA for a homologue of the plant enzyme 1-aminocyclopropane-1-carboxylate synthase encodes a protein lacking that activity. Gene 2001; 272:75-84. [PMID: 11470512 DOI: 10.1016/s0378-1119(01)00533-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sequences of genes encoding homologues of 1-aminocyclopropane-1-carboxylate (ACC) synthase, the first enzyme in the two-step biosynthetic pathway of the important plant hormone ethylene, have recently been found in Fugu rubripes and Homo sapiens (Peixoto et al., Gene 246 (2000) 275). ACC synthase (ACS) catalyzes the formation of ACC from S-adenosyl-L-methionine. ACC is oxidized to ethylene in the second and final step of ethylene biosynthesis. Profound physiological questions would be raised if it could be demonstrated that ACC is formed in animals, because there is no known function for ethylene in these organisms. We describe the cloning of the putative human ACS (PHACS) cDNA that encodes a 501 amino acid protein that exhibits 58% sequence identity to the putative Fugu ACS and approximately 30% sequence identity to plant ACSs. Purified recombinant PHACS, expressed in Pichia pastoris, contains bound pyridoxal-5'-phosphate (PLP), but does not catalyze the synthesis of ACC. PHACS does, however, catalyze the deamination of L-vinylglycine, a known side-reaction of apple ACS. Bioinformatic analysis indicates that PHACS is a member of the alpha-family of PLP-dependent enzymes. Molecular modeling data illustrate that the conservation of residues between PHACS and the plant ACSs is dispersed throughout its structure and that two active site residues that are important for ACS activity in plants are not conserved in PHACS.
Collapse
Affiliation(s)
- K A Koch
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3206, USA
| | | | | | | |
Collapse
|