1
|
Chary P, Beard WA, Wilson SH, Lloyd RS. DNA polymerase β gap-filling translesion DNA synthesis. Chem Res Toxicol 2012; 25:2744-54. [PMID: 23121263 PMCID: PMC3523550 DOI: 10.1021/tx300368f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although the primary function of DNA polymerase (pol)
β is
associated with gap-filling DNA synthesis as part of the DNA base
excision repair pathway, translesion synthesis activity has also been
described. To further understand the potential role of pol β-catalyzed
translesion DNA synthesis (TLS) and the structure–function
relationships of specific residues in pol β, wild-type and selected
mutants of pol β were used in TLS assays with DNA substrates
containing bulky polycyclic aromatic hydrocarbon-adducted oligonucleotides.
Stereospecific (+) and (−)-anti-trans-(C10S and C10R)
benzo[a]pyrene-7,8- dihydrodiol-9-10-epoxide (BPDE)
adducts were covalently attached to both the N6-adenine and N2-guanine in the major and minor grooves, respectively. For all substrates
tested, the presence of the BPDE adducts greatly decreased the efficiency
of nucleotide incorporation opposite the lesion, and the stereochemistry
of the adducts also further modulated the efficiency of the insertion
step, such that lesions which were oriented in the 3′ direction
relative to the approaching polymerase were considerably more blocking
than those oriented in the 5′ direction. In the absence of
a downstream DNA strand, the extension step beyond the adduct was
extremely inefficient, relative to a dinucleotide gap-filling reaction,
such that in the presence of the downstream DNA, dinucleotide incorporation
was strongly favored. In general, analyses of the TLS activities of
four pol β mutants revealed similar overall properties, but
wild-type pol β exhibited more than 50-fold greater extension
and bypass of the C10S-dA adducts as compared
to a low fidelity mutant R283K expected to interact with the templating
base. Replication bypass investigations were further extended to include
analyses of HIV-1 reverse transcriptase, and these studies revealed
patterns of inhibition very similar to that observed for pol β.
Collapse
Affiliation(s)
- Parvathi Chary
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | | | | | | |
Collapse
|
2
|
Donmez I, Patel SS. Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J 2008; 27:1718-26. [PMID: 18497749 DOI: 10.1038/emboj.2008.100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/25/2008] [Indexed: 01/06/2023] Open
Abstract
The ring-shaped T7 helicase uses the energy of dTTP hydrolysis to perform the mechanical work of translocation and base pair (bp) separation. We have shown that the unwinding rate of T7 helicase decreases with increasing DNA stability. Here, we show that the dTTPase rate also decreases with increasing DNA stability, which indicates close linkage between chemical transition steps and translocation steps of unwinding. We find that the force-producing step during unwinding is not associated with dTTP binding, but dTTP hydrolysis or P(i) release. We determine that T7 helicase extracts approximately 3.7 kcal/mol energy from dTTPase to carry out the work of strand separation. Using this energy, T7 helicase unwinds approximately 4 bp of AT-rich DNA or 1-2 bp of GC-rich DNA. T7 helicase therefore adjusts both its speed and coupling ratio (bp/dTTP) to match the work of DNA unwinding. We discuss the mechanistic implications of the variable bp/dTTP that indicates T7 helicase either undergoes backward movements/futile hydrolysis or unwinds DNA with a variable bp-step size; 'long and fast' steps on AT-rich and 'short and slow' steps on GC-rich DNA.
Collapse
Affiliation(s)
- Ilker Donmez
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|
3
|
Batra VK, Shock DD, Prasad R, Beard WA, Hou EW, Pedersen LC, Sayer JM, Yagi H, Kumar S, Jerina DM, Wilson SH. Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Proc Natl Acad Sci U S A 2006; 103:17231-6. [PMID: 17079493 PMCID: PMC1630674 DOI: 10.1073/pnas.0605069103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have determined the crystal structure of the human base excision repair enzyme DNA polymerase beta (Pol beta) in complex with a 1-nt gapped DNA substrate containing a template N2-guanine adduct of the tumorigenic (-)-benzo[c]phenanthrene 4R,3S-diol 2S,1R-epoxide in the gap. Nucleotide insertion opposite this adduct favors incorrect purine nucleotides over the correct dCMP and hence can be mutagenic. The structure reveals that the phenanthrene ring system is stacked with the base pair immediately 3' to the modified guanine, thereby occluding the normal binding site for the correct incoming nucleoside triphosphate. The modified guanine base is displaced downstream and prevents the polymerase from achieving the catalytically competent closed conformation. The incoming nucleotide binding pocket is distorted, and the adducted deoxyguanosine is in a syn conformation, exposing its Hoogsteen edge, which can hydrogen-bond with dATP or dGTP. In a reconstituted base excision repair system, repair of a deaminated cytosine (i.e., uracil) opposite the adducted guanine was dramatically decreased at the Pol beta insertion step, but not blocked. The efficiency of gap-filling dCMP insertion opposite the adduct was diminished by >6 orders of magnitude compared with an unadducted templating guanine. In contrast, significant misinsertion of purine nucleotides (but not dTMP) opposite the adducted guanine was observed. Pol beta also misinserts a purine nucleotide opposite the adduct with ungapped DNA and exhibits limited bypass DNA synthesis. These results indicate that Pol beta-dependent base excision repair of uracil opposite, or replication through, this bulky DNA adduct can be mutagenic.
Collapse
Affiliation(s)
- Vinod K. Batra
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - David D. Shock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Esther W. Hou
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, Buffalo State College, Buffalo, NY 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
5
|
Zang H, Harris TM, Guengerich FP. Kinetics of nucleotide incorporation opposite DNA bulky guanine N2 adducts by processive bacteriophage T7 DNA polymerase (exonuclease-) and HIV-1 reverse transcriptase. J Biol Chem 2004; 280:1165-78. [PMID: 15533946 DOI: 10.1074/jbc.m405996200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six oligonucleotides with carcinogen derivatives bound at the N2 atom of deoxyguanosine were prepared, including adducts derived from butadiene, acrolein, crotonaldehyde, and styrene, and examined for effects on the replicative enzymes bacteriophage DNA polymerase T7- (T7-) and HIV-1 reverse transcriptase for comparison with previous work on smaller DNA adducts. All of these adducts strongly blocked dCTP incorporation opposite the adducts. dATP was preferentially incorporated opposite the acrolein and crotonaldehyde adducts, and dTTP incorporation was preferred at the butadiene- and styrene-derived adducts. Steady-state kinetic analysis indicated that the reduced catalytic efficiency with adducted DNA involved both an increased Km and attenuated kcat. Fluorescence estimates of Kd and pre-steady-state kinetic measurements of koff showed no significantly decreased affinity of T7- with the adducted oligonucleotides or the dNTP. Pre-steady-state kinetics showed no burst phase kinetics for dNTP incorporation with any of the modified oligonucleotides. These results indicate that phosphodiester bond formation or a conformational change of the enzyme.DNA complex is rate-limiting instead of the step involving release of the oligonucleotide. Thio elemental effects for dNTP incorporation were generally relatively small but variable, indicating that the presence of adducts may sometimes make phosphodiester bond formation rate-limiting but not always.
Collapse
Affiliation(s)
- Hong Zang
- Department of Biochemistry and Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
6
|
Zhang Q, Broyde S, Schlick T. Deformations of promoter DNA bound to carcinogens help interpret effects on TATA-element structure and activity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1479-1496. [PMID: 15306462 DOI: 10.1098/rsta.2004.1386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The TATA-box binding protein (TBP) is required by eukaryotic RNA polymerases for correct transcription initiation. TBP binds to the minor groove of an 8 base pair (bp) DNA-promoter element known as the TATA box and severely bends the TATA box. The promoter-DNA substrate can be damaged by components present in the cell or the environment to produce covalent carcinogen-DNA adducts. These may lead to transcription blockage or unfaithful transcription. Benzo[a]pyrene (BP) is a widespread environmental chemical carcinogen which can be metabolically converted to DNA-reactive enantiomeric (+) and (-)-anti-benzo[a]pyrene diol epoxides (BPDEs). Recent experimental studies of a pair of stereoisomeric adenine adducts, derived from (+) and (-)-anti-BPDEs, have revealed how these lesions influence the complexation of TBP with the TATA box. Depending on the adduct's location in the TATA box and its stereochemistry, the stability of monomeric TATA-TBP complexes was found to increase or decrease relative to the unmodified DNA. We report here analyses of molecular-dynamics simulations to interpret these findings. Structural analyses of 12 DNA-protein systems representing different combinations of adduct stereoisomer type and placement within the promoter reveal that the location of the adduct within the TATA octamer determines whether the stability of TATA-TBP complexes is increased or decreased. The effect on binding stability can be interpreted in terms of conformational freedom and major-groove space available to BP due to the hydrogen bonds and inserted phenylalanines of the TATA-TBP complex; that is, depending on the position of the adenine to which BP is covalently bound, BP can be accommodated in an intercalated or major-groove orientation with ease or with difficulty (due to interference with TATA-TBP interactions). The unravelled structures and interactions thus reveal the effect of different adduct locations on TATA-TBP complex formation and suggest how transcription initiation may be affected by the presence of a bulky BP.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University and the Howard Hughes Medical Institute, 251 Mercer Street, New York, NY 10012, USA
| | | | | |
Collapse
|
7
|
Perlow RA, Broyde S. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. J Mol Biol 2003; 327:797-818. [PMID: 12654264 DOI: 10.1016/s0022-2836(03)00187-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA polymerase enzymes employ a number of innate fidelity mechanisms to ensure the faithful replication of the genome. However, when confronted with DNA damage, their fidelity mechanisms can be evaded, resulting in a mutation that may contribute to the carcinogenic process. The environmental carcinogen benzo[a]pyrene is metabolically activated to reactive intermediates, including the tumorigenic (+)-anti-benzo[a]pyrene diol epoxide, which can attack DNA at the exocyclic amino group of guanine to form the major (+)-trans-anti-[BP]-N(2)-dG adduct. Bulky adducts such as (+)-trans-anti-[BP]-N(2)-dG primarily block DNA replication, but are occasionally bypassed and cause mutations if paired with an incorrect base. In vitro standing-start primer-extension assays show that the preferential insertion of A opposite (+)-trans-anti-[BP]-N(2)-dG is independent of the sequence context, but the primer is extended preferentially when dT is positioned opposite the damaged base in a 5'-CG*T-3' sequence context. Regardless of the base positioned opposite (+)-trans-anti-[BP]-N(2)-dG, extension of the primer past the lesion site poses the greatest block to polymerase progression. In order to gain insight into primer-extension of each base opposite (+)-trans-anti-[BP]-N(2)-dG, we carried out molecular modeling and 1.25 ns unrestrained molecular dynamics simulations of the adduct in the +1 position of the template within the replicative pol I family T7 DNA polymerase. Each of the four bases was modeled at the 3' terminus of the primer, incorporated opposite the adduct, and the next-to-be replicated base was in the active site with its Watson-Crick partner as the incoming nucleotide. As in our studies of nucleotide incorporation, (+)-trans-anti-[BP]-N(2)-dG was modeled in the syn conformation in the +1 position, with the BP moiety on the open major groove side of the primer-template duplex region, leaving critical protein-DNA interactions intact. The present work revealed that the efficiency of primer-extension past this bulky adduct opposite each of the four bases in the 5'-CG*T-3' sequence can be rationalized by the stability of interactions between the polymerase protein, primer-template DNA and incoming nucleotide. However, the relative stabilization of each nucleotide opposite (+)-trans-anti-[BP]-N(2)-dG in the +1 position (T > G > A > or = C) differed from that when the adduct and partner were the nascent base-pair (A > T > or = G > C). In addition, extension past (+)-trans-anti-[BP]-N(2)-dG may pose a greater block to a high fidelity DNA polymerase than does nucleotide incorporation opposite the adduct because the presence of the modified base-pair in the +1 position is more disruptive to the polymerase-DNA interactions than it is within the active site itself. The dN:(+)-trans-anti-[BP]-N(2)-dG base-pair is strained to shield the bulky aromatic BP moiety from contact with the solvent in the +1 position, causing disruption of protein-DNA interactions that would likely result in decreased extension of the base-pair. These studies reveal in molecular detail the kinds of specific structural interactions that determine the function of a processive DNA polymerase when challenged by a bulky DNA adduct.
Collapse
Affiliation(s)
- Rebecca A Perlow
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
8
|
Gniazdowski M, Cera C. The Effects of DNA Covalent Adducts on in Vitro Transcription. Chem Rev 1996; 96:619-634. [PMID: 11848767 DOI: 10.1021/cr940049l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marek Gniazdowski
- Department of General Chemistry, Medical University of Lodz, ul.Lindleya 6, 90-131 Lodz, Poland, and Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | | |
Collapse
|
9
|
Shibutani S, Margulis LA, Geacintov NE, Grollman AP. Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry 1993; 32:7531-41. [PMID: 8338850 DOI: 10.1021/bi00080a027] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligodeoxynucleotides modified site-specifically with dG-(+)-trans- and dG-(+)-cis-anti-BPDE (7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) or dG-(-)-trans- and dG-(-)-cis-anti-BPDE were used as templates in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer could be extended past the dG-(-)-trans-BPDE adduct with small amounts of dAMP incorporated opposite the lesion. A small amount of base deletions was also observed while, with the dG-(-)-cis-BPDE adduct, one- and two-base deletions predominated. When templates containing dG-(+)-trans-BPDE were used, small amounts of products containing one-base deletions were observed; with dG-(+)-cis-BPDE, substitution of dAMP opposite the lesion was also detected. The frequency of nucleotide insertion for dAMP opposite dG-(-)-trans-BPDE and the frequency of extension from the primer terminus containing the dA:dG-(-)-trans-BPDE pair were much higher than those observed with the other, stereochemically different BPDE adducts. Kinetic studies were in agreement with the results of the primer extension study. When the base flanking the 5' side of dG-BPDE was changed from dC to dT, the frequency of one-base deletions increased. We conclude that the trans- or cis-addition product of dG-(-)-anti-BPDE has a higher miscoding potential than dG-(+)-anti-BPDE in our model system and that G-->T transversions and deletions predominate. These observations are consistent with the types of mutations observed in vivo.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Base Sequence
- Chromatography, High Pressure Liquid
- Circular Dichroism
- DNA/chemistry
- DNA/drug effects
- DNA/metabolism
- DNA Damage
- DNA Polymerase I/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/enzymology
- Gene Deletion
- Kinetics
- Molecular Sequence Data
- Stereoisomerism
- Templates, Genetic
Collapse
Affiliation(s)
- S Shibutani
- Department of Pharmacological Sciences, State University of New York, Stony Brook 11794-8651
| | | | | | | |
Collapse
|
10
|
Sun D, Hurley LH. Effect of the (+)-CC-1065-(N3-adenine)DNA adduct on in vitro DNA synthesis mediated by Escherichia coli DNA polymerase. Biochemistry 1992; 31:2822-9. [PMID: 1547223 DOI: 10.1021/bi00125a025] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(+)-CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis. Previous studies have shown that the potent cytotoxic and antitumor activities of (+)-CC-1065 are due to the ability of this compound to covalently modify DNA. (+)-CC-1065 reacts with duplex DNA to form an N3-adenine DNA adduct which lies in the minor groove of the DNA helix overlapping with a 5-base-pair region. As a consequence of covalent modification with (+)-CC-1065, the DNA helix bends into the minor groove and also undergoes winding and stiffening [Lee, C.-S., Sun, D., Kizu, R., & Hurley, L. H. (1991) Chem. Res. Toxicol. 4, 203-213]. In the studies described here, in which we have constructed site-directed DNA adducts on single-stranded DNA templates, we have shown that (+)-CC-1065 and select synthetic analogues, which have different levels of cytotoxicity, all show strong blocks against progression of Klenow fragment, E. coli DNA polymerase, and T4 DNA polymerase. The inhibition of bypass of drug lesions by polymerase could be partially alleviated by increasing the concentration of dNTPs and, to a small extent, by increasing polymerase levels. Klenow fragment binds equally well to a DNA template adjacent to a drug modification site and to unmodified DNA. These results taken together lead us to suspect that it is primarily inhibition of base pairing around the drug modification site and not prevention of polymerase binding that leads to blockage of DNA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Sun
- Drug Dynamics Institute, College of Pharmacy, University of Texas, Austin 78712
| | | |
Collapse
|