1
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
2
|
Applying Thymine Isostere 2,4-Difluoro-5-Methylbenzene as a NMR Assignment Tool and Probe of Homopyrimidine/Homopurine Tract Structural Dynamics. Methods Enzymol 2015; 566:89-110. [PMID: 26791977 DOI: 10.1016/bs.mie.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3. Only resonances proximal to the site of dF substitution exhibit sizable chemical shift changes, providing spectral dispersion while still allowing chemical shift mapping of resonances from unaffected residues distal to the site of modification directly back to the unmodified sequence. It is further illustrated that dF incorporation can subtly alter the conformation and dynamics of homopyrimidine/homopurine tract oligonucleotides, and how these NMR observations can be correlated, in the cases of the TATA box DNA, with modulation in the TATA box-binding protein interaction using an orthogonal gel assay.
Collapse
|
3
|
Scott LG, Hennig M. ¹⁹F-Site-Specific-Labeled Nucleotides for Nucleic Acid Structural Analysis by NMR. Methods Enzymol 2015; 566:59-87. [PMID: 26791976 DOI: 10.1016/bs.mie.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naturally occurring RNA lacks fluorine-19 ((19)F), thus, their specifically fluorinated counterparts are particularly well suited to noninvasively monitoring the dynamic conformational properties and ligand-binding interactions of the RNA. For nuclear magnetic resonance (NMR) spectroscopy, (19)F-NMR of fluorine-substituted RNA provides an attractive, site-specific probe for structure determination in solution. Advantages of (19)F include high NMR sensitivity (83% of (1)H), high natural abundance (100%), and the extreme sensitivity of (19)F to the chemical environment leading to a large range of chemical shifts. The preparation of base-substituted 2-fluoropurine and 5-fluoropyrimidine 5'-triphosphates (2F-ATP/5F-CTP/5F-UTP) can be carried out using efficient enzymatic synthesis methods. Both pyrimidine analogs, 5-fluorouridine and 5-fluorocytidine, as well as, 2-fluoroadenosine are readily incorporated into RNA transcribed in vitro using T7 RNA polymerase.
Collapse
Affiliation(s)
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.
| |
Collapse
|
4
|
Hountondji C, Bulygin K, Créchet JB, Woisard A, Tuffery P, Nakayama JI, Frolova L, Nierhaus KH, Karpova G, Baouz S. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome. Open Biochem J 2014; 8:52-67. [PMID: 25191528 PMCID: PMC4150381 DOI: 10.2174/1874091x01408010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022] Open
Abstract
We have demonstrated previously that the E-site specific protein RPL36AL present in human ribosomes can be crosslinked with the CCA-end of a P-tRNA in situ. Here we report the following: (i) We modeled RPL36AL into the structure of the archaeal ortholog RPL44E extracted from the known X-ray structure of the 50S subunit of Haloarcula marismortui. Superimposing the obtained RPL36AL structure with that of P/E tRNA observed in eukaryotic 80S ribosomes suggested that RPL36AL might in addition to its CCA neighbourhood interact with the inner site of the tRNA elbow similar to an interaction pattern known from tRNA•synthetase pairs. (ii) Accordingly, we detected that the isolated recombinant protein RPL36AL can form a tight binary complex with deacylated tRNA, and even tRNA fragments truncated at their CCA end showed a high affinity in the nanomolar range supporting a strong interaction outside the CCA end. (iii) We constructed programmed 80S complexes containing the termination factor eRF1 (stop codon UAA at the A-site) and a 2’,3’-dialdehyde tRNA (tRNAox) analog at the P-site. Surprisingly, we observed a crosslinked ternary complex containing the tRNA, eRF1 and RPL36AL crosslinked both to the aldehyde groups of tRNAox at the 2’- and 3’-positions of the ultimate A. We also demonstrated that, upon binding to the ribosomal A-site, eRF1 induces an alternative conformation of the ribosome and/or the tRNA, leading to a novel crosslink of tRNAox to another large-subunit ribosomal protein (namely L37) rather than to RPL36AL, both ribosomal proteins being labeled in a mutually exclusive fashion. Since the human 80S ribosome in complex with P-site bound tRNAox and A-site bound eRF1 corresponds to the post-termination state of the ribosome, the results represent the first biochemical evidence for the positioning of the CCA-arm of the P-tRNA in close proximity to both RPL36AL and eRF1 at the end of the translation process.
Collapse
Affiliation(s)
- Codjo Hountondji
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 2, Place Jussieu, F-75252 Paris Cedex 05, France
| | - Konstantin Bulygin
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 2, Place Jussieu, F-75252 Paris Cedex 05, France ; Institute of Chemical Biology and Fundamental Medecine, Siberian Branch of the Russian Academy of Sciences, pr Lavrentieva, 8, 630090 Novosibirsk, Russia
| | | | - Anne Woisard
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 2, Place Jussieu, F-75252 Paris Cedex 05, France
| | - Pierre Tuffery
- Université Denis Diderot-Paris 7, INSERM-UMR-S973 and RPBS, France
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho, Nagoya, Aichi 467-8501, Japan
| | - Ludmila Frolova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Knud H Nierhaus
- Charité, Institut für Medizinische Physik und Biophysic, Charitéplatz 1. D-10117 Berlin, Germany
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medecine, Siberian Branch of the Russian Academy of Sciences, pr Lavrentieva, 8, 630090 Novosibirsk, Russia
| | - Soria Baouz
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 2, Place Jussieu, F-75252 Paris Cedex 05, France
| |
Collapse
|
5
|
Tardif KD, Horowitz J. Functional group recognition at the aminoacylation and editing sites of E. coli valyl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2004; 10:493-503. [PMID: 14970394 PMCID: PMC1370944 DOI: 10.1261/rna.5166704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/07/2003] [Indexed: 05/24/2023]
Abstract
To correct misactivation and misacylation errors, Escherichia coli valyl-tRNA synthetase (ValRS) catalyzes a tRNA(Val)-dependent editing reaction at a site distinct from its aminoacylation site. Here we examined the effects of replacing the conserved 3'-adenosine of tRNA(Val) with nucleoside analogs, to identify structural elements of the 3'-terminal nucleoside necessary for tRNA function at the aminoacylation and editing sites of ValRS. The results show that the exocyclic amino group (N6) is not essential: purine riboside-substituted tRNA(Val) is active in aminoacylation and in stimulating editing. Presence of an O6 substituent (guanosine, inosine, xanthosine) interferes with aminoacylation as well as posttransfer and total editing (pre- plus posttransfer editing). Because ValRS does not recognize substituents at the 6-position, these results suggest that an unprotonated N1, capable of acting as an H-bond acceptor, is an essential determinant for both the aminoacylation and editing reactions. Substituents at the 2-position of the purine ring, either a 2-amino group (2-aminopurine, 2,6-diaminopurine, guanosine, and 7-deazaguanosine) or a 2-keto group (xanthosine, isoguanosine), strongly inhibit both aminoacylation and editing. Although aminoacylation by ValRS is at the 2'-OH, substitution of the 3'-terminal adenosine of tRNA(Val) with 3'-deoxyadenosine reduces the efficiency of valine acceptance and of posttransfer editing, demonstrating that the 3'-terminal hydroxyl group contributes to tRNA recognition at both the aminoacylation and editing sites. Our results show a strong correlation between the amino acid accepting activity of tRNA and its ability to stimulate editing, suggesting misacylated tRNA is a transient intermediate in the editing reaction, and editing by ValRS requires a posttransfer step.
Collapse
Affiliation(s)
- Keith D Tardif
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
6
|
Fukai S, Nureki O, Sekine SI, Shimada A, Vassylyev DG, Yokoyama S. Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2003; 9:100-111. [PMID: 12554880 PMCID: PMC1370374 DOI: 10.1261/rna.2760703] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Accepted: 09/23/2002] [Indexed: 05/24/2023]
Abstract
The molecular interactions between valyl-tRNA synthetase (ValRS) and tRNA(Val), with the C34-A35-C36 anticodon, from Thermus thermophilus were studied by crystallographic analysis and structure-based mutagenesis. In the ValRS-bound structure of tRNA(Val), the successive A35-C36 residues (the major identity elements) of tRNA(Val) are base-stacked upon each other, and fit into a pocket on the alpha-helix bundle domain of ValRS. Hydrogen bonds are formed between ValRS and A35-C36 of tRNA(Val) in a base-specific manner. The C-terminal coiled-coil domain of ValRS interacts electrostatically with A20 and hydrophobically with the G19*C56 tertiary base pair. The loss of these interactions by the deletion of the coiled-coil domain of ValRS increased the K(M) value for tRNA(Val) 28-fold and decreased the k(cat) value 19-fold in the aminoacylation. The tRNA(Val) K(M) and k(cat) values were increased 21-fold and decreased 32-fold, respectively, by the disruption of the G18*U55 and G19*C56 tertiary base pairs, which associate the D- and T-loops for the formation of the L-shaped tRNA structure. Therefore, the coiled-coil domain of ValRS is likely to stabilize the L-shaped tRNA structure during the aminoacylation reaction.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Tardif KD, Horowitz J. Transfer RNA determinants for translational editing by Escherichia coli valyl-tRNA synthetase. Nucleic Acids Res 2002; 30:2538-45. [PMID: 12034843 PMCID: PMC117182 DOI: 10.1093/nar/30.11.2538] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Valyl-tRNA synthetase (ValRS) has difficulty differentiating valine from structurally similar non-cognate amino acids, most prominently threonine. To minimize errors in aminoacylation and translation the enzyme catalyzes a proofreading (editing) reaction that is dependent on the presence of cognate tRNA(Val). Editing occurs at a site functionally distinct from the aminoacylation site of ValRS and previous results have shown that the 3'-terminus of tRNA(Val) is recognized differently at the two sites. Here, we extend these studies by comparing the contribution of aminoacylation identity determinants to productive recognition of tRNA(Val) at the aminoacylation and editing sites, and by probing tRNA(Val) for editing determinants that are distinct from those required for aminoacylation. Mutational analysis of Escherichia coli tRNA(Val) and identity switch experiments with non-cognate tRNAs reveal a direct relationship between the ability of a tRNA to be aminoacylated and its ability to stimulate the editing activity of ValRS. This suggests that at least a majority of editing by the enzyme entails prior charging of tRNA and that misacylated tRNA is a transient intermediate in the editing reaction.
Collapse
Affiliation(s)
- Keith D Tardif
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
8
|
Fredrick K, Noller HF. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Mol Cell 2002; 9:1125-31. [PMID: 12049747 DOI: 10.1016/s1097-2765(02)00523-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ribosome must accurately translocate mRNA to maintain the reading frame. Here, we monitor the position of mRNA within the ribosome before and after EF-G-catalyzed translocation near the initiation site. When a deacylated tRNA that is translocated to the 30S P site recognizes other nearby codons, movement of tRNA and mRNA often becomes uncoupled. Instead of moving in the 5' direction by 3 nucleotides, the mRNA slips backward, repositioning the tRNA on an out-of-frame codon more optimally spaced from the Shine-Dalgarno sequence. In contrast, when peptidyl-tRNA or its analog (N-acetyl-aminoacyl-tRNA) is translocated in the same context, translocation of mRNA is highly accurate. If aminoacyl-tRNA is translocated, an intermediate level of translocational accuracy is observed. Thus, translocational accuracy depends on the acylation state of the tRNA entering the 30S P site.
Collapse
Affiliation(s)
- Kurt Fredrick
- Center for Molecular Biology of RNA, Sinsheimer Laboraties, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
9
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
10
|
Abstract
We have incorporated 5-fluorouridine into several sites within a 19-mer RNA modelled on the translational operator of the MS2 bacteriophage. The 19F NMR spectra demonstrate the different chemical shifts of helical and loop fluorouridines of the hairpin secondary structure. Addition of salt gives rise to a species in which the loop fluorouridine gains the chemical shift of its helical counterparts, due to the formation of the alternative bi-molecular duplex form. This is supported by UV thermal melting behaviour which becomes highly dependent on the RNA concentration. Distinct 19F NMR signals for duplex and hairpin forms allow the duplex-hairpin equilibrium constant to be determined under a range of conditions, enabling thermodynamic characterisation and its salt dependence to be determined. Mg2+ also promotes duplex formation, but more strongly than Na+, such that at 25 degrees C, 10 mM MgCl2 has a comparable duplex-promoting effect to 300 mM NaCl. A similar effect is observed with Sr2+, but not Ca2+ or Ba2+. Additional hairpin species are observed in the presence of Na+ as well as Mg2+, Ca2+, Sr2+ and Ba2+ ions. The overall, ensemble average, hairpin conformation is therefore salt-dependent. Electrostatic considerations are thus involved in the balance between different hairpin conformers as well as the duplex-hairpin equilibrium. The data presented here demonstrate that 19F NMR is a powerful tool for the study of conformational heterogeneity in RNA, which is particularly important for probing the effects of metal ions on RNA structure. The thermodynamic characterisation of duplex-hairpin equilibria will also be valuable in the development of theoretical models of nucleic acid structure.
Collapse
Affiliation(s)
- J R Arnold
- School of Biology, University of Leeds, UK.
| | | |
Collapse
|
11
|
Arnold JR, Fisher J. The H(2)(18)O solvent-induced isotope shift in (19)F NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 142:1-10. [PMID: 10617430 DOI: 10.1006/jmre.1999.1931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The H(2)(16)O/H(2)(18)O solvent-induced isotope shifts ((18)O SIIS) of the (19)F NMR signals of a number of fluorine compounds have been measured. These isotope shifts are observed to be upfield, downfield, or zero, depending on the specific compound and the precise solution conditions. At 25 degrees C and with an (18)O enrichment of 86%, the (18)O SIIS of several fluorinated amino acids were in the range of 0.0014-0.0018 ppm downfield. 5-Fluorouridine displays a significantly wider range of (18)O SIIS values. A 5-fluorouridine-labeled 16-mer RNA also displayed observable (18)O SIIS values, but the characteristics of these were significantly modified from those of free 5-fluorouridine. The experimental observations are consistent with the (18)O SIIS being composed of upfield and downfield components, with the relative contributions of these determining the size and direction of the overall isotope shift. This is discussed in terms of a combination of van der Waals interactions between the fluorine atom and the solvent, electrical and hydrogen bonding effects, and the perturbations to these due to (18)O substitution in the solvent water. This isotope effect promises to be a highly useful tool in a range of (19)F NMR studies.
Collapse
Affiliation(s)
- J R Arnold
- School of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | | |
Collapse
|
12
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 611] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
13
|
Helm M, Brulé H, Degoul F, Cepanec C, Leroux JP, Giegé R, Florentz C. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 1998; 26:1636-43. [PMID: 9512533 PMCID: PMC147479 DOI: 10.1093/nar/26.7.1636] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Direct sequencing of human mitochondrial tRNALysshows the absence of editing and the occurrence of six modified nucleotides (m1A9, m2G10, Psi27, Psi28 and hypermodified nucleotides at positions U34 and A37). This tRNA folds into the expected cloverleaf, as confirmed by structural probing with nucleases. The solution structure of the corresponding in vitro transcript unexpectedly does not fold into a cloverleaf but into an extended bulged hairpin. This non-canonical fold, established according to the reactivity to a large set of chemical and enzymatic probes, includes a 10 bp aminoacyl acceptor stem (the canonical 7 bp and 3 new pairs between residues 8-10 and 65-63), a 13 nt large loop and an anticodon-like domain. It is concluded that modified nucleotides have a predominant role in canonical folding of human mitochondrial tRNALys. Phylogenetic comparisons as well as structural probing of selected in vitro transcribed variants argue in favor of a major contribution of m1A9 in this process.
Collapse
Affiliation(s)
- M Helm
- Unité Propre de Recherche 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Felden B, Florentz C, Westhof E, Giegé R. Transfer RNA identity rules and conformation of the tyrosine tRNA-like domain of BMV RNA imply additional charging by histidine and valine. Biochem Biophys Res Commun 1998; 243:426-34. [PMID: 9480825 DOI: 10.1006/bbrc.1997.7753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports the first example of a triple aminoacylation specificity of a viral tRNA-like domain. These findings were based on structural studies on the brome mosaic virus (BMV) tRNA-like domain (Felden et al., 1994, J. Mol. Biol. 235, 508-531) together with knowledge on tRNA aminoacylation identity rules suggesting potential histidinylation and valylation capacities of the viral RNA in addition to its already known tyrosylation ability. Here, both predictions are demonstrated by in vitro aminoacylation assays. Kinetic parameters of histidinylation and valylation of BMV tRNA-like structure have been determined and compared to those of the corresponding tRNA transcripts and to the tyrosylation capacity of the molecule. The influence of experimental conditions on aminoacylation reactions was also studied. The novel aminoacylation capacities of BMV tRNA-like domain support its already reported three-dimensional fold and illustrate the predictive potential of modeling data. Biological necessity of specific or non specific aminoacylation will be discussed.
Collapse
MESH Headings
- Base Sequence
- Bromovirus/chemistry
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Val/chemistry
- RNA, Viral/chemistry
- Substrate Specificity
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- B Felden
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France.
| | | | | | | |
Collapse
|
15
|
Liu M, Chu WC, Liu JC, Horowitz J. Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase. Nucleic Acids Res 1997; 25:4883-90. [PMID: 9396792 PMCID: PMC147156 DOI: 10.1093/nar/25.24.4883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although the anticodon is the primary element in Escherichia coli tRNAValfor recognition by valyl-tRNA synthetase (ValRS), nucleotides in the acceptor stem and other parts of the tRNA modulate recognition. Study of the steady state aminoacylation kinetics of acceptor stem mutants of E.coli tRNAValdemonstrates that replacing any base pair in the acceptor helix with another Watson-Crick base pair has little effect on aminoacylation efficiency. The absence of essential recognition nucleotides in the acceptor helix was confirmed by converting E.coli tRNAAlaand yeast tRNAPhe, whose acceptor stem sequences differ significantly from that of tRNAVal, to efficient valine acceptors. This transformation requires, in addition to a valine anticodon, replacement of the G:U base pair in the acceptor stem of these tRNAs. Mutational analysis of tRNAValverifies that G:U base pairs in the acceptor helix act as negative determinants of synthetase recognition. Insertion of G:U in place of the conserved U4:A69 in tRNAValreduces the efficiency of aminoacylation, due largely to an increase in K m. A smaller but significant decline in aminoacylation efficiency occurs when G:U is located at position 3:70; lesser effects are observed for G:U at other positions in the acceptor helix. The negative effects of G:U base pairs are strongly correlated with changes in helix structure in the vicinity of position 4:69 as monitored by19F NMR spectroscopy of 5-fluorouracil-substituted tRNAVal. This suggests that maintaining regular A-type RNA helix geometry in the acceptor stem is important for proper recognition of tRNAValby valyl-tRNA synthetase.19F NMR also shows that formation of the tRNAVal-valyl-tRNA synthetase complex does not disrupt the first base pair in the acceptor stem, a result different from that reported for the tRNAGln-glutaminyl-tRNA synthetase complex.
Collapse
Affiliation(s)
- M Liu
- Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
16
|
Evilia C, Zhang X, Kanyo J, Lu P. The Synthesis of Oligonucleotides Containing Fluoro-2′-Deoxycytidine for Secondary Structure Determination of Tandem Tetraloop DNA Analogs. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Chu WC, Liu JC, Horowitz J. Localization of the major ethidium bromide binding site on tRNA. Nucleic Acids Res 1997; 25:3944-9. [PMID: 9380521 PMCID: PMC146966 DOI: 10.1093/nar/25.19.3944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Binding of ethidium bromide to Escherichia coli tRNAVal and an RNA minihelix based on the acceptor stem and T-arm of tRNAVal was investigated by 19F and 1H NMR spectroscopy of RNAs labeled with fluorine by incorporation of 5-fluorouracil. Ethidium bromide selectively intercalates into the acceptor stem of the tRNAVal. More than one ethidium bromide binding site is found in the acceptor stem, the strongest between base pairs A6:U67 and U7:A66. 19F and 1H spectra of the 5-fluorouracil-substituted minihelix RNA indicate that the molecule exists in solution as a 12 base-paired stem and a single-stranded loop. Ethidium bromide no longer intercalates between base pairs corresponding to the tRNAVal acceptor stem in this molecule. Instead, it intercalates between base pairs at the bottom of the long stem-loop structure. These observations suggest that ethidium bromide has a preferred intercalation site close to the base of an RNA helical stem.
Collapse
Affiliation(s)
- W C Chu
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
18
|
Rastinejad F, Evilia C, Lu P. Studies of nucleic acids and their protein interactions by 19F NMR. Methods Enzymol 1995; 261:560-75. [PMID: 8569512 DOI: 10.1016/s0076-6879(95)61025-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- F Rastinejad
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
19
|
Liu M, Horowitz J. Functional transfer RNAs with modifications in the 3'-CCA end: differential effects on aminoacylation and polypeptide synthesis. Proc Natl Acad Sci U S A 1994; 91:10389-93. [PMID: 7937960 PMCID: PMC45025 DOI: 10.1073/pnas.91.22.10389] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The trinucleotide CCA sequence is present at the 3' terminus of all mature tRNAs. Despite this high degree of conservation, we have been able to prepare in vitro transcripts of Escherichia coli tRNA(Val) with altered 3' termini that are readily aminoacylated and can function in polypeptide synthesis. Replacement of the 3'-terminal adenosine with either cytidine or uridine yields a tRNA(Val) variant that retains almost full aminoacylation activity, having specificity constants (Vmax/Km) 40-50% that of wild-type tRNA(Val). The tRNA(Val) variant with a 3'-terminal guanosine remains fully chargeable but is a poor substrate for valyl-tRNA synthetase, largely as the result of a decrease in the catalytic constant. End-group analysis revealed the absence of adenosine at the 3' end of the tRNA(Val) mutants and identified the nucleotide expected from the sequence of the DNA template as the predominant 3'-terminal residue; Val-cytidine was isolated from the aminoacylated C76 mutant. Val-tRNA(Val) with 3'-CCG is active in poly(U,G)-directed (Val, Phe) copolypeptide synthesis, whereas the tRNA(Val) mutants terminating in 3'-CCC and 3'-CCU, which are readily aminoacylated, are inactive. The differential effects of nucleotide substitution on aminoacylation and polypeptide synthesis suggest that the universally conserved 3'-CCA end of tRNAs is monitored at two or more steps in protein synthesis that have different nucleotide recognition specificities.
Collapse
Affiliation(s)
- M Liu
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | |
Collapse
|
20
|
Tamura K, Nameki N, Hasegawa T, Shimizu M, Himeno H. Role of the CCA terminal sequence of tRNA(Val) in aminoacylation with valyl-tRNA synthetase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31772-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Niimi T, Kawai G, Takayanagi M, Noguchi T, Hayashi N, Kohno T, Muto Y, Watanabe K, Miyazawa T, Yokoyama S. A 15N-1H nuclear magnetic resonance study on the interaction between isoleucine tRNA and isoleucyl-tRNA synthetase from Escherichia coli. Biochimie 1993; 75:1109-15. [PMID: 8199246 DOI: 10.1016/0300-9084(93)90010-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Imino 15N and 1H resonances of Escherichia coli tRNA(lIle) were observed in the absence and presence of E coli isoleucyl-tRNA synthetase. Upon complex formation of tRNA(lIle) with isoleucyl-tRNA synthetase, some imino 15N-1H resonances disappeared, and some others were significantly broadened and/or shifted in the 1H chemical shift, while the others were observed at the same 15N-1H chemical shifts. It was indicated that the binding of tRNA(lIle) with IleRS affect the following four regions: the anticodon stem, the junction of the acceptor and T stems, the middle of the D stem, and the region where the tertiary base pair connects the T, D, and extra loops. This result is consistent with those of chemical footprinting and site-directed mutagenesis studies. Taken together, these three independent results reveal the recognition mechanism of tRNA(lIle) by IleRS: IleRS recognizes all the identity determinants distributed throughout the tRNA(lIle) molecule, which induces changes in the secondary and tertiary structures of tRNA(lIle).
Collapse
Affiliation(s)
- T Niimi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chu WC, Kintanar A, Horowitz J. Correlations between fluorine-19 nuclear magnetic resonance chemical shift and the secondary and tertiary structure of 5-fluorouracil-substituted tRNA. J Mol Biol 1992; 227:1173-81. [PMID: 1279181 DOI: 10.1016/0022-2836(92)90529-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To complete assignment of the 19F nuclear magnetic resonance (NMR) spectrum of 5-fluorouracil-substituted Escherichia coli tRNA(Val), resonances from 5-fluorouracil residues involved in tertiary interactions have been identified. Because these assignments could not be made directly by the base-replacement method used to assign 5-fluorouracil residues in loop and stem regions of the tRNA, alternative assignment strategies were employed. FU54 and FU55 were identified by 19F homonuclear Overhauser experiments and were then assigned by comparison of their 19F NMR spectra with those of 5-fluorouracil-labeled yeast tRNA(Phe) mutants having FU54 replaced by adenine and FU55 replaced by cytosine. FU8 and FU12, were assigned from the 19F NMR spectrum of the tRNA(Val) mutant in which the base triple G9-C23-G12 substituted for the wild-type A9-A23-FU12. Although replacement of the conserved U8 (FU8) with A or C disrupts the tertiary structure of tRNA(Val), it has only a small effect on the catalytic turnover number of valyl-tRNA synthetase, while reducing the affinity of the tRNA for enzyme. Analysis of the 19F chemical shift assignments of all 14 resonances in the spectrum of 5-fluorouracil-substituted tRNAVal indicated a strong correlation to tRNA secondary and tertiary structure. 5-Fluorouracil residues in loop regions gave rise to peaks in the central region of the spectrum, 4.4 to 4.9 parts per million (p.p.m.) downfield from free 5-fluorouracil. However, the signal from FU59, in the T-loop of tRNA(Val), was shifted more than 1 p.p.m. downfield, to 5.9 p.p.m., presumably because of the involvement of this fluorouracil in the tertiary interactions between the T and D-loops. The 19F chemical shift moved upfield, to the 2.0 to 2.8 p.p.m. range, when fluorouracil was base-paired with adenine in helical stems. This upfield shift was less pronounced for the fluorine of the FU7.A66 base-pair, located at the base of the acceptor stem, an indication that FU7 is only partially stacked on the adjacent G49 in the continuous acceptor stem/T-stem helix. An unanticipated finding was that the 19F resonances of 5-fluorouracil residues wobble base-paired with guanine were shifted 4 to 5 p.p.m. downfield of those from fluorouracil residues paired with A. In the 19F NMR spectra of all fluorinated tRNAs studied, the farthest downfield peak corresponded to FU55, which replaced the conserved pseudouridine normally found at this position.
Collapse
Affiliation(s)
- W C Chu
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | | | |
Collapse
|
23
|
Chu WC, Feiz V, Derrick WB, Horowitz J. Fluorine-19 nuclear magnetic resonance as a probe of the solution structure of mutants of 5-fluorouracil-substituted Escherichia coli valine tRNA. J Mol Biol 1992; 227:1164-72. [PMID: 1279180 DOI: 10.1016/0022-2836(92)90528-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In order to utilize 19F nuclear magnetic resonance (NMR) to probe the solution structure of Escherichia coli tRNAVal labeled by incorporation of 5-fluorouracil, we have assigned its 19F spectrum. We describe here assignments made by examining the spectra of a series of tRNAVal mutants with nucleotide substitutions for individual 5-fluorouracil residues. The result of base replacements on the structure and function of the tRNA are also characterized. Mutants were prepared by oligonucleotide-directed mutagenesis of a cloned tRNAVal gene, and the tRNAs transcribed in vitro by bacteriophage T7 RNA polymerase. By identifying the missing peak in the 19F NMR spectrum of each tRNA variant we were able to assign resonances from fluorouracil residues in loop and stem regions of the tRNA. As a result of the assignment of FU33, FU34 and FU29, temperature-dependent spectral shifts could be attributed to changes in anticodon loop and stem conformation. Observation of a magnesium ion-dependent splitting of the resonance assigned to FU64 suggested that the T-arm of tRNAVal can exist in two conformations in slow exchange on the NMR time scale. Replacement of most 5-fluorouracil residues in loops and stems had little effect on the structure of tRNAVal; few shifts in the 19F NMR spectrum of the mutant tRNAs were noted. However, replacing the FU29.A41 base-pair in the anticodon stem with C29.G41 induced conformational changes in the anticodon loop as well as in the P-10 loop. Effects of nucleotide substitution on aminoacylation were determined by comparing the Vmax and Km values of tRNAVal mutants with those of the wild-type tRNA. Nucleotide substitution at the 3' end of the anticodon (position 36) reduced the aminoacylation efficiency (Vmax/Km) of tRNAVal by three orders of magnitude. Base replacement at the 5' end of the anticodon (position 34) had only a small negative effect on the aminoacylation efficiency. Substitution of the FU29.A41 base-pair increased the Km value 20-fold, while Vmax remained almost unchanged. The FU4.A69 base-pair in the acceptor stem, could readily be replaced with little effect on the aminoacylation efficiency of E. coli tRNAVal, indicating that this base-pair is not an identity element of the tRNA, as suggested by others.
Collapse
Affiliation(s)
- W C Chu
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|
24
|
|
25
|
Tamura K, Himeno H, Asahara H, Hasegawa T, Shimizu M. Identity determinants of E. coli tRNA(Val). Biochem Biophys Res Commun 1991; 177:619-23. [PMID: 2049085 DOI: 10.1016/0006-291x(91)91833-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to study the identity elements of valine tRNA, various transcripts of E. coli valine tRNA mutants were constructed. Both mutations at the second letter A35 of the anticodon and at the discriminator base A73 seriously damaged valine charging activity. Mutations at either the G3-C70 or U4-A69 base pairs in the acceptor stem also affected the activity. Only one nucleotide substitution of the second letter G35 of the anticodon with A35 brought an 18% valine charging activity into alanine tRNA, which acquired an almost full charging activity with valine by introducing an additional change at those two base pairs in the acceptor stem. These results indicate that the second letter A35 of the anticodon, discriminator base and acceptor stem are involved in recognition by valyl-tRNA synthetase.
Collapse
Affiliation(s)
- K Tamura
- Institute of Space and Astronautical Science, Kanagawa, Japan
| | | | | | | | | |
Collapse
|