1
|
Rohani L, Lamichhane HP, Hastings G. Calculated vibrational properties of pigments in protein binding sites 2: Semiquinones in photosynthetic proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122518. [PMID: 36996613 DOI: 10.1016/j.saa.2023.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[QA- - QA] Fourier transform infrared difference spectra have previously been obtained using purple bacterial reaction centers from Rhodobacter sphaeroides with unlabeled, 18O and 13C isotope labeled phylloquinone (PhQ, also known as vitamin K1) incorporated into the QA protein binding site (Breton, (1997), Proc. Natl. Acad. Sci. USA94 11318-11323). The nature of the bands in these spectra and the isotope induced band shifts are poorly understood, especially for the phyllosemiquinone anion (PhQ-) state. To aid in the interpretation of the bands in these experimental spectra, ONIOM type QM/MM vibrational frequency calculations were undertaken. Calculations were also undertaken for PhQ- in solution. Surprisingly, both sets of calculated spectra are similar and agree well with the experimental spectra. This similarity suggests pigment-protein interactions do not perturb the electronic structure of the semiquinone in the QA binding site. This is not found to be the case for the neutral PhQ species in the same protein binding site. PhQ also occupies the A1 protein binding site in photosystem I, and the vibrational properties of PhQ- in the QA and A1 binding sites are compared and shown to exhibit considerable differences. These differences probably arise because of changes in the degree of asymmetry of hydrogen bonding of PhQ- in the A1 and QA binding sites.
Collapse
Affiliation(s)
- Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Hari P Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Agarwala N, Rohani L, Hastings G. Experimental and calculated infrared spectra of disubstituted naphthoquinones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120674. [PMID: 34894562 DOI: 10.1016/j.saa.2021.120674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
In recent years there has been interest in incorporating substituted 1,4-naphthoquinones (NQs) into the A1 binding site in photosystem I (PSI) photosynthetic protein complexes. This interest in part stems from the considerably altered bioenergetics of electron transfer that occur in PSI with such substitutions. Time resolved FTIR studies of PSI complexes with disubstituted NQs incorporated have and currently are being undertaken, and with this in mind it is worth considering FTIR absorption spectra of these disubstituted NQs in solution. Here we present FTIR absorbance spectra for 2-bromo-3-methyl-1,4-naphthoquinone (BrMeNQ), 2-chloromethyl-3-methyl-1,4-naphthoquinone (CMMeNQ) and 2-ethylthio-3-methyl-1,4-naphthoquinone (ETMeNQ) in tetrahydrofuran (THF). The FTIR spectra of these di-substituted naphthoquinones (NQs) were compared to FTIR spectra of 2-methyl-3-phytyl-1,4-naphthoquinone [phylloquinone (PhQ)], 2,3-dimethyl-1,4-naphthoquinone (DMNQ), and 2-methyl-1,4-naphthoquinone (2MNQ). To aid in the assignment of bands in the experimental spectra, density functional theory (DFT) based vibrational frequency calculations for all the substituted NQs in solution were undertaken. The calculated and experimental spectra agree well. By calculating normal mode potential energy distributions, unambiguous quantitative band assignments were made. The calculated and experimental spectra together make predictions about what may be observable in time resolved FTIR difference spectra obtained using PSI with the different NQs incorporated. Time resolved FTIR difference spectra are presented that support these predictions.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148307. [PMID: 32926863 DOI: 10.1016/j.bbabio.2020.148307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.
Collapse
|
4
|
Koua FHM. Structural Changes in the Acceptor Site of Photosystem II upon Ca 2+/Sr 2+ Exchange in the Mn 4CaO 5 Cluster Site and the Possible Long-Range Interactions. Biomolecules 2019; 9:E371. [PMID: 31416291 PMCID: PMC6722538 DOI: 10.3390/biom9080371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
The Mn4CaO5 cluster site in the oxygen-evolving complex (OEC) of photosystem II (PSII) undergoes structural perturbations, such as those induced by Ca2+/Sr2+ exchanges or Ca/Mn removal. These changes have been known to induce long-range positive shifts (between +30 and +150 mV) in the redox potential of the primary quinone electron acceptor plastoquinone A (QA), which is located 40 Å from the OEC. To further investigate these effects, we reanalyzed the crystal structure of Sr-PSII resolved at 2.1 Å and compared it with the native Ca-PSII resolved at 1.9 Å. Here, we focus on the acceptor site and report the possible long-range interactions between the donor, Mn4Ca(Sr)O5 cluster, and acceptor sites.
Collapse
Affiliation(s)
- Faisal Hammad Mekky Koua
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
- National University Biomedical Research Institute, National University-Sudan, Air St. PO Box 3783, Khartoum, Sudan.
| |
Collapse
|
5
|
Saggu M, Fried SD, Boxer SG. Local and Global Electric Field Asymmetry in Photosynthetic Reaction Centers. J Phys Chem B 2019; 123:1527-1536. [PMID: 30668130 DOI: 10.1021/acs.jpcb.8b11458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of unidirectional electron transfer in photosynthetic reaction centers (RCs) has been widely discussed. Despite the high level of structural similarity between the two branches of pigments that participate in the initial electron transfer steps of photosynthesis, electron transfer only occurs along one branch. One possible explanation for this functional asymmetry is the differences in the electrostatic environment between the active and the inactive branches arising from the charges and dipoles of the organized protein structure. We present an analysis of electric fields in the RC of the purple bacterium Rhodobacter sphaeroides using the intrinsic carbonyl groups of the pigments as vibrational reporters whose vibrational frequency shifts can be converted into electric fields based on the vibrational Stark effect and also provide Stark effect data for plant pigments that can be used in future studies. The carbonyl stretches of the isolated pigments show pronounced Stark effects. We use these data, solvatochromism, molecular dynamics simulations, and data in the literature from IR and Raman spectra to evaluate differences in fields at symmetry-related positions, in particular at the 9-keto and 2-acetyl positions of the pigments involved in primary charge separation.
Collapse
Affiliation(s)
- Miguel Saggu
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Stephen D Fried
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
6
|
Möbius K, Lubitz W, Savitsky A. Jim Hyde and the ENDOR Connection: A Personal Account. APPLIED MAGNETIC RESONANCE 2017; 48:1149-1183. [PMID: 29151676 PMCID: PMC5668355 DOI: 10.1007/s00723-017-0959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/07/2023]
Abstract
In this minireview, we report on our year-long EPR work, such as electron-nuclear double resonance (ENDOR), pulse electron double resonance (PELDOR) and ELDOR-detected NMR (EDNMR) at X-band and W-band microwave frequencies and magnetic fields. This report is dedicated to James S. Hyde and honors his pioneering contributions to the measurement of spin interactions in large (bio)molecules. From these interactions, detailed information is revealed on structure and dynamics of macromolecules embedded in liquid-solution or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultra-fast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy and its multi-frequency extensions to new horizons concerning sensitivity of detection, selectivity of molecular interactions and time resolution. Among the most important advances is the upgrading of EPR to high magnetic fields, very much in analogy to what happened in NMR. The ongoing progress in EPR spectroscopy is exemplified by reviewing various multi-frequency electron-nuclear double-resonance experiments on organic radicals, light-generated donor-acceptor radical pairs in photosynthesis, and site-specifically nitroxide spin-labeled bacteriorhodopsin, the light-driven proton pump, as well as EDNMR and ENDOR on nitroxides. Signal and resolution enhancements are particularly spectacular for ENDOR, EDNMR and PELDOR on frozen-solution samples at high Zeeman fields. They provide orientation selection for disordered samples approaching single-crystal resolution at canonical g-tensor orientations-even for molecules with small g-anisotropies. Dramatic improvements of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Thus, unique structural and dynamic information is revealed that can hardly be obtained by other analytical techniques. Micromolar concentrations of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems-offering exciting applications for physicists, chemists, biochemists and molecular biologists.
Collapse
Affiliation(s)
- Klaus Möbius
- Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Anton Savitsky
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A. Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Phys Chem Chem Phys 2017; 19:28388-28400. [DOI: 10.1039/c7cp03942e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulsed EPR spectroscopies and isotope labeled water are applied to detect and quantify the local water in a bacterial reaction center embedded into a trehalose glass.
Collapse
Affiliation(s)
- Anna Nalepa
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
- Department of Physics
- Free University Berlin
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
8
|
Tessensohn ME, Ng SJ, Chan KK, Gan SL, Sims NF, Koh YR, Webster RD. Impurities in Nitrile Solvents Commonly Used for Electrochemistry, and their Effects on Voltammetric Data. ChemElectroChem 2016. [DOI: 10.1002/celc.201600266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malcolm E. Tessensohn
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Shu Jun Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Kwok Kiong Chan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Sher Li Gan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Natalie F. Sims
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Yu Rong Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
9
|
Cogulet A, Blanchet P, Landry V. Wood degradation under UV irradiation: A lignin characterization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:184-91. [DOI: 10.1016/j.jphotobiol.2016.02.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
10
|
|
11
|
Fan L, Ma Y, Su Y, Zhang R, Liu Y, Zhang Q, Jiang Z. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv 2015. [DOI: 10.1039/c5ra23490e] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel green coating method was proposed to prepare composite nanofiltration (NF) membranes with good structural stability and oxidation resistance ability.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanyan Ma
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanlei Su
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yanan Liu
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qi Zhang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
12
|
Hastings G. Vibrational spectroscopy of photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:55-68. [PMID: 25086273 DOI: 10.1016/j.bbabio.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/01/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
Fourier transform infrared difference spectroscopy (FTIR DS) has been widely used to study the structural details of electron transfer cofactors (and their binding sites) in many types of photosynthetic protein complexes. This review focuses in particular on work that has been done to investigate the A₁cofactor in photosystem I photosynthetic reaction centers. A review of this subject area last appeared in 2006 [1], so only work undertaken since then will be covered here. Following light excitation of intact photosystem I particles the P700⁺A⁻(1) secondary radical pair state is formed within 100ps. This state decays within 300ns at room temperature, or 300μs at 77K. Given the short-lived nature of this state, it is not easily studied using "static" photo-accumulation FTIR difference techniques at either temperature. Time-resolved techniques are required. This article focuses on the use of time-resolved step-scan FTIR DS for the study of the P700⁺A⁻(1) state in intact photosystem I. Up until now, only our group has undertaken studies in this area. So, in this article, recent work undertaken in our lab is described, where we have used low-temperature (77K), microsecond time-resolved step-scan FTIR DS to study the P700⁺A⁻(1) state in photosystem I. In photosystem I a phylloquinone molecule occupies the A₁binding site. However, different quinones can be incorporated into the A1 binding site, and here work is described for photosystem I particles with plastoquinone-9, 2-phytyl naphthoquinone and 2-methyl naphthoquinone incorporated into the A₁binding site. Studies in which ¹⁸O isotope labeled phylloquinone has been incorporated into the A1 binding site are also discussed. To fully characterize PSI particles with different quinones incorporated into the A1 binding site nanosecond to millisecond visible absorption spectroscopy has been shown to be of considerable value, especially so when undertaken using identical samples under identical conditions to that used in time-resolved step-scan FTIR measurements. In this article the latest work that has been undertaken using both visible and infrared time resolved spectroscopies on the same sample will be described. Finally, vibrational spectroscopic data that has been obtained for phylloquinone in the A1 binding site in photosystem I is compared to corresponding data for ubiquinone in the QA binding site in purple bacterial reaction centers. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Hellwig P. Infrared spectroscopic markers of quinones in proteins from the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:126-33. [PMID: 25026472 DOI: 10.1016/j.bbabio.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
Abstract
In bioenergetic systems quinones play a central part in the coupling of electron and proton transfer. The specific function of each quinone binding site is based on the protein-quinone interaction that can be described by means of reaction induced FTIR difference spectroscopy, induced for example by light or electrochemically. The identification of sites in enzymes from the respiratory chain is presented together with the analysis of the accommodation of different types of quinones to the same enzyme and the possibility to monitor the interaction with inhibitors. Reaction induced FTIR difference spectroscopy is shown to give an essential information on the general geometry of quinone binding sites, the conformation of the ring and of the substituents as well as essential structural information on the identity of the amino-acid residues lining this site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
14
|
Spontaneous construction of nanoperiodic architecture by two-dimensional self-assembly of an amphiphilic peptide–polyethylene glycol conjugate at the solid/water interface. J Colloid Interface Sci 2014; 417:137-43. [DOI: 10.1016/j.jcis.2013.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 01/30/2023]
|
15
|
Ashizawa R, Noguchi T. Effects of hydrogen bonding interactions on the redox potential and molecular vibrations of plastoquinone as studied using density functional theory calculations. Phys Chem Chem Phys 2014; 16:11864-76. [DOI: 10.1039/c3cp54742f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
17
|
Zhao N, Lamichhane HP, Hastings G. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site. FRONTIERS IN PLANT SCIENCE 2013; 4:328. [PMID: 24009618 PMCID: PMC3757576 DOI: 10.3389/fpls.2013.00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Previously we have shown that ONIOM type (QM/MM) calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and (18)O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0), 2,3,5,6-tetramethyl-1, 4-benzoquinone (duroquinone, DQ), and 2,3-dimethyl-l,4-naphthoquinone (DMNQ) incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites. The normal modes that contribute to the bands in the calculated spectra, their composition, frequency, and intensity, and how these quantities are modified upon (18)O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm(-1) separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry in H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are "tail-less." Spectra were also calculated for reaction centers with corresponding "tail" containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated spectra.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | | | | |
Collapse
|
18
|
Zhao N, Hastings G. On the Nature of the Hydrogen Bonds to Neutral Ubiquinone in the QA Binding Site in Purple Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2013; 117:8705-13. [DOI: 10.1021/jp403833y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
19
|
Coates CS, Ziegler J, Manz K, Good J, Kang B, Milikisiyants S, Chatterjee R, Hao S, Golbeck JH, Lakshmi KV. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. J Phys Chem B 2013; 117:7210-20. [PMID: 23676117 DOI: 10.1021/jp401024p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Christopher S Coates
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen JR, Ishikita H. Distribution of the Cationic State over the Chlorophyll Pair of the Photosystem II Reaction Center. J Am Chem Soc 2011; 133:14379-88. [DOI: 10.1021/ja203947k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toyokazu Ishida
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keisuke Kawakami
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Yasufumi Umena
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Jian-Ren Shen
- Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Ishikita
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Calculated vibrational properties of pigments in protein binding sites. Proc Natl Acad Sci U S A 2011; 108:10526-31. [PMID: 21670247 DOI: 10.1073/pnas.1104046108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FTIR difference spectroscopy is widely used to probe molecular bonding interactions of protein-bound electron transfer cofactors. The technique is particularly attractive because it provides information on both neutral and radical cofactor states. Such dual information is not easily obtainable using other techniques. Although FTIR difference spectroscopy has been used to study cofactors in biological protein complexes, in nearly all cases interpretation of the spectra has been purely qualitative. Virtually no computational work has been undertaken in an attempt to model the spectra. To address this problem we have developed the use of ONIOM (our own N-layered integrated molecular Orbital + Molecular mechanics package) (quantum mechanical:molecular mechanics) methods to calculate FTIR difference spectra associated with protein-bound cofactors. As a specific example showing the utility of the approach we have calculated isotope edited FTIR difference spectra associated with unlabeled and labeled ubiquinones in the Q(A) binding site in Rhodobacter sphaeroides photosynthetic reaction centers. The calculated spectra are in remarkable agreement with experiment. Such agreement cannot be obtained by considering ubiquinone molecules in the gas phase or in solution. A calculation including the protein environment is required. The ONIOM calculated spectra agree well with experiment but indicate a very different interpretation of the experimental data compared to that proposed previously. In particular the calculations do not predict that one of the carbonyl groups of Q(A) is very strongly hydrogen bonded. We show that a computational-based interpretation of FTIR difference spectra associated with protein-bound cofactors is now possible. This approach will be applicable to FTIR studies of many cofactor-containing proteins.
Collapse
|
22
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Burggraf F, Koslowski T. The simulation of interquinone charge transfer in a bacterial photoreaction center highlights the central role of a hydrogen-bonded non-heme iron complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:53-8. [DOI: 10.1016/j.bbabio.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
|
24
|
Flores M, Savitsky A, Paddock ML, Abresch EC, Dubinskii AA, Okamura MY, Lubitz W, Möbius K. Electron−Nuclear and Electron−Electron Double Resonance Spectroscopies Show that the Primary Quinone Acceptor QA in Reaction Centers from Photosynthetic Bacteria Rhodobacter sphaeroides Remains in the Same Orientation Upon Light-Induced Reduction. J Phys Chem B 2010; 114:16894-901. [DOI: 10.1021/jp107051r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Mark L. Paddock
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Edward C. Abresch
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Alexander A. Dubinskii
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Melvin Y. Okamura
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
25
|
Mezzetti A, Blanchet L, de Juan A, Leibl W, Ruckebusch C. Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Anal Bioanal Chem 2010; 399:1999-2014. [DOI: 10.1007/s00216-010-4325-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/24/2022]
|
26
|
Orzechowska A, Lipińska M, Fiedor J, Chumakov A, Zając M, Ślęzak T, Matlak K, Strzałka K, Korecki J, Fiedor L, Burda K. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1696-704. [DOI: 10.1016/j.bbabio.2010.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 06/23/2010] [Accepted: 06/26/2010] [Indexed: 10/19/2022]
|
27
|
Lipińska M, Orzechowska A, Fiedor J, Chumakov AI, Ślȩzak T, Zaja̧c M, Matlak K, Korecki J, Hałas A, Strzałka K, Fiedor L, Burda K. Influence of Cd2+on the spin state of non-heme iron and on protein local motions in reactions centers from purple photosynthetic bacteriumRhodospirilium rubrum. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/217/1/012021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Weyers AM, Chatterjee R, Milikisiyants S, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2009; 113:15409-18. [DOI: 10.1021/jp907379d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda M. Weyers
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
29
|
Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 101:157-170. [PMID: 19513810 DOI: 10.1007/s11120-009-9439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/15/2009] [Indexed: 05/26/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method.
Collapse
Affiliation(s)
- Catherine Berthomieu
- Commissariat à l' Energie Atomique, Laboratoire des Interactions Protéine Métal, DSV/Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille II, Saint Paul-lez-Durance Cedex, France.
| | | |
Collapse
|
30
|
Iwata T, Paddock ML, Okamura MY, Kandori H. Identification of FTIR bands due to internal water molecules around the quinone binding sites in the reaction center from Rhodobacter sphaeroides. Biochemistry 2009; 48:1220-9. [PMID: 19161296 DOI: 10.1021/bi801990s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial reaction center (RC) is a membrane protein complex that performs photosynthetic electron transfer from a bacteriochlorophyll dimer to quinone acceptors Q(A) and Q(B). Q(B) accepts electrons from the primary quinone, Q(A), in two sequential electron transfer reactions coupled to uptake of a proton from solution. It has been suggested that water molecules along the proton uptake pathway are protonated upon quinone reduction on the basis of FTIR difference spectra [Breton, J., and Nabedryk, E. (1998) Photosynth. Res. 55, 301-307]. We examined the possible involvement of water molecules in the photoreaction processes by studying (18)O water isotope effects on FTIR difference spectra resulting from formation of Q(A)(-) and Q(B)(-). Continuum bands in D(2)O due to Q(B)(-) formation in the 2300-1800 cm(-1) region did not show spectral shifts by (18)O water in the wild-type (WT) RC, suggesting that these bands do not originate from (protonated) water. In contrast, the Q(B)(-)/Q(B) spectrum of the EQ-L212 mutant RC showed a spectral shift of a band near 2100 cm(-1) due to (18)O water substitution, consistent with protonation of internal water. FTIR shifts due to (18)O water were also observed following formation of Q(A)(-) and Q(B)(-) in the spectral region of 3700-3500 cm(-1) characteristic of weakly hydrogen bonded water. The water responsible for the Q(B)(-) change was localized near Glu-L212 by spectral shifts in mutant RCs. The weakly hydrogen bonded water perturbed by quinone reduction may play a role in stabilizing the charge-separated state.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
31
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
34
|
Kleinschroth T, Anderka O, Ritter M, Stocker A, Link TA, Ludwig B, Hellwig P. Characterization of mutations in crucial residues around the Qo binding site of the cytochrome bc1 complex from Paracoccus denitrificans. FEBS J 2008; 275:4773-85. [DOI: 10.1111/j.1742-4658.2008.06611.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Wraight CA, Vakkasoglu AS, Poluektov Y, Mattis AJ, Nihan D, Lipshutz BH. The 2-methoxy group of ubiquinone is essential for function of the acceptor quinones in reaction centers from Rba. sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:631-6. [DOI: 10.1016/j.bbabio.2008.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
|
36
|
Yuasa J, Yamada S, Fukuzumi S. Accelerating and Decelerating Effects of Metal Ions on Electron-Transfer Reduction of Quinones as a Function of Temperature and Binding Modes of Metal Ions to Semiquinone Radical Anions. Chemistry 2008; 14:1866-74. [DOI: 10.1002/chem.200701420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Time-resolved FTIR difference spectroscopy in combination with specific isotope labeling for the study of A1, the secondary electron acceptor in photosystem 1. Biophys J 2008; 94:4383-92. [PMID: 18281389 DOI: 10.1529/biophysj.107.113191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phylloquinone molecule (2-methyl, 3-phytyl, 1, 4-naphthoquinone) occupies the A(1) binding site in photosystem 1 particles from Synechocystis sp. 6803. In menB mutant photosystem 1 particles from the same species, plastoquinone-9 occupies the A(1) binding site. By incubation of menB mutant photosystem 1 particles in the presence of phylloquinone, it was shown in another study that phylloquinone will displace plastoquinone-9 in the A(1) binding site. We describe the reconstitution of unlabeled ((16)O) and (18)O-labeled phylloquinone back into the A(1) binding site in menB photosystem 1 particles. We then produce time-resolved A(1)(-)/A(1) Fourier transform infrared (FTIR) difference spectra for these menB photosystem 1 particles that contain unlabeled and (18)O-labeled phylloquinone. By specifically labeling only the phylloquinone oxygen atoms we are able to identify bands in A(1)(-)/A(1) FTIR difference spectra that are due to the carbonyl (C=O) modes of neutral and reduced phylloquinone. A positive band at 1494 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is found to downshift 14 cm(-1) and decreases in intensity on (18)O labeling. Vibrational mode frequency calculations predict that an antisymmetric vibration of both C=O groups of the phylloquinone anion should display exactly this behavior. In addition, phylloquinone that has asymmetrically hydrogen bonded carbonyl groups is also predicted to display this behavior. The positive band at 1494 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is therefore due to the antisymmetric vibration of both C=O groups of one electron reduced phylloquinone. Part of a negative band at 1654 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum downshifts 28 cm(-1) on (18)O labeling. Again, vibrational mode frequency calculations predict this behavior for a C=O mode of neutral phylloquinone. The negative band at 1654 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is therefore due to a C=O mode of neutral phylloquinone. More specifically, calculations on a phylloquinone model molecule with the C(4)=O group hydrogen bonded predict that the 1654 cm(-1) band is due to the non hydrogen bonded C(1)=O mode of neutral phylloquinone.
Collapse
|
38
|
High-Field/High-Frequency Electron Paramagnetic Resonance Involving Single- and Multiple-Transition Schemes. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone formula by 1H and 2H ENDOR spectroscopy. Biophys J 2006; 92:671-82. [PMID: 17071655 PMCID: PMC1751397 DOI: 10.1529/biophysj.106.092460] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The geometry of the hydrogen bonds to the two carbonyl oxygens of the semiquinone Q(A)(. -) in the reaction center (RC) from the photosynthetic purple bacterium Rhodobacter sphaeroides R-26 were determined by fitting a spin Hamiltonian to the data derived from (1)H and (2)H ENDOR spectroscopies at 35 GHz and 80 K. The experiments were performed on RCs in which the native Fe(2+) (high spin) was replaced by diamagnetic Zn(2+) to prevent spectral line broadening of the Q(A)(. -) due to magnetic coupling with the iron. The principal components of the hyperfine coupling and nuclear quadrupolar coupling tensors of the hydrogen-bonded protons (deuterons) and their principal directions with respect to the quinone axes were obtained by spectral simulations of ENDOR spectra at different magnetic fields on frozen solutions of deuterated Q(A)(. -) in H(2)O buffer and protonated Q(A)(. -) in D(2)O buffer. Hydrogen-bond lengths were obtained from the nuclear quadrupolar couplings. The two hydrogen bonds were found to be nonequivalent, having different directions and different bond lengths. The H-bond lengths r(OH) are 1.73 +/- 0.03 Angstrom and 1.60 +/- 0.04 Angstrom, from the carbonyl oxygens O(1) and O(4) to the NH group of Ala M260 and the imidazole nitrogen N(delta) of His M219, respectively. The asymmetric hydrogen bonds of Q(A)(. -) affect the spin density distribution in the quinone radical and its electronic structure. It is proposed that the H-bonds play an important role in defining the physical properties of the primary quinone, which affect the electron transfer processes in the RC.
Collapse
Affiliation(s)
- M Flores
- Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
40
|
Li WW, Hellwig P, Ritter M, Haehnel W. De Novo Design, Synthesis, and Characterization of Quinoproteins. Chemistry 2006; 12:7236-45. [PMID: 16819733 DOI: 10.1002/chem.200501212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones and quinoproteins are essential redox components and enzymes in biological systems. Here, we report the de novo design, synthesis, and properties of model four-alpha-helix bundle quinoproteins. The proteins were designed and constructed from three different helices with 21 or 22 amino acid residues by chemoselective ligation to a cyclic decapeptide template. A free cysteine unit is placed at the hydrophobic core of the protein for binding of ubiquinone-0 and menaquinone-0 through a thioether bond. The quinoproteins with molecular weights of 11-12 kDa were characterized by electrospray ionization mass spectrometry, UV/Vis spectroscopy, size-exclusion chromatography, circular dichroism measurements, (1)H NMR spectroscopy, cyclic voltammetry, and redox-induced FTIR difference spectroscopy. The midpoint redox potentials at pH 8 in aqueous solution E(m,8) of thioether conjugates with N-acetyl cysteine methyl ester were 89 mV and -63 mV and with a synthetic protein 229 mV and 249 mV versus standard hydrogen electrode (SHE) for ubiquinone-0 and menaquinone-0, respectively. Detailed redox-induced FTIR difference spectroscopic studies of the model compounds and quinoproteins show the special resonance features for C=O bands at 1656-1660 and 1655-1665 cm(-1) due to the sulfur substitution to ubiquinone-0 and menaquinone-0, respectively. The construction of model quinoproteins represents a significant step toward more complex artificial redox systems.
Collapse
Affiliation(s)
- Wen-Wu Li
- Institut für Biologie II/Biochemie, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
41
|
Maklashina E, Hellwig P, Rothery RA, Kotlyar V, Sher Y, Weiner JH, Cecchini G. Differences in protonation of ubiquinone and menaquinone in fumarate reductase from Escherichia coli. J Biol Chem 2006; 281:26655-64. [PMID: 16829675 DOI: 10.1074/jbc.m602938200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli quinol-fumarate reductase operates with both natural quinones, ubiquinone (UQ) and menaquinone (MQ), at a single quinone binding site. We have utilized a combination of mutagenesis, kinetic, EPR, and Fourier transform infrared methods to study the role of two residues, Lys-B228 and Glu-C29, at the quinol-fumarate reductase quinone binding site in reactions with MQ and UQ. The data demonstrate that Lys-B228 provides a strong hydrogen bond to MQ and is essential for reactions with both quinone types. Substitution of Glu-C29 with Leu and Phe caused a dramatic decrease in enzymatic reactions with MQ in agreement with previous studies, however, the succinate-UQ reductase reaction remains unaffected. Elimination of a negative charge in Glu-C29 mutant enzymes resulted in significantly increased stabilization of both UQ-* and MQ-* semiquinones. The data presented here suggest similar hydrogen bonding of the C1 carbonyl of both MQ and UQ, whereas there is different hydrogen bonding for their C4 carbonyls. The differences are shown by a single point mutation of Glu-C29, which transforms the enzyme from one that is predominantly a menaquinol-fumarate reductase to one that is essentially only functional as a succinate-ubiquinone reductase. These findings represent an example of how enzymes that are designed to accommodate either UQ or MQ at a single Q binding site may nevertheless develop sufficient plasticity at the binding pocket to react differently with MQ and UQ.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, 94121, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: I. Identification of the ENDOR lines associated with the hydrogen bonds to the primary quinone QA*-. Biophys J 2006; 90:3356-62. [PMID: 16473904 PMCID: PMC1432105 DOI: 10.1529/biophysj.105.077883] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen bonds are important in determining the structure and function of biomolecules. Of particular interest are hydrogen bonds to quinones, which play an important role in the bioenergetics of respiration and photosynthesis. In this work we investigated the hydrogen bonds to the two carbonyl oxygens of the semiquinone QA*- in the well-characterized reaction center from the photosynthetic bacterium Rhodobacter sphaeroides R-26. We used electron paramagnetic resonance and electron nuclear double resonance techniques at 35 GHz at a temperature of 80 K. The goal of this study was to identify and assign sets of 1H-ENDOR lines to protons hydrogen bonded to each of the two oxygens. This was accomplished by preferentially exchanging the hydrogen bond on one of the oxygens with deuterium while concomitantly monitoring the changes in the amplitudes of the 1H-ENDOR lines. The preferential deuteration of one of the oxygens was made possible by the different 1H --> 2H exchange times of the protons bonded to the two oxygens. The assignment of the 1H-ENDOR lines sets the stage for the determination of the geometries of the H-bonds by a detailed field selection ENDOR study to be presented in a future article.
Collapse
Affiliation(s)
- M Flores
- Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
43
|
Coupling and fast decarboxylation of aryloxyl radicals of 4-hydroxycinnamic acids with formation of stable p-quinomethanes. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Okamoto K, Fukuzumi S. Hydrogen Bonds Not Only Provide a Structural Scaffold to Assemble Donor and Acceptor Moieties of Zinc Porphyrin−Quinone Dyads but Also Control the Photoinduced Electron Transfer to Afford the Long-Lived Charge-Separated States. J Phys Chem B 2005; 109:7713-23. [PMID: 16851896 DOI: 10.1021/jp050352y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of zinc porphyrin-quinone linked dyads [ZnP-CONH-Q, ZnP-NHCO-Q, and ZnP-n-Q (n = 3, 6, 10)] were designed and synthesized to investigate the effects of hydrogen bonds which can not only provide a structural scaffold to assemble donor and acceptor moieties but also control the photoinduced electron-transfer process. In the case of ZnP-CONH-Q and ZnP-NHCO-Q, the hydrogen bond between the N-H proton and the carbonyl oxygen of Q results in the change in the reduction potential of Q. The strong hydrogen bond between the N-H proton and the carbonyl oxygen of Q*- in ZnP-CONH-Q*-,ZnP-NHCO-Q*-, and ZnP-n-Q*- (n = 3, 6, 10) generated by the chemical reduction has been confirmed by the ESR spectra, which exhibit hyperfine coupling constants in agreement those predicted by the density functional calculations. In the case of ZnP-n-Q (n = 3, 6, 10), on the other hand, the hydrogen bond between two amide groups provides a structural scaffold to assemble the donor (ZnP) and the acceptor (Q) moiety together with the hydrogen bond between the N-H proton and the carbonyl oxygen of Q, leading to attainment of the charge-separated state with a long lifetime up to a microsecond.
Collapse
Affiliation(s)
- Ken Okamoto
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
45
|
Möbius K, Savitsky A, Schnegg A, Plato M, Fuchs M. High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer. Phys Chem Chem Phys 2005; 7:19-42. [DOI: 10.1039/b412180e] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Breton J, Wakeham MC, Fyfe PK, Jones MR, Nabedryk E. Characterization of the bonding interactions of QB upon photoreduction via A-branch or B-branch electron transfer in mutant reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:127-38. [PMID: 15178474 DOI: 10.1016/j.bbabio.2004.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
47
|
Remy A, Niklas J, Kuhl H, Kellers P, Schott T, Rögner M, Gerwert K. FTIR spectroscopy shows structural similarities between photosystems II from cyanobacteria and spinach. ACTA ACUST UNITED AC 2004; 271:563-7. [PMID: 14728683 DOI: 10.1046/j.1432-1033.2003.03958.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photosystem II (PSII), an essential component of oxygenic photosynthesis, is a membrane-bound pigment protein complex found in green plants and cyanobacteria. Whereas the molecular structure of cyanobacterial PSII has been resolved with at least medium resolution [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W. & Orth, P. (2001) Nature (London) 409, 739-743; Kamiya, N. & Shen, J.R. (2003) Proc. Natl Acad. Sci. USA 100, 98-103], the structure of higher plant PSII is only known at low resolution. Therefore Fourier transform infrared (FTIR) difference spectroscopy was used to compare PSII from both Thermosynechococcus elongatus and Synechocystis PCC6803 core complexes with PSII-enriched membranes from spinach (BBY). FTIR difference spectra of T. elongatus core complexes are presented for several different intermediates. As the FTIR difference spectra show close similarities among the three species, the structural arrangement of cofactors in PSII and their interactions with the protein microenvironment during photosynthetic charge separation must be very similar in higher plant PSII and cyanobacterial PSII. A structural model of higher plant PSII can therefore be predicted from the structure of cyanobacterial PSII.
Collapse
Affiliation(s)
- André Remy
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Remy A, Boers RB, Egorova-Zachernyuk T, Gast P, Lugtenburg J, Gerwert K. Does different orientation of the methoxy groups of ubiquinone-10 in the reaction centre of Rhodobacter sphaeroides cause different binding at QA and QB? EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3603-9. [PMID: 12919324 DOI: 10.1046/j.1432-1033.2003.03746.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The different roles of ubiquinone-10 (UQ10) at the primary and secondary quinone (QA and QB) binding sites of Rhodobacter sphaeroides R26 reaction centres are governed by the protein microenvironment. The 4C=O carbonyl group of QA is unusually strongly hydrogen-bonded, in contrast to QB. This asymmetric binding seems to determine their different functions. The asymmetric hydrogen-bonding at QA can be caused intrinsically by distortion of the methoxy groups or extrinsically by binding to specific amino-acid side groups. Different X-ray-based structural models show contradictory orientations of the methoxy groups and do not provide a clear picture. To elucidate if distortion of the methoxy groups induces this hydrogen-bonding, their (ring-)C-O vibrations were assigned by use of site-specifically labelled [5-13C]UQ10 and [6-13C]UQ10 reconstituted at either the QA or the QB binding site. Two infrared bands at 1288 cm(-1) and 1264 cm(-1) were assigned to the methoxy vibrations. They did not shift in frequency at either the QA or QB binding sites, as compared with unbound UQ10. As the frequencies of these vibrations and their coupling are sensitive to the conformations of the methoxy groups, different conformations of the C(5) and C(6) methoxy groups at the QA and QB binding sites can now be excluded. Both methoxy groups are oriented out of plane at QA and QB. Therefore, hydrogen-bonding to His M219 combined with electrostatic interactions with the Fe2+ ion seems to determine the strong asymmetric binding of QA.
Collapse
Affiliation(s)
- André Remy
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Remy A, Gerwert K. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Mol Biol 2003; 10:637-44. [PMID: 12872158 DOI: 10.1038/nsb954] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 06/11/2003] [Indexed: 11/09/2022]
Abstract
Light energy is transformed into chemical energy in photosynthesis by coupling a light-induced electron transfer to proton uptake. The resulting proton gradient drives ATP synthesis. In this study, we monitored the light-induced reactions in a 100-kDa photosynthetic protein from 30 ns to 35 s by FTIR difference spectroscopy. The results provide detailed mechanistic insights into the electron and proton transfer reactions of the QA to QB transition: reduction of QA in picoseconds induces protonation of histidines, probably of His126 and His128 in the H subunit at the entrance of the proton uptake channel, and of Asp210 in the L subunit inside the channel at 12 micros and 150 micros. This seems to be a prerequisite for the reduction of QB, mainly at 150 micros. QA- is reoxidized at 1.1 ms, and a proton is transferred from Asp210 to Glu212 in the L subunit, the proton donor to QB-. Notably, our data indicate that QB is not reduced directly by QA- but presumably through an intermediary electron donor.
Collapse
Affiliation(s)
- André Remy
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Postfach 102148, 44780 Bochum, Germany
| | | |
Collapse
|
50
|
Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and Vibronic Coupling of the Special Pair of Bacteriochlorophylls in Photosynthetic Reaction Centers from Wild-Type and Mutant Strains of Rhodobacter Sphaeroides. J Phys Chem B 2002. [DOI: 10.1021/jp021024q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. T. Johnson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - F. Müh
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - E. Nabedryk
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. C. Williams
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. P. Allen
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. Lubitz
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. Breton
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. W. Parson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|