1
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Attery A, Dey P, Tripathi P, Batra JK. A ribonuclease inhibitor resistant dimer of human pancreatic ribonuclease displays specific antitumor activity. Int J Biol Macromol 2017; 107:1965-1970. [PMID: 29042278 DOI: 10.1016/j.ijbiomac.2017.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Abstract
Human pancreatic ribonuclease (HPR) and bovine seminal ribonuclease (BS-RNase) are members of the RNase A superfamily. HPR is monomeric, whereas BS-RNase is dimeric. BS-RNase has strong antitumor and cytotoxic activities. However, HPR lacks cytotoxic activity as it is inactivated by intracellular cytosolic ribonuclease inhibitor (RI). Earlier, an RI-resistant cytotoxic variant of HPR, termed HPR-KNE was generated which contained three residues Lys7, Asn71 and Glu111 of HPR, known to interact with RI, mutated to alanine. In this study, we have engineered HPR to develop two dimeric RI-resistant molecules having anti-tumor activity. By incorporating two cysteines in HPR and HPR-KNE, we generated disulfide linked dimeric HPR, and a dimer of HPR-KNE, termed as HPR-D and HPR-KNE-D respectively. HPR-KNE-D was resistant towards inhibition by RI, and was found to be highly toxic to a variety of cells. On J774A.1 cells HPR-KNE-D was >375-fold more cytotoxic than HPR, and 15-fold more toxic than HPR-D. Further, on U373 cells HPR-KNE-D was >65-fold more cytotoxic than HPR, and 9-fold more toxic than HPR-D. The study demonstrates that combining dimerization and RI-resistance results in providing potent anti-tumor activity to HPR. The cytotoxic variants of HPR will be useful in designing protein therapeutics with low immunogenicity.
Collapse
Affiliation(s)
- Ayush Attery
- Immunochemistry Laboratory, National Institute of Immunology,Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Punyatirtha Dey
- Immunochemistry Laboratory, National Institute of Immunology,Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prajna Tripathi
- Immunochemistry Laboratory, National Institute of Immunology,Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology,Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Biochemistry, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
3
|
Comparative functional analysis of ribonuclease 1 homologs: molecular insights into evolving vertebrate physiology. Biochem J 2017; 474:2219-2233. [PMID: 28495858 DOI: 10.1042/bcj20170173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) comprise a class of highly conserved secretory endoribonucleases in vertebrates. The prototype of this enzyme family is ribonuclease 1 (RNase 1). Understanding the physiological roles of RNase 1 is becoming increasingly important, as engineered forms of the enzyme progress through clinical trials as chemotherapeutic agents for cancer. Here, we present an in-depth biochemical characterization of RNase 1 homologs from a broad range of mammals (human, bat, squirrel, horse, cat, mouse, and cow) and nonmammalian species (chicken, lizard, and frog). We discover that the human homolog of RNase 1 has a pH optimum for catalysis, ability to degrade double-stranded RNA, and affinity for cell-surface glycans that are distinctly higher than those of its homologs. These attributes have relevance for human health. Moreover, the functional diversification of the 10 RNase 1 homologs illuminates the regulation of extracellular RNA and other aspects of vertebrate evolution.
Collapse
|
4
|
Roiz L, Smirnoff P, Lewin I, Shoseyov O, Schwartz B. Human recombinant RNASET2: A potential anti-cancer drug. Oncoscience 2016; 3:71-84. [PMID: 27014725 PMCID: PMC4789573 DOI: 10.18632/oncoscience.295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022] Open
Abstract
The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.
Collapse
Affiliation(s)
- Levava Roiz
- T2 BIOTECH Ltd, Weizmann Science Park, Ness Ziona, ISRAEL
| | | | - Iris Lewin
- T2 BIOTECH Ltd, Weizmann Science Park, Ness Ziona, ISRAEL
| | - Oded Shoseyov
- The Robert H. Smith Institute of Plant Science and Genetics in Agriculture and School of Nutritional Sciences Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, ISRAEL
| | - Betty Schwartz
- School of Nutritional Sciences Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, ISRAEL
| |
Collapse
|
5
|
Eller CH, Lomax JE, Raines RT. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1. J Biol Chem 2014; 289:25996-26006. [PMID: 25078100 DOI: 10.1074/jbc.m114.566166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals.
Collapse
Affiliation(s)
- Chelcie H Eller
- Departments of Biochemistry and University of Wisconsin, Madison, Wisconsin 53706
| | - Jo E Lomax
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Ronald T Raines
- Departments of Biochemistry and University of Wisconsin, Madison, Wisconsin 53706; Departments of Chemistry, and University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
6
|
D'Errico G, Ercole C, Lista M, Pizzo E, Falanga A, Galdiero S, Spadaccini R, Picone D. Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3007-15. [DOI: 10.1016/j.bbamem.2011.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
|
7
|
Abstract
RNases are enzymes that cleave RNAs, resulting in remarkably diverse biological consequences. Many RNases are cytotoxic. In some cases, they attack selectively malignant cells triggering an apoptotic response. A number of eukaryotic and bacterial RNase-based strategies are being developed for use in anticancer and antiviral therapy. However, the physiological functions of these RNases are often poorly understood. This review focuses on the properties of the extracellular RNases from Bacillus amyloliquefaciens (barnase) and Bacillus intermedius (binase), the characteristics of their biosynthesis regulation and their physiological role, with an emphasis on the similarities and differences. Barnase and binase can be regarded as molecular twins according to their highly similar structure, physical-chemical and catalytic properties. Nevertheless, the 'life paths' of these enzymes are not the same, as their expression in bacteria is controlled by diverse signals. Binase is predominantly synthesized under phosphate starvation, whereas barnase production is strictly dependent on the multifunctional Spo0A regulator controlling sporulation, biofilm formation and cannibalism. Barnase and binase also have some distinctions in practical applications. Barnase was initially suggested to be useful in research and biotechnology as a tool for studying protein-protein interactions, for RNA elimination from biological samples, for affinity purification of RNase fusion proteins, for the development of cloning vectors and for sterility acquisition by transgenic plants. Binase, as later barnase, was tested for antiviral, antitumour and immunogenic effects. Both RNases have found their own niche in cancer research as a result of success in targeted delivery and selectivity towards tumour cells.
Collapse
Affiliation(s)
- Vera Ulyanova
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan, Russia
| | | | | |
Collapse
|
8
|
|
9
|
Arnold U, Leich F, Neumann P, Lilie H, Ulbrich-Hofmann R. Crystal structure of RNase A tandem enzymes and their interaction with the cytosolic ribonuclease inhibitor. FEBS J 2010; 278:331-40. [PMID: 21134128 DOI: 10.1111/j.1742-4658.2010.07957.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their ability to degrade RNA, RNases are potent cytotoxins. The cytotoxic activity of most members of the RNase A superfamily, however, is abolished by the cytosolic ribonuclease inhibitor (RI). RNase A tandem enzymes, in which two RNase A molecules are artificially connected by a peptide linker, and thus have a pseudodimeric structure, exhibit remarkable cytotoxic activity. In vitro, however, these enzymes are still inhibited by RI. Here, we present the crystal structures of three tandem enzymes with the linker sequences GPPG, SGSGSG, and SGRSGRSG, which allowed us to analyze the mode of binding of RI to the RNase A tandem enzymes. Modeling studies with the crystal structures of the RI-RNase A complex and the SGRSGRSG-RNase A tandem enzyme as templates suggested a 1 : 1 binding stoichiometry for the RI-RNase A tandem enzyme complex, with binding of the RI molecule to the N-terminal RNase A entity. These results were experimentally verified by analytical ultracentrifugation, quantitative electrophoresis, and proteolysis studies with trypsin. As other dimeric RNases, which are comparably cytotoxic, either evade RI binding or potentially even bind two RI molecules, inactivation by RI cannot be the crucial limitation to the cytotoxicity of dimeric RNases.
Collapse
Affiliation(s)
- Ulrich Arnold
- Department of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | | | |
Collapse
|
10
|
Giancola C, Ercole C, Fotticchia I, Spadaccini R, Pizzo E, D’Alessio G, Picone D. Structure-cytotoxicity relationships in bovine seminal ribonuclease: new insights from heat and chemical denaturation studies on variants. FEBS J 2010; 278:111-22. [DOI: 10.1111/j.1742-4658.2010.07937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Fang EF, Ng TB. Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta Rev Cancer 2010; 1815:65-74. [PMID: 20843477 DOI: 10.1016/j.bbcan.2010.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 12/18/2022]
Abstract
Ribonucleases (RNases) are a type of nucleases that catalyze the degradation of RNA into smaller components. They exist in a wide range of life forms from prokaryotes to eukaryotes. RNase-controlled RNA degradation is a determining factor in the control of gene expression, maturation and turnover, which are further associated with the progression of cancers and infectious diseases. Over the years, RNases purified from multiple origins have drawn increasing attention from medical scientists due to their remarkable antitumor properties. In this review, we present a brief summary of the representative RNases of fungal, bacterial, plant, and animal origins and outline their potential medicinal value in the treatment of tumor and AIDS. Among them, the most clinically promising RNases are mushroom RNases, Binase and Barnase from bacteria, ginseng RNases, and Onconase from frog (Rana pipiens). Fast developing protein engineering of RNases, which display more potent cytotoxic activity on and greater selectivity for malignant cells, has also aroused the interest of researchers. The multiple anti-cancer mechanisms of RNases are also included. To sum up, these inspiring studies unveil a new perspective for RNases as potential therapeutic agents.
Collapse
Affiliation(s)
- Evandro Fei Fang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
12
|
Merlino A, Russo Krauss I, Perillo M, Mattia CA, Ercole C, Picone D, Vergara A, Sica F. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants. Biopolymers 2010; 91:1029-37. [PMID: 19280639 DOI: 10.1002/bip.21183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytotoxic action of bovine seminal ribonuclease (BS-RNase) depends on its noncovalent swapped dimeric form (NCD-BS), which presents a compact structure that allows the molecule to escape ribonuclease inhibitor (RI). A key role in the acquisition of this structure has been attributed to the concomitant presence of a proline in position 19 and a leucine in position 28. The introduction of Leu28, Cys31, and Cys32 and, in addition, of Pro19 in the sequence of bovine pancreatic ribonuclease (RNase A) has produced two dimeric variants LCC and PLCC, which do exhibit a cytotoxic activity, though at a much lower level than BS-RNase. The crystal structure analysis of the noncovalent swapped form (NCD) of LCC and PLCC, complexed with the substrate analogue 2 '-deoxycytidylyl(3 ',5 ')-2 '-deoxyguanosine, has revealed that, differently from NCD-BS, the dimers adopt an opened quaternary structure, with the two Leu residues fully exposed to the solvent, that does not hinder the binding of RI. Similar results have been obtained for a third mutant of the pancreatic enzyme, engineered with the hinge peptide sequence of the seminal enzyme (residues 16-22) and the two cysteines in position 31 and 32, but lacking the hydrophobic Leu residue in position 28. The comparison of these three structures with those previously reported for other ribonuclease swapped dimers strongly suggests that, in addition to Pro19 and Leu28, the presence of a glycine at the N-terminal end of the hinge peptide is also important to push the swapped form of RNase A dimer into the compact quaternary organization observed for NCD-BS.
Collapse
Affiliation(s)
- Antonello Merlino
- Department of Chemistry, University of Naples, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Disulfide bonds play fundamental roles in proteins. This work is devoted to highly rare motifs containing disulfide bonds. A search for four cysteines, forming a 16-atom membered ring (4CR) embodying two disulfide bonds, was carried out against all entries in the Protein Data Bank. Searching the crystallographic subset, only few protein molecules, all dimeric, were found to embody this peculiar structural feature, which establishes a covalent link between two different polypeptide chains. In contrast, in a peptide studied in solution by NMR, the four cysteines moiety includes only residues from one chain. A comparative analysis provided evidence for similarity and difference. It emerged that 4CR motif is highly rare and may serve to gain a specialized function.
Collapse
Affiliation(s)
- Adriana Zagari
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli, Via Mezzocannone 16, Naples, Italy.
| |
Collapse
|
14
|
de Leeuw M, Roiz L, Smirnoff P, Schwartz B, Shoseyov O, Almog O. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:716-9. [PMID: 17671376 PMCID: PMC2335156 DOI: 10.1107/s1744309107034483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/14/2007] [Indexed: 11/10/2022]
Abstract
ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 x 10(4) M(-1). Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 x 0.5 x 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3(1)21 space group, with unit-cell parameters a = 78, b = 78, c = 104 A.
Collapse
Affiliation(s)
- Marina de Leeuw
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Levava Roiz
- The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Patricia Smirnoff
- The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | - Oded Shoseyov
- The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Orna Almog
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
15
|
|
16
|
Abstract
The Ribonuclease A superfamily includes an extensive network of distinct and divergent gene lineages. Although all ribonucleases of this superfamily share invariant structural and catalytic elements and some degree of enzymatic activity, the primary sequences have diverged significantly, ostensibly to promote novel function. We will review the literature on the evolution and biology of the RNase A ribonuclease lineages that have been characterized specifically as involved in host defense including: (1) RNases 2 and RNases 3, also known as the eosinophil ribonucleases, which are rapidly-evolving cationic proteins released from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen ribonuclease identified in human skin, and (3) RNase 5, also known as angiogenin, another rapidly-evolving ribonuclease known to promote blood vessel growth with recently-discovered antibacterial activity. Interestingly, some of the characterized anti-pathogen activities do not depend on ribonuclease activity per se. We discuss the ways in which the anti-pathogen activities characterized in vitro might translate into experimental confirmation in vivo. We will also consider the possibility that other ribonucleases, such as the dimeric bovine seminal ribonuclease and the frog oocyte ribonucleases, may have host defense functions and therapeutic value that remain to be explored. (190 words).
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
17
|
Notomista E, Mancheño JM, Crescenzi O, Di Donato A, Gavilanes J, D'Alessio G. The role of electrostatic interactions in the antitumor activity of dimeric RNases. FEBS J 2006; 273:3687-97. [PMID: 16911519 DOI: 10.1111/j.1742-4658.2006.05373.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytotoxic action of some ribonucleases homologous to bovine pancreatic RNase A, the superfamily prototype, has interested and intrigued investigators. Their ribonucleolytic activity is essential for their cytotoxic action, and their target RNA is in the cytosol. It has been proposed that the cytosolic RNase inhibitor (cRI) plays a major role in determining the ability of an RNase to be cytotoxic. However, to interact with cRI RNases must reach the cytosol, and cross intracellular membranes. To investigate the interactions of cytotoxic RNases with membranes, cytotoxic dimeric RNases resistant, or considered to be resistant to cRI, were assayed for their effects on negatively charged membranes. Furthermore, we analyzed the electrostatic interaction energy of the RNases complexed in silico with a model membrane. The results of this study suggest that close correlations can be recognized between the cytotoxic action of a dimeric RNase and its ability to complex and destabilize negatively charged membranes.
Collapse
Affiliation(s)
- Eugenio Notomista
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Leich F, Köditz J, Ulbrich-Hofman R, Arnold U. Tandemization Endows Bovine Pancreatic Ribonuclease with Cytotoxic Activity. J Mol Biol 2006; 358:1305-13. [PMID: 16580680 DOI: 10.1016/j.jmb.2006.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/17/2006] [Accepted: 03/03/2006] [Indexed: 11/23/2022]
Abstract
Due to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor (RI). Consequently, the development of RNase derivatives with the ability to evade RI binding is a desirable goal. In this study, tandem enzymes consisting of two RNase A units that are bound covalently via a peptide linker were generated by gene duplication. As deduced from the crystal structure of the RNase A.RI complex, one RNase A unit of the tandem enzyme can still be bound by RI. The other unit, however, should remain unbound because of steric hindrance. This free RNase A unit is expected to maintain its activity and to act as a cytotoxic agent. The study of the influence of the linker sequence on the conformation and stability of these constructs revealed that tandemization has only minor effects on the activity and stability of the constructs in comparison to monomeric RNase A. Relative activity was decreased by 10-50% and the melting temperature was decreased by less than 2.5 K. Furthermore, the cytotoxic potency of the RNase A tandem enzymes was investigated. Despite an in vitro inhibition by RI, tandemization was found to endow RNase A with remarkable cytotoxic activity. While monomeric RNase A is not cytotoxic, IC(50) values of the RNase A tandem variants decreased to 70.3-12.9 microM. These findings might establish the development of a new class of chemotherapeutic agents based on pancreatic ribonucleases.
Collapse
Affiliation(s)
- Franziska Leich
- Department of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 3, 06120 Halle, Germany.
| | | | | | | |
Collapse
|
19
|
Roiz L, Smirnoff P, Bar-Eli M, Schwartz B, Shoseyov O. ACTIBIND, an actin-binding fungal T2-RNase with antiangiogenic and anticarcinogenic characteristics. Cancer 2006; 106:2295-308. [PMID: 16586499 DOI: 10.1002/cncr.21878] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND ACTIBIND is an Aspergillus niger extracellular ribonuclease (T2-ribonuclease [RNase]) that possesses actin-binding activity. In plants, ACTIBIND inhibits the elongation and alters the orientation of pollen tubes by interfering with the intracellular actin network. The question rose whether ACTIBIND can also affect mammalian cancer development. METHODS Cell colony formation was performed in human colon (HT-29, Caco-2, RSB), breast (ZR-75-1), and ovarian (2780) cancer cells in the presence or absence of 1 muM ACTIBIND. In HT-29 and ZR-75-1 cells, the effect of ACTIBIND on cell migration was studied by microscopic observations and by invasion assay through Matrigel. Tube formation was assessed in human umbilical vein endothelial cells (HUVEC) in the presence of angiogenin or basic fibroblast growth factor (bFGF) (1 microg/mL each) following overnight incubation with 1 or 10 microM ACTIBIND. In an athymic mouse xenograft model, HT-29 cells were injected subcutaneously, followed by subcutaneous (0.4-8 mg/mouse/injection) or intraperitoneal (0.001-1 mg/mouse/injection) injections of ACTIBIND. In a rat dimethylhydrazine (DMH)-colorectal carcinogenesis model, ACTIBIND was released directly into the colon via osmotic micropumps (250 microg/rat/day) or given orally via microcapsules (1.6 mg/rat/day). Aberrant crypt foci, tumors in the distal colon, and tumor blood vessels were examined. RESULTS ACTIBIND had an anticlonogenic effect unrelated to its ribonuclease activity. It also inhibited angiogenin-induced HUVEC tube formation in a dose-responsive manner. ACTIBIND was found to bind actin in vitro. It also bound to cancer cell surfaces, leading to disruption of the internal actin network and inhibiting cell motility and invasiveness through Matrigel-coated filters. In mice, ACTIBIND inhibited HT-29 xenograft tumor development, given either as a subcutaneous or intraperitoneal treatment. In rats, ACTIBIND exerted preventive and therapeutic effects on developing colonic tumors induced by DMH. It also reduced the degree of tumor observation. CONCLUSIONS This study indicated that ACTIBIND is an effective antiangiogenic and anticarcinogenic factor.
Collapse
Affiliation(s)
- Levava Roiz
- Institute of Plant Science and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
20
|
Smirnoff P, Roiz L, Angelkovitch B, Schwartz B, Shoseyov O. A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics. Cancer 2006; 107:2760-9. [PMID: 17109444 DOI: 10.1002/cncr.22327] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Human RNASET2 is a T2-RNase glycoprotein encoded by the RNASET2 gene, which is located on chromosome 6 (6q27). Deletion in 6q27 is associated with several human malignancies. METHODS A synthetic RNASET2 gene that was optimized for expression in the yeast Pichia pastoris was designed according to the cDNA sequence and was cloned under the control of the methanol-induced promoter fused to the alpha-mating secretion peptide. The recombinant protein was purified from the culture supernatant of transformed P. pastoris through an affinity Sepharose-concanavalin A column. Actin-binding activity was examined by membrane blotting using monoclonal mouse antiactin immunoglobulin M and by cross-linking in solution to G-actin using 1-[3-(dimethylamino)propyl]-3-ethyl-carboimide methiodide. The antiangiogenic activity of RNASET2 (from 0.5 microM to 10 microM) was assessed by a human umbilical vein endothelial (HUVE) cell assay in the presence of 1 microg/mL angiogenin, basic fibroblast growth factor (bFGF), or recombinant human vascular endothelial growth factor (VEGF). Cell colony formation was examined in human colon HT29 cancer cells to assess the antitumorigenic activity of RNASET2 or the enzymatic-inactivated RNASET2 (EI-RNASET2) (1 microM each). In an athymic mouse xenograft model, LS174T human cancer cells were injected subcutaneously. When tumors were palpable, the mice were treated for 3 weeks with RNASET2 (1 mg/kg), paclitaxel (10 mg/kg or 15 mg/kg), or a combination of the 2 drugs. RESULTS The recombinant RNASET2 was identified as a 27-kilodalton glycoprotein that possessed the ability to bind actin in vitro. RNASET2 significantly inhibited clonogenicity in HT29 cells. EI-RNASET2 produced a similar effect, suggesting that its antitumorigenic activity is unrelated to its RNase activity. In HUVE cells, RNASET2 inhibited angiogenin-, bFGF-, and VEGF-induced tube formation in a dose-dependent manner. In athymic mice, RNASET2 inhibited the development of an LS174T-derived xenograft by 40%. A synergistic effect was obtained with combined RNASET2 and paclitaxel treatments. CONCLUSIONS The current results suggested that RNASET2 represents a new class of antitumorigenic and antiangiogenic drugs, and the findings of this study emphasize the advantage of using agents like RNASET2 in combined therapy.
Collapse
Affiliation(s)
- Patricia Smirnoff
- Institute of Biochemistry, Food Science, and Nutrition, Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
21
|
Chapter 7 Preclinical studies of chemotherapy for undifferentiated thyroid carcinoma. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-2566(04)04007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Abstract
Fusion to cationic peptides, such as nonaarginine (R(9)), provides a means to deliver molecular cargo into mammalian cells. Here, we provide a thorough analysis of the effect of an R(9) tag on the attributes of a model protein: bovine pancreatic ribonuclease (RNase A). The R(9) tag diminishes the conformational stability of RNase A (DeltaT(m)=-8 degrees C in phosphate-buffered saline). This effect is nearly mitigated by the addition of salt. The tag does not compromise the enzymatic activity of RNase A. An R(9) tag facilitates the purification of RNase A by cation-exchange chromatography and enables the adsorption of RNase A on glass slides and silica resin with the retention of enzymatic activity. The tag can be removed precisely and completely by treatment with carboxypeptidase B. Finally, the R(9) tag increases both the cellular uptake of RNase A and the cytotoxicity of G88R RNase A, a variant that evades the cytosolic ribonuclease inhibitor protein. Thus, we conclude that polyarginine is a versatile protein fusion tag.
Collapse
Affiliation(s)
- Stephen M Fuchs
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
23
|
|
24
|
Naddeo M, Vitagliano L, Russo A, Gotte G, D'Alessio G, Sorrentino S. Interactions of the cytotoxic RNase A dimers with the cytosolic ribonuclease inhibitor. FEBS Lett 2005; 579:2663-8. [PMID: 15862306 DOI: 10.1016/j.febslet.2005.03.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
Ribonuclease A (RNase A) dimers have been recently found to be endowed with some of the special, i.e., non-catalytic biological activities of RNases, such as antitumor and aspermatogenic activities. These activities have been so far attributed to RNases which can escape the neutralizing action of the cytosolic RNase inhibitor (cRI). However, when the interactions of the two cytotoxic RNase A dimers with cRI were investigated in a quantitative fashion and at the molecular level, the dimers were found to bind cRI with high affinity and to form tight complexes.
Collapse
Affiliation(s)
- Mariarosaria Naddeo
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Italy
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Sica F, Di Fiore A, Merlino A, Mazzarella L. Structure and Stability of the Non-covalent Swapped Dimer of Bovine Seminal Ribonuclease. J Biol Chem 2004; 279:36753-60. [PMID: 15192098 DOI: 10.1074/jbc.m405655200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing number of pancreatic-type ribonucleases (RNases) present cytotoxic activity against malignant cells. The cytoxicity of these enzymes is related to their resistance to the ribonuclease protein inhibitor (RI). In particular, bovine seminal ribonuclease (BS-RNase) is toxic to tumor cells both in vitro and in vivo. BS-RNase is a covalent dimer with two intersubunit disulfide bridges between Cys(31) of one chain and Cys(32) of the second and vice versa. The native enzyme is an equilibrium mixture of two isomers, MxM and M=M. In the former the two subunits swap their N-terminal helices. The cytotoxic action is a peculiar property of MxM. In the reducing environment of cytosol, M=M dissociates into monomers, which are strongly inhibited by RI, whereas MxM remains as a non-covalent dimer (NCD), which evades RI. We have solved the crystal structure of NCD, carboxyamidomethylated at residues Cys(31) and Cys(32) (NCD-CAM), in a complex with 2'-deoxycitidylyl(3'-5')-2'-deoxyadenosine. The molecule reveals a quaternary structural organization much closer to MxM than to other N-terminal-swapped non-covalent dimeric forms of RNases. Model building of the complexes between these non-covalent dimers and RI reveals that NCD-CAM is the only dimer equipped with a quaternary organization capable of interfering seriously with the binding of the inhibitor. Moreover, a detailed comparative structural analysis of the dimers has highlighted the residues, which are mostly important in driving the quaternary structure toward that found in NCD-CAM.
Collapse
Affiliation(s)
- Filomena Sica
- Dipartimento di Chimica, Università degli Studi di Napoli Federico II, Via Cynthia, 80126 Naples, Italy
| | | | | | | |
Collapse
|
27
|
Monti DM, D'Alessio G. Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity. J Biol Chem 2004; 279:39195-8. [PMID: 15277533 DOI: 10.1074/jbc.c400311200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic RNase inhibitor binds to and neutralizes most members of the pancreatic type RNase superfamily. However, there are a few exceptions, e.g. amphibian onconase and bovine seminal RNase, and these are endowed with cytotoxic activity. Also, RNase variants created by mutagenesis to partially evade the RNase inhibitor acquire cytotoxic activity. These findings have led to the proposal that the cytosolic inhibitor acts as a sentry to protect mammalian cells from foreign RNases. We silenced the expression of the gene encoding the cytosolic inhibitor in HeLa cells and found that the cells become more sensitive to foreign cytotoxic RNases. However foreign, non-cytotoxic RNases remain non-cytotoxic. These results indicate that the cytosolic inhibitor neutralizes those foreign RNases that are intrinsically cytotoxic and have access to the cytosol. However, its normal physiological role may not be to guard against foreign RNases in general.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Biological Chemistry, University of Naples Federico II, Via Mezzocannone, 16, 80134 Napoli, Italy
| | | |
Collapse
|
28
|
Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Piccoli R, Santoro M, D'Alessio G, Laccetti P, Vecchio G. Highly selective toxic and proapoptotic effects of two dimeric ribonucleases on thyroid cancer cells compared to the effects of doxorubicin. Br J Cancer 2004; 90:270-7. [PMID: 14710239 PMCID: PMC2395318 DOI: 10.1038/sj.bjc.6601491] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lack of selectivity of conventional antitumour drugs against cancer cells is responsible for their high toxicity. The development of new tumour-specific drugs is therefore highly needed. We tested the cytotoxic effects and the nature of cell death induced by a naturally dimeric bovine RNase and a newly engineered dimeric human RNase upon three genetically well-defined normal and malignant thyroid cell systems. RNases effects were compared with those of doxorubicin, a conventional antineoplastic drug. Our results show significant and selective proapoptotic effects exerted on tumour cells by both RNases, the strength of their cytotoxic and apoptotic activity being directly related to the degree of cell malignancy. No toxic effects were observed upon normal cells. Doxorubicin showed, instead, cytotoxic and apoptotic effects also against normal cells. The in vitro results were corroborated by the antitumour action of both dimeric RNases towards a malignant human thyroid tumour grown in nude mice. These results indicate a selective action of dimeric RNases against cancer cells and suggest the potential application of these molecules or their derivatives to the treatment of aggressive subtypes of thyroid cancer.
Collapse
Affiliation(s)
- D Spalletti-Cernia
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - R Sorrentino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - S Di Gaetano
- Dipartimento di Chimica Biologica, Università di Napoli Federico II, Naples, Italy
| | - R Piccoli
- Dipartimento di Chimica Biologica, Università di Napoli Federico II, Naples, Italy
| | - M Santoro
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - G D'Alessio
- Dipartimento di Chimica Biologica, Università di Napoli Federico II, Naples, Italy
| | - P Laccetti
- Dipartimento di Chimica Biologica, Università di Napoli Federico II, Naples, Italy
| | - G Vecchio
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S. Pansini 5, 80131 Naples, Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, via S. Pansini 5, 80131 Naples, Italy. E-mail:
| |
Collapse
|
29
|
Matousek J, Gotte G, Pouckova P, Soucek J, Slavik T, Vottariello F, Libonati M. Antitumor activity and other biological actions of oligomers of ribonuclease A. J Biol Chem 2003; 278:23817-22. [PMID: 12697760 DOI: 10.1074/jbc.m302711200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice. RNase A oligomers display a definite antitumor activity that increases as a function of the size of the oligomers. On ML-2 and HL-60 cells, dimers and trimers generally show a lower activity than bovine seminal RNase; the activity of tetramers, instead, is similar to or higher than that of the seminal enzyme. The growth of human melanoma in nude mice is inhibited by RNase A oligomers in the order dimers < trimers < tetramers. The action of the two tetramers is very strong, blocking almost completely the growth of melanoma. RNase A dimers, trimers, and tetramers display aspermatogenic effects similar to those of bovine seminal RNase, but, contrarily, they do not show any embryotoxic activity.
Collapse
Affiliation(s)
- Josef Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov 27721, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
30
|
Bracale A, Castaldi F, Nitsch L, D'Alessio G. A role for the intersubunit disulfides of seminal RNase in the mechanism of its antitumor action. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1980-7. [PMID: 12709057 DOI: 10.1046/j.1432-1033.2003.03567.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dimeric structure of seminal ribonuclease (BS-RNase) is maintained by noncovalent interactions and by two intersubunit disulfide bridges. Another unusual feature of this enzyme is its antitumour action, consisting in a cytotoxic activity selective for malignant cells. This cytotoxic action is exerted when the protein reaches the cytosol of the affected cells, where it degrades ribosomal RNA, thus blocking protein synthesis and leading cells to death. The current model proposed for the mechanism of antitumour action of BS-RNase is based on the ability of the protein to resist the neutralizing action of the cytosolic RNase inhibitor, a resistance due to the dimeric structure of the enzyme. Monomeric RNases, and monomeric derivatives of BS-RNase, are strongly bound by the inhibitor and inactive as antitumor agents. Here we report on monomeric derivatives of BS-RNase that, although strongly inhibited by the cytosolic RNase inhibitor, are cytotoxic towards malignant cells. These monomers are produced by reductive cleavage of the intersubunit disulfides of the native, dimeric protein followed by linking the exposed sulfhydryls to small thiols through formation of mixed disulfides. We found that sulfhydryls from cell monolayers and cell membranes can attack these mixed disulfides in the monomeric derivatives, and reconstitute, through sulfhydryl-disulfide interchange reactions, the native dimeric protein, which is internalized as such, and displays its antitumour action.
Collapse
Affiliation(s)
- Aurora Bracale
- Dipartimento di Chimica Biologica, Università di Napoli, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
Many ribonucleases (RNases) are highly cytotoxic. In some cases, they attack selectively malignant cells, triggering apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Factors that determine the cytotoxicity of RNases, primarily of those of microbial origin, are reviewed here. These factors include catalytic activity, ability to escape natural inhibitors, stability, and efficiency of internalization. The latter is, in turn, determined by positive charge on the molecule and interaction with cell membrane. Cellular targets and molecular determinants of RNases decisive for their cytotoxic action are characterized.
Collapse
Affiliation(s)
- Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str 32, 119991 Moscow, Russia.
| | | |
Collapse
|
32
|
Russo A, Antignani A, Giancola C, D'Alessio G. Engineering the refolding pathway and the quaternary structure of seminal ribonuclease by newly introduced disulfide bridges. J Biol Chem 2002; 277:48643-9. [PMID: 12377788 DOI: 10.1074/jbc.m207141200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seminal RNase (BS-RNase), a ribonuclease from bovine seminal vesicles, is a homodimeric enzyme with a strong cytotoxic activity selective for tumor cells. It displays the unusual structural feature of existing in solution as an equilibrium mixture of two quaternary isoforms. The major one is characterized by the swap between subunits of their N-terminal ends, whereas the minor isoform shows no swap. The tendency of the two isolated isoforms to interconvert into each other has so far made it difficult to attribute the functional properties of BS-RNase to either isoform. Herein, molecular modeling and site-directed mutagenesis were used to engineer the refolding pathway of BS-RNase and obtain a stable variant of its non-swapping isoform. The protein was engineered with two extra disulfide bridges linking the N-terminal helix of each subunit to the main body of the same subunit. Purified as an active enzyme, the BS-RNase variant was found to be very resistant to thermal denaturation. Its functional characterization revealed that the lack of swapping has a negative effect on the cytotoxic activity of BS-RNase.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Life Sciences, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
33
|
Matousek J, Poucková P, Soucek J, Skvor J. PEG chains increase aspermatogenic and antitumor activity of RNase A and BS-RNase enzymes. J Control Release 2002; 82:29-37. [PMID: 12106974 DOI: 10.1016/s0168-3659(02)00082-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RNase A (bovine pancreatic ribonuclease) and BS-RNase (bovine seminal ribonuclease) are monomeric and dimeric enzymes, respectively, with aspermatogenic and antitumor activities. While the aspermatogenic and, in some experimental situations, the antitumor effects of the RNase A are only minor, the activity of BS-RNase in these phenomena is very significant. These differences can be annulled by means of conjugation of the enzymes with PEG (polyethylene glycol) chains. Aspermatogenic activity was studied histologically following subcutaneous injections of RNase A and BS-RNase conjugates in ICR mice, and the antitumor activity in athymic nude mice with growing human melanoma with i.p. injection of these conjugated ribonucleases. The experiments proved that RNase A, when conjugated to PEG, produced identical aspermatogenic and antitumour effects as BS-RNase conjugated to this polymer. Immunogenicity of RNase A and BS-RNase did not change substantially after the conjugation with PEG polymers. Binding of produced antibodies to both ribonucleases attached to PEG, however, was substantially reduced.
Collapse
Affiliation(s)
- Josef Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov 27721, Czech Republic.
| | | | | | | |
Collapse
|
34
|
Michaelis M, Cinatl J, Cinatl J, Pouckova P, Langer K, Kreuter J, Matousek J. Coupling of the antitumoral enzyme bovine seminal ribonuclease to polyethylene glycol chains increases its systemic efficacy in mice. Anticancer Drugs 2002; 13:149-54. [PMID: 11901307 DOI: 10.1097/00001813-200202000-00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) is an antitumoral active enzyme exhibiting specific antitumoral action against a number of different cancer cell lines. However, its systemic use is limited by its pharmacokinetic properties and antigenicity. Therefore, it was conjugated to polyethylene glycol (PEG) chains to overcome these problems. Measurement of aspermatogenic effects of the preparation after s.c. injection and injection into the scrotum was chosen as a model for the distribution of the enzyme in the body mediated by the linkage to PEG chains. Additionally, the antigenicity of BS-RNase coupled to PEG chains (BS-RNase-PEG) was compared to that of free BS-RNase, as antigenicity is known to be one of the main obstacles in the use of protein-based drugs. BS-RNase-PEG caused aspermatogenic effects after systemic administration to mice in very low concentrations at which free BS-RNase is not effective. Moreover, BS-RNase possessed a very low antigenicity as long as it was coupled to the PEG chains. In order to investigate the antitumoral efficacy of BS-RNase-PEG in vivo, preliminary experiments on the effect of the conjugate on neuroblastoma growth in mice were performed in a UKF-NB-3 xeno-transplantate model, demonstrating a drastically increased anti-tumoral activity of the conjugate compared to the free enzyme.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, 60596 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Di Gaetano S, D'alessio G, Piccoli R. Second generation antitumour human RNase: significance of its structural and functional features for the mechanism of antitumour action. Biochem J 2001; 358:241-7. [PMID: 11485573 PMCID: PMC1222053 DOI: 10.1042/0264-6021:3580241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A second generation mutant of dimeric human pancreas RNase (HHP2-RNase), was obtained by a single residue mutation (Glu(111)-->Gly) of the previously described dimeric human pancreas RNase variant (HHP-RNase). HHP2-RNase was found to be a highly specific antitumour agent, with an enhanced cytotoxic activity compared with HHP-RNase. The structural and functional requisites of the antitumour action of HHP2-RNase were investigated and compared with those of other dimeric antitumour RNases. The stability of the dimeric structure, i.e. the resistance of human dimeric RNase variants to reductive cleavage of the two intersubunit disulphide bonds that bridge the subunits, was determined to be an essential feature of antitumour dimeric RNases. The stability of the dimeric structure is in turn responsible for the resistance to inhibition by the cytosolic RNase inhibitor (cRI). Both the stability of the dimeric structure and the resistance to cRI inhibition appeared to be highly enhanced by an RNase substrate. This suggests a possible role for RNA in the amplification of the antitumour potential of dimeric RNases.
Collapse
Affiliation(s)
- S Di Gaetano
- Department of Biological Chemistry, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | |
Collapse
|