1
|
Fang Y, Wang L, Zheng X, Ni P, Xu Z, Wang Z, Weng Y, Chen Q, Liu H. Blood-triggered self-sealing and tissue adhesive hemostatic nanofabric. Nat Commun 2025; 16:4910. [PMID: 40425558 PMCID: PMC12116861 DOI: 10.1038/s41467-025-60244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Current hemostatic fabric often encounters the issue of blood seeping or leaking through the fabric and at the junctions between the fabric and tissue, leading to extra blood loss. Herein, we report a hemostatic nanofabric composed of anionic and cationic nanofibers. Upon contact with wound, the porous nanofabric can absorb the interfacial blood and self-seal to form a compact physical barrier through interfiber bonding, preventing blood from longitudinally penetrating the fabric. This process results in the encapsulation of blood components within the electrostatically crosslinked nanofiber network, creating a robust thrombus that reinforces the physical barrier. Moreover, this nanofabric exhibits strong tissue adhesiveness, inhibiting blood seeping out at the seam of the fabric and tissue. Its hemostatic performance in animal injuries surpasses that of standard cotton gauze and Combat GauzeTM. In the pig femoral artery injury, the blood loss from the nanofabric is only ca. 8% of that from Combat GauzeTM. The nanofabric exhibits excellent biodegradability, hemocompatibility, cytocompatibility, antibacterial activity, and wound healing promotion.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Linyu Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Xinwei Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Peng Ni
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Zhibo Xu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Ziying Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China.
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fujian, China.
| |
Collapse
|
2
|
Rathee J, Kishore N. Interaction of solid lipid nanoparticles with bovine serum albumin: physicochemical mechanistic insights. Phys Chem Chem Phys 2025; 27:5876-5888. [PMID: 40028927 DOI: 10.1039/d4cp04737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study investigates the interaction of solid lipid nanoparticles (SLNs) with the transport protein bovine serum albumin (BSA) in terms of thermodynamic signatures, employing both spectroscopic and calorimetric techniques. When nanoparticles are exposed to biological media, proteins are adsorbed on their surfaces, leading to protein corona formation. Therefore, controlling the formation of the protein corona is essential for in vivo therapeutic efficacy. Although SLNs have previously been explored solely as potential nano-carriers for drug delivery, no prior efforts have been made to study their interactions with biomolecules from a biophysical and mechanistic perspective. SLNs are colloidal dispersions of the solid lipid in an aqueous solution stabilized by surfactants. Herein, a hot emulsification methodology was employed to formulate SLNs, and their interactions with BSA were analyzed. The SLNs were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques to obtain information on their size, zeta potential, and shape. Fluorescence data suggested the presence of weak interactions between the SLNs and BSA. Static quenching is confirmed using time-correlated single-photon counting (TCSPC) experiments. Differential scanning calorimetric (DSC) and fluorescence spectroscopic experiments suggest the thermal stabilization of BSA by the SLNs. This stabilization results from the enhancement of the secondary structure of the protein without significantly altering the tertiary structure. Isothermal calorimetry (ITC) results suggest weak interactions between the SLNs and BSA, although not in a site-specific manner. Overall, mechanistic insights into lipid nanoparticle-protein interactions obtained from such studies efficiently overcome the hurdles associated with targeted drug delivery.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Pezzotti G, Yasukochi Y, Ohgitani E, Nakashio M, Shin-Ya M, Adachi T, Yamamoto T, Ikegami S, Zhu W, Higasa K, Okuma K, Mazda O. Raman signatures of type A and B influenza viruses: molecular origin of the " catch and kill" inactivation mechanism mediated by micrometric silicon nitride powder. RSC Chem Biol 2025; 6:182-208. [PMID: 39850321 PMCID: PMC11751685 DOI: 10.1039/d4cb00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in gauche and trans methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes. Short-term exposure to a few percent fraction of silicon nitride (Si3N4) micrometric powder in an aqueous environment completely inactivated the influenza virions, independent of lineage/subtype dependent characteristics. The molecular-scale details of the inactivation process were studied by Raman spectroscopy and interpreted in terms of a "catch and kill" mechanism, in which the hydrolyzing ceramic surface first attracts virions with high efficiency through electrochemical interactions (mimicking cellular sialic acid) and then "poisons" the viruses by local hydrolytic elution of ammonia and nitrogen radicals. The latter event causes severe damage to the virions' structures, including structural degradation of RNA purines, rotameric scrambling of methionine residues, formation of sulfhydryl and ionized carboxyl groups, and deprotonation/torsional deformation of tyrosine, tryptophan, and histidine residues. This study confirmed the antiviral effectiveness of Si3N4 powder, which is safe to the human body and simply activated by water molecules. Raman spectroscopy was confirmed as a powerful tool in molecular virology, complementary to genomics and unique in providing direct information on virus structures at the molecular scale.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Biomedical Engineering Center, Kansai Medical University 1-9-11 Shin-machi Hirakata Osaka 573-1191 Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
- Department of Orthopedic Surgery, Tokyo Medical University 6-7-1 Nishi-Shinjuku Shinjuku-ku 160-0023 Tokyo Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku Kyoto 602-8566 Japan
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice Via Torino 155 30172 Venice Italy
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University 2-3-1 Shin-machi Hirakata Osaka 573-1191 Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
| | - Maiko Nakashio
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University Fukuoka 814-0180 Japan
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku Kyoto 602-8566 Japan
- Department of Microbiology, Kansai Medical University, School of Medicine 2-5-1 Shinmachi Hirakata 573-1010 Osaka Prefecture Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku Kyoto 602-8566 Japan
| | - Saki Ikegami
- Department of Microbiology, Kansai Medical University, School of Medicine 2-5-1 Shinmachi Hirakata 573-1010 Osaka Prefecture Japan
- Ceramic Physics Laboratory, Kyoto Institute of Technology Sakyo-ku Matsugasaki 606-8585 Kyoto Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology Sakyo-ku Matsugasaki 606-8585 Kyoto Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University 2-3-1 Shin-machi Hirakata Osaka 573-1191 Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, School of Medicine 2-5-1 Shinmachi Hirakata 573-1010 Osaka Prefecture Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
| |
Collapse
|
4
|
Georgiou K, Kolocouris A. Conformational heterogeneity and structural features for function of the prototype viroporin influenza AM2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184387. [PMID: 39424094 DOI: 10.1016/j.bbamem.2024.184387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The 97-residue influenza A matrix 2 (ΑM2) protein, a prototype for viroporins, transports protons through water molecules and His37. We discuss structural biology and molecular biophysics experiments and some functional assays that have transformed over 40 years our understanding of the structure and function of AM2. The structural studies on ΑM2 have been performed with different conditions (pH, temperature, lipid, constructs) and using various protein constructs, e.g., AM2 transmembrane (AM2TM) domain, AM2 conductance domain (AM2CD), ectodomain-containing or ectodomain-truncated, AM2 full length (AM2FL) and aimed to describe the different conformations and structural details that are necessary for the stability and function of AM2. However, the conclusions from these experiments appeared sometimes ambiguous and caused exciting debates. This was not due to inaccurate measurements, but instead because of the different membrane mimetic environment used, e.g., detergent, micelles or phospholipid bilayer, the method (e.g., X-ray crystallography, solid state NMR, solution NMR, native mass spectrometry), the used protein construct (e.g., AM2TM or AM2CD), or the amino acids residues to follow observables (e.g., NMR chemical shifts). We present these results according to the different used biophysical methods, the research groups and often by keeping a chronological order for presenting the progress in the research. We discuss ideas for additional research on structural details of AM2 and how the present findings can be useful to explore new routes of influenza A inhibition. The AM2 research can provide inspiration to study other viroporins as drug targets.
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 157 71, Greece.
| |
Collapse
|
5
|
Yue Z, Wu J, Teng D, Wang Z, Voth GA. Activation of the Influenza B M2 Proton Channel (BM2). Biochemistry 2024; 63:3011-3019. [PMID: 39488842 PMCID: PMC11580745 DOI: 10.1021/acs.biochem.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Influenza B viruses have cocirculated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we performed membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant channel to explore its pH-dependent conformational switch. Simulations captured the activation as the first histidine (His19) protonates and revealed the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and preprotonated His27. Crucially, we provided an atomic-level understanding of the symmetric proton conduction by identifying preactivating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible antiflu drug design efforts.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Jiangbo Wu
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Da Teng
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Pankratova Y, McKay MJ, Ma C, Tan H, Wang J, Hong M. Structure and dynamics of the proton-selective histidine and the gating tryptophan in an inward rectifying hybrid influenza B and A virus M2 proton channel. Phys Chem Chem Phys 2024; 26:20629-20644. [PMID: 39037444 PMCID: PMC11290064 DOI: 10.1039/d4cp01648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.
Collapse
Affiliation(s)
- Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, USA
| | - Haozhou Tan
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Codescu MA, Kunze T, Weiß M, Brehm M, Kornilov O, Sebastiani D, Nibbering ETJ. Ultrafast Proton Transfer Pathways Mediated by Amphoteric Imidazole. J Phys Chem Lett 2023; 14:4775-4785. [PMID: 37186569 DOI: 10.1021/acs.jpclett.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Imidazole, being an amphoteric molecule, can act both as an acid and as a base. This property enables imidazole, as an essential building block, to effectively facilitate proton transport in high-temperature proton exchange membrane fuel cells and in proton channel transmembrane proteins, enabling those systems to exhibit high energy conversion yields and optimal biological function. We explore the amphoteric properties of imidazole by following the proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline (7HQ). We show with ultrafast ultraviolet-mid-infrared pump-probe spectroscopy how for imidazole, in contrast to expectations based on textbook knowledge of acid-base reactivity, the preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction. An assessment of the molecular distribution functions and first-principles calculations of proton transfer reaction barriers reveal the underlying reasons for our observations.
Collapse
Affiliation(s)
- Marius-Andrei Codescu
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Thomas Kunze
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Moritz Weiß
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Oleg Kornilov
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
8
|
Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. A melanin-inspired robust aerogel for multifunctional water remediation. MATERIALS HORIZONS 2023; 10:1020-1029. [PMID: 36692037 DOI: 10.1039/d2mh01474b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solar-driven vapor generation has emerged as a promising wastewater remediation technology for clean water production. However, the complicated and diversified contaminants in wastewater still restrict its practical applications. Herein, inspired by the melanin in nature, a robust aerogel was facilely fabricated for multifunctional water remediation via a one-pot condensation copolymerization of 5,6-dihydroxyindole and formaldehyde. Benefiting from the superhydrophilicity, underwater superoleophobicity, and synergistic coordination effects, the resulting aerogel not only showed excellent performances in underwater oil resistance and oil-water separation ability, but also removed organic dyes and heavy metal ions contaminants in wastewater simultaneously. Moreover, owing to its admirable light harvesting capacity and porous microstructure for fast water transportation, the aerogel-based evaporator exhibited an excellent evaporation rate of 1.42 kg m-2 h-1 with a 91% evaporation efficiency under 1 sun illumination, which can be reused for long-term water evaporation. Note that such a stable evaporation rate could be maintained even in wastewater containing complex multicomponent contaminants. Outdoor evaporation experiments for lotus pond wastewater under natural sunlight also proved its great potential in practical applications. All those promising features of this all-in-one melanin-inspired aerogel may provide new strategies for the development of robust photothermal devices for multifunctional solar-driven water remediation.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Histidine network regulates the structure-stability features of T7 endolysin native and partially folded conformations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Kuwana Y, Ashizawa Y, Ajima M, Nomura T, Kakeno M, Hirai S, Miura T. Micelle-associated endomorphin-1 has ability to bind copper in the oxidation state either Cu(II) or Cu(I). Arch Biochem Biophys 2022; 727:109305. [DOI: 10.1016/j.abb.2022.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
|
11
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
12
|
Ngu-Schwemlein M, Merle J, Cameron T, Witcher C, Todd D. Dithiolated peptides incorporating bis(tryptophan)s for cooperative mercury(II) binding. Bioorg Med Chem 2021; 44:116296. [PMID: 34237490 DOI: 10.1016/j.bmc.2021.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
The indole side chain of tryptophan is a versatile π-donor that can participate in various types of cation-π interactions. An understanding of how it may contribute as an auxiliary binding group in mercury(II) complexes can provide valuable insights toward the design of effective chelators for optimal mercury immobilization. In this study, we investigate how the incorporation of two tryptophan residues in model dicysteinyl peptides might participate in peptide-mercury(II) complex stabilization. Two pentapeptides consisting of a Cys-Trp-Cys sequence motif containing a second tryptophan residue at the N-terminal (BT1) or C-terminal (BT2) were designed. An analogous cyclohexapeptide (BT3) was included to evaluate how tryptophan residues, restricted in constrained peptidic turn motifs, might take part in mercury(II) complexation. Their interactions with mercury(II) were investigated by spectroscopic methods and computational modeling. UV-vis studies indicate the formation of 1:1 dithiolated mercury(II) complex, which is corroborated by ESI-MS analysis. Spectroscopic studies reveal that the tryptophan indole group(s) in BT1 and BT3 can participate in mercury(II) cation-π interactions. Optimized 1:1 mercury(II)-BT3 structures indicate that both indole rings are very close to the mercury(II) coordination site and could stabilize it by shielding it from ligand exchange. These findings provide some useful insights toward use of aromatic donor groups as hydrophobic shields in designing more effective metal chelating agents.
Collapse
Affiliation(s)
- Maria Ngu-Schwemlein
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA.
| | - John Merle
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - T'ea Cameron
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Charlexia Witcher
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Daniel Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
13
|
Springfield E, Willis A, Merle J, Mazlo J, Ngu-Schwemlein M. Spectroscopic and Theoretical Studies of Hg(II) Complexation with Some Dicysteinyl Tetrapeptides. Bioinorg Chem Appl 2021; 2021:9911474. [PMID: 34349795 PMCID: PMC8328728 DOI: 10.1155/2021/9911474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Tetrapeptides containing a Cys-Gly-Cys motif and a propensity to adopt a reverse-turn structure were synthesized to evaluate how O-, N-, H-, and aromatic π donor groups might contribute to mercury(II) complex formation. Tetrapeptides Xaa-Cys-Gly-Cys, where Xaa is glycine, glutamate, histidine, or tryptophan, were prepared and reacted with mercury(II) chloride. Their complexation with mercury(II) was studied by spectroscopic methods and computational modeling. UV-vis studies confirmed that mercury(II) binds to the cysteinyl thiolates as indicated by characteristic ligand-to-metal-charge-transfer transitions for bisthiolated S-Hg-S complexes, which correspond to 1 : 1 mercury-peptide complex formation. ESI-MS data also showed dominant 1 : 1 mercury-peptide adducts that are consistent with double deprotonations from the cysteinyl thiols to form thiolates. These complexes exhibited a strong positive circular dichroism band at 210 nm and a negative band at 193 nm, indicating that these peptides adopted a β-turn structure after binding mercury(II). Theoretical studies confirmed that optimized 1 : 1 mercury-peptide complexes adopt β-turns stabilized by intramolecular hydrogen bonds. These optimized structures also illustrate how specific N-terminal side-chain donor groups can assume intramolecular interactions and contribute to complex stability. Fluorescence quenching results provided supporting data that the indole donor group could interact with the coordinated mercury. The results from this study indicate that N-terminal side-chain residues containing carboxylate, imidazole, or indole groups can participate in stabilizing dithiolated mercury(II) complexes. These structural insights on peripheral mercury-peptide interactions provide additional understanding of the chemistry of mercury(II) with side-chain donor groups in peptides.
Collapse
Affiliation(s)
- Elliot Springfield
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - Alana Willis
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - John Merle
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - Johanna Mazlo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Maria Ngu-Schwemlein
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| |
Collapse
|
14
|
Gerondopoulos A, Bräuer P, Sobajima T, Wu Z, Parker JL, Biggin PC, Barr FA, Newstead S. A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. eLife 2021; 10:68380. [PMID: 34137369 PMCID: PMC8248988 DOI: 10.7554/elife.68380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
ER proteins of widely differing abundance are retrieved from the Golgi by the KDEL-receptor. Abundant ER proteins tend to have KDEL rather than HDEL signals, whereas ADEL and DDEL are not used in most organisms. Here, we explore the mechanism of selective retrieval signal capture by the KDEL-receptor and how HDEL binds with 10-fold higher affinity than KDEL. Our results show the carboxyl-terminus of the retrieval signal moves along a ladder of arginine residues as it enters the binding pocket of the receptor. Gatekeeper residues D50 and E117 at the entrance of this pocket exclude ADEL and DDEL sequences. D50N/E117Q mutation of human KDEL-receptors changes the selectivity to ADEL and DDEL. However, further analysis of HDEL, KDEL, and RDEL-bound receptor structures shows that affinity differences are explained by interactions between the variable −4 H/K/R position of the signal and W120, rather than D50 or E117. Together, these findings explain KDEL-receptor selectivity, and how signal variants increase dynamic range to support efficient ER retrieval of low and high abundance proteins.
Collapse
Affiliation(s)
| | - Philipp Bräuer
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
16
|
Ishihara K, Nishimura K, Yamakawa K. Enantio- and Site-Selective α-Fluorination of N-Acyl 3,5-Dimethylpyrazoles Catalyzed by Chiral π-Cu II Complexes. Angew Chem Int Ed Engl 2020; 59:17641-17647. [PMID: 32633892 DOI: 10.1002/anie.202007403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/11/2022]
Abstract
Catalytic enantioselective α-fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α-fluorinated carbonyl compounds. Nevertheless, α-fluorination of α-nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α-hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3-(2-naphthyl)-l-alanine-derived amides are highly effective catalysts for the enantio- and site-selective α-fluorination of N-(α-arylacetyl) and N-(α-alkylacetyl) 3,5-dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α-fluorinated α-amino acid derivative). α-Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.
Collapse
Affiliation(s)
- Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuki Nishimura
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Katsuya Yamakawa
- Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
17
|
Ishihara K, Nishimura K, Yamakawa K. Enantio‐ and Site‐Selective α‐Fluorination of
N
‐Acyl 3,5‐Dimethylpyrazoles Catalyzed by Chiral π–Cu
II
Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuaki Ishihara
- Graduate School of Engineering Nagoya University B2-3(611), Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Kazuki Nishimura
- Graduate School of Engineering Nagoya University B2-3(611), Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Katsuya Yamakawa
- Graduate School of Engineering Nagoya University B2-3(611), Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
18
|
Evaluating the involvement of tryptophan on thiolated peptide-mercury(II) complexes: Cation-pi interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Comparing Interfacial Trp, Interfacial His and pH Dependence for the Anchoring of Tilted Transmembrane Helical Peptides. Biomolecules 2020; 10:biom10020273. [PMID: 32053887 PMCID: PMC7072424 DOI: 10.3390/biom10020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022] Open
Abstract
Charged and aromatic amino acid residues, being enriched toward the terminals of membrane-spanning helices in membrane proteins, help to stabilize particular transmembrane orientations. Among them, histidine is aromatic and can be positively charge at low pH. To enable investigations of the underlying protein-lipid interactions, we have examined the effects of single or pairs of interfacial histidine residues using the constructive low-dynamic GWALP23 (acetyl-GG2ALW5LALALALALALALW19LAG22A-amide) peptide framework by incorporating individual or paired histidines at locations 2, 5, 19 or 22. Analysis of helix orientation by means of solid-state 2H NMR spectra of labeled alanine residues reveals marked differences with H2,22 compared to W2,22. Nevertheless, the properties of membrane-spanning H2,22WALP23 helices show little pH dependence and are similar to those having Gly, Arg or Lys at positions 2 and 22. The presence of H5 or H19 influences the helix rotational preference but not the tilt magnitude. H5 affects the helical integrity, as residue 7 unwinds from the core helix; yet once again the helix orientation and dynamic properties show little sensitivity to pH. The overall results reveal that the detailed properties of transmembrane helices depend upon the precise locations of interfacial histidine residues.
Collapse
|
20
|
Park S, Kim S, Jho Y, Hwang DS. Cation-π Interactions and Their Contribution to Mussel Underwater Adhesion Studied Using a Surface Forces Apparatus: A Mini-Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16002-16012. [PMID: 31423790 DOI: 10.1021/acs.langmuir.9b01976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mussel underwater adhesion is a model phenomenon important for the understanding of broader biological adhesion and the development of biomimetic wet adhesives. The catechol moiety of 3,4-dihydroxyphenyl-l-alanine (DOPA) is known to be actively involved in the mechanism of mussel underwater adhesion; however, other underwater adhesion mechanisms are also crucial. The surface forces apparatus (SFA) has often been used to explore the contributions of other mechanisms to mussel underwater adhesion; e.g., recent SFA-based nanomechanical studies have revealed that cation-π interactions, one of the strongest intermolecular interactions in water, are the pivotal interactions of adhesive proteins involved in underwater mussel adhesion. This mini-review surveys recent research on cation-π interactions and their contributions to strong mussel underwater adhesion, shedding light on some biological processes and facilitating the development of biomedical adhesives.
Collapse
Affiliation(s)
- Sohee Park
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| | - Sangsik Kim
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
- Division of Integrative Biosciences and Biotechnology , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| | - YongSeok Jho
- Department of Physics and Research Institute of Natural Science , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
- Division of Integrative Biosciences and Biotechnology , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| |
Collapse
|
21
|
Wang Q, Li R, Ouyang X, Wang G. A novel indole-based conjugated microporous polymer for highly effective removal of heavy metals from aqueous solution via double cation-π interactions. RSC Adv 2019; 9:40531-40535. [PMID: 35542633 PMCID: PMC9076261 DOI: 10.1039/c9ra07970j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
A novel indole-based conjugated microporous polymer (PTIA) with three coplanar indole units, designed and synthesized by an oxidative coupling reaction, was utilized as a platform for removing heavy metals. Owing to the conjugation of the three coplanar indoles, the highly electron-rich large π planes can simultaneously attract six heavy metal atoms via double cation-π interactions, endowing this microporous material with remarkable heavy metal adsorption capacity and efficiency.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Rui Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Xiao Ouyang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Guojun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| |
Collapse
|
22
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
23
|
|
24
|
Wang Y, Luo X, Zhang L, Zhang S, Zhang L. A reversible, colorimetric, pH-responsive indole-based hydrogel and its application in urea detection. RSC Adv 2019; 9:24299-24304. [PMID: 35527878 PMCID: PMC9069612 DOI: 10.1039/c9ra03815a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/27/2019] [Indexed: 11/21/2022] Open
Abstract
A new type of pH-responsive indole-based (4-HINF) hydrogel, fabricated by a sol–gel method, was utilized as a platform for colorimetric detection of urea in aqueous solution. The colorimetric sensor was established by virtue of the synergistic effect of cation–π interaction and hydrogen bonding with good regenerative ability. The results exhibited linear response in the range of 0–10 mM with a limit of detection of 10 μM. The prepared 4-HINF hydrogel possessed high selectivity to pH change under complicated environments ensuring further applications in environmental and bio-systems. A new type of pH-responsive indole-based (4-HINF) hydrogel, fabricated by a sol–gel method, was utilized as a platform for colorimetric detection of urea in aqueous solution.![]()
Collapse
Affiliation(s)
- Yan Wang
- Research Center of Laser Fusion
- China Academy of Engineering Physicals
- Mianyang
- P. R. China
| | - Xuan Luo
- Research Center of Laser Fusion
- China Academy of Engineering Physicals
- Mianyang
- P. R. China
| | - Longfei Zhang
- Research Center of Laser Fusion
- China Academy of Engineering Physicals
- Mianyang
- P. R. China
| | - Shuai Zhang
- Research Center of Laser Fusion
- China Academy of Engineering Physicals
- Mianyang
- P. R. China
| | - Lin Zhang
- Research Center of Laser Fusion
- China Academy of Engineering Physicals
- Mianyang
- P. R. China
| |
Collapse
|
25
|
Maiti BK, Maia LB, Moro AJ, Lima JC, Cordas CM, Moura I, Moura JJG. Unusual Reduction Mechanism of Copper in Cysteine-Rich Environment. Inorg Chem 2018; 57:8078-8088. [PMID: 29956539 DOI: 10.1021/acs.inorgchem.8b00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper-cysteine interactions play an important role in Biology and herein we used the copper-substituted rubredoxin (Cu-Rd) from Desulfovibrio gigas to gain further insights into the copper-cysteine redox chemistry. EPR spectroscopy results are consistent with Cu-Rd harboring a CuII center in a sulfur-rich coordination, in a distorted tetrahedral structure ( g∥,⊥ = 2.183 and 2.032 and A∥,⊥ = 76.4 × 10-4 and 12 × 10-4 cm-1). In Cu-Rd, two oxidation states at Cu-center (CuII and CuI) are associated with Cys oxidation-reduction, alternating in the redox cycle, as pointed by electrochemical studies that suggest internal geometry rearrangements associated with the electron transfer processes. The midpoint potential of [CuI(S-Cys)2(Cys-S-S-Cys)]/[CuII(S-Cys)4] redox couple was found to be -0.15 V vs NHE showing a large separation of cathodic and anodic peaks potential (Δ Ep = 0.575 V). Interestingly, sulfur-rich CuII-Rd is highly stable under argon in dark conditions, which is thermodynamically unfavorable to Cu-thiol autoreduction. The reduction of copper and concomitant oxidation of Cys can both undergo two possible pathways: oxidative as well as photochemical. Under O2, CuII plays the role of the electron carrier from one Cys to O2 followed by internal geometry rearrangement at the Cu site, which facilitates reduction at Cu-center to yield CuI(S-Cys)2(Cys-S-S-Cys). Photoinduced (irradiated at λex = 280 nm) reduction of the CuII center is observed by UV-visible photolysis (above 300 nm all bands disappeared) and tryptophan fluorescence (∼335 nm peak enhanced) experiments. In both pathways, geometry reorganization plays an important role in copper reduction yielding an energetically compatible donor-acceptor system. This model system provides unusual stability and redox chemistry rather than the universal Cu-thiol auto redox chemistry in cysteine-rich copper complexes.
Collapse
Affiliation(s)
- Biplab K Maiti
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Luisa B Maia
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Artur J Moro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - João C Lima
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Cristina M Cordas
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Isabel Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
26
|
Liu Y, Tan J, Zhang J, Li C, Luo Y, Ye S. Influenza A M2 transmembrane domain tunes its conformational heterogeneity and structural plasticity in the lipid bilayer by forming loop structures. Chem Commun (Camb) 2018; 54:5903-5906. [PMID: 29789823 DOI: 10.1039/c8cc01533c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We discovered for the first time that the influenza A virus M2TM tunes its conformational heterogeneity and structural plasticity to respond to environmental cues by undergoing a helix-to-loop transition, resolving controversies regarding the mechanism of proton conduction and plasticity of the M2TM in lipid bilayers.
Collapse
Affiliation(s)
- Yue Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center for Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
27
|
Singh SK, Singh A. Effect of Acidity of Ionic Liquids on Hydrogen Bonding Interaction between Ionic Liquids and Lignin Monomers. ChemistrySelect 2018. [DOI: 10.1002/slct.201800037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandip K. Singh
- Discipline of ChemistryIndian Institute of Technology (IIT) Indore, Simrol Khandwa road Indore 453252 India
| | - Ajeet Singh
- Discipline of ChemistryIndian Institute of Technology (IIT) Indore, Simrol Khandwa road Indore 453252 India
| |
Collapse
|
28
|
McKay MJ, Afrose F, Koeppe RE, Greathouse DV. Helix formation and stability in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2108-2117. [PMID: 29447916 DOI: 10.1016/j.bbamem.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
29
|
Sakai Y, Kawaguchi A, Nagata K, Hirokawa T. Analysis by metadynamics simulation of binding pathway of influenza virus M2 channel blockers. Microbiol Immunol 2018; 62:34-43. [DOI: 10.1111/1348-0421.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yuri Sakai
- PhD Program in Human Biology; School of Integrative and Global Majors; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
| | - Atsushi Kawaguchi
- PhD Program in Human Biology; School of Integrative and Global Majors; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Department of Infection Biology; Faculty of Medicine; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Transborder Medical Research Center; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
| | - Kyosuke Nagata
- Department of Infection Biology; Faculty of Medicine; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Division of Biomedical Science; Faculty of Medicine; University of Tsukuba; 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Molecular Profiling Research Center for Drug Discovery; National Institute of Advanced Industrial Science and Technology; 2-4-7 Aomi, Koto-ku Tokyo, 135-0064 Japan
| |
Collapse
|
30
|
Chang G, Wang Y, Wang C, Li Y, Xu Y, Yang L. A recyclable hydroxyl functionalized polyindole hydrogel for sodium hydroxide extraction via the synergistic effect of cation–π interactions and hydrogen bonding. Chem Commun (Camb) 2018; 54:9785-9788. [DOI: 10.1039/c8cc05819a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have successfully constructed a new type of recyclable indole-based hydrogel, which exhibited highly effective extraction behavior for hydroxide via the synergistic effect of cation–π interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| | - Yan Wang
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| | - Cheng Wang
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| | - Yannan Li
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| | - Yewei Xu
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials
- National Engineering Technology Center for Insulation Materials
- School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
| |
Collapse
|
31
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
32
|
Shibnev VA, Deryabin PG, Garaev TM, Finogenova MP, Botikov AG, Mishin DV. Peptide carbocyclic derivatives as inhibitors of the viroporin function of RNA-containing viruses. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Juszczak LJ, Eisenberg AS. The Color of Cation-π Interactions: Subtleties of Amine-Tryptophan Interaction Energetics Allow for Radical-like Visible Absorbance and Fluorescence. J Am Chem Soc 2017; 139:8302-8311. [PMID: 28537725 DOI: 10.1021/jacs.7b03442] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several peptides and a protein with an inter- or intramolecular cation-π interaction between tryptophan (Trp) and an amine cation are shown to absorb and fluoresce in the visible region of the spectrum. Titration of indole with sodium hydroxide or ammonium hydroxide yields an increasing visible fluorescence as well. Visible absorption and multipeaked fluorescence excitation spectra correlate with experimental absorption spectra and the vibrational modes of calculated absorption spectra for the neutral Trp radical. The radical character of the cation-indole interaction is predicted to stem from the electrostatic dislocation of indole highest occupied molecular orbital (HOMO) charge density toward the cation with a subsequent electronic transition from the HOMO-2 to the HOMO. Because this is a vertical transition, fluorescence is possible. Hydrogen bonding at the indole amine most likely stabilizes the radical-like state. These results provide new spectroscopic tools for the investigation of cation-π interactions in numerous biological systems, among them, proteins and their myriad ligands, and show that one, or at most, two, point mutations with natural amino acids are all that is required to impart visible fluorescence to proteins.
Collapse
Affiliation(s)
- Laura J Juszczak
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States.,PhD programs in Chemistry and Biochemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Azaria S Eisenberg
- Chemistry Department, Brooklyn College, The City University of New York , New York, New York 11210, United States
| |
Collapse
|
34
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Lin CW, Mensa B, Barniol-Xicota M, DeGrado WF, Gai F. Activation pH and Gating Dynamics of Influenza A M2 Proton Channel Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017; 56:5283-5287. [PMID: 28374543 PMCID: PMC5543805 DOI: 10.1002/anie.201701874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/17/2022]
Abstract
Because of its importance in viral replication, the M2 proton channel of the influenza A virus has been the focus of many studies. Although we now know a great deal about the structural architecture underlying its proton conduction function, we know little about its conformational dynamics, especially those controlling the rate of this action. Herein, we employ a single-molecule fluorescence method to assess the dynamics of the inter-helical channel motion of both full-length M2 and the transmembrane domain of M2. The rate of this motion depends not only on the identity of the channel and membrane composition but also on the pH in a sigmoidal manner. For the full-length M2 channel, the rate is increased from approximately 190 μs-1 at high pH to approximately 80 μs-1 at low pH, with a transition midpoint at pH 6.1. Because the latter value is within the range reported for the conducting pKa value of the His37 tetrad, we believe that this inter-helical motion accompanies proton conduction.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - Marta Barniol-Xicota
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158-2517, USA
| | - Feng Gai
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, 231 S. 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Lin CW, Mensa B, Barniol-Xicota M, DeGrado WF, Gai F. Activation pH and Gating Dynamics of Influenza A M2 Proton Channel Revealed by Single-Molecule Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chun-Wei Lin
- Ultrafast Optical Processes Laboratory; Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - Marta Barniol-Xicota
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry; University of California San Francisco; 600 16th Street San Francisco CA 94158-2517 USA
| | - Feng Gai
- Ultrafast Optical Processes Laboratory; Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
- Department of Chemistry; University of Pennsylvania, Philadelphia; 231 S. 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
37
|
Yang Z, Tian Z, Yang P, Deng T, Li G, Zhou X, Chen Y, Zhao L, Shen H. Calix[3]carbazole: A C 3-symmetrical receptor for barium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:32-36. [PMID: 27865137 DOI: 10.1016/j.saa.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/28/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2+ via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2+ over Pd2+. A possible binding mechanism for [1-Ba2+] complex is proposed.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Zhangmin Tian
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Peng Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China.
| | - Tuo Deng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Gang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Xue Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Yan Chen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Liang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China
| | - Hongyan Shen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China (Shenyang Pharmaceutical University), Benxi 117004, PR China.
| |
Collapse
|
38
|
Okada M, Miura T, Nakabayashi T. Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5. J Inorg Biochem 2017; 169:97-105. [PMID: 28167404 DOI: 10.1016/j.jinorgbio.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022]
Abstract
The reduction and binding of copper ions to the Cys/Trp motif, which is characterized by two cysteines and two tryptophans, in the extracellular N-terminal domain of the copper transporter (Ctr) protein of fungi are investigated using the model peptides of Ctr4 and Ctr5 from Schizosaccharomyces pombe. The Cys/Trp motif of Ctr5 can reduce Cu(II) and ligate Cu(I), which is the same as that of Ctr4 previously reported. Titration of Cu(II) and Cu(I) ions indicates that both the Cys/Trp motifs of Ctr4 and Ctr5 reduce two Cu(II) and bind two Cu(I) per one peptide. However, the coordination structure of the Cu(I)-peptide complex differs between Ctr4 and Ctr5. Cu(I) is bound to the Cys/Trp motif of Ctr5 via cysteine thiolate-Cu(I) bonds and cation-π interaction with tryptophan, as reported for Ctr4, and a histidine residue in the Cys/Trp motif of Ctr5 is suggested to interact with Cu(I) via its Nτ atom. Ctr4 and Ctr5 exhibit a heterotrimeric form within cell membranes and the copper transport mechanism of the Ctr4/Ctr5 heterotrimer is discussed along with quantitative evaluation of the Cu(I)-binding constant of the Cys/Trp motif.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
39
|
Dasgupta M, Kishore N. Characterization and analysis of binding of Thioflavin T with partially folded and native states of α–lactalbumin protein by calorimetric and spectroscopic techniques. Int J Biol Macromol 2017; 95:376-384. [DOI: 10.1016/j.ijbiomac.2016.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/25/2016] [Accepted: 11/20/2016] [Indexed: 11/29/2022]
|
40
|
Sohn WY, Habka S, Gloaguen E, Mons M. Unifying the microscopic picture of His-containing turns: from gas phase model peptides to crystallized proteins. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03058d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence in crystallized proteins of a local anchoring between the side chain of a His residue, located in the central position of a γ- or β-turn, and its local main chain environment, is assessed by the comparison of protein structures with relevant isolated model peptides.
Collapse
Affiliation(s)
- Woon Yong Sohn
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Sana Habka
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Eric Gloaguen
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Michel Mons
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| |
Collapse
|
41
|
Markiewicz BN, Lemmin T, Zhang W, Ahmed IA, Jo H, Fiorin G, Troxler T, DeGrado WF, Gai F. Infrared and fluorescence assessment of the hydration status of the tryptophan gate in the influenza A M2 proton channel. Phys Chem Chem Phys 2016; 18:28939-28950. [PMID: 27725984 PMCID: PMC5157935 DOI: 10.1039/c6cp03426h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The M2 proton channel of the influenza A virus has been the subject of extensive studies because of its critical role in viral replication. As such, we now know a great deal about its mechanism of action, especially how it selects and conducts protons in an asymmetric fashion. The conductance of this channel is tuned to conduct protons at a relatively low biologically useful rate, which allows acidification of the viral interior of a virus entrapped within an endosome, but not so great as to cause toxicity to the infected host cell prior to packaging of the virus. The dynamic, structural and chemical features that give rise to this tuning are not fully understood. Herein, we use a tryptophan (Trp) analog, 5-cyanotryptophan, and various methods, including linear and nonlinear infrared spectroscopies, static and time-resolved fluorescence techniques, and molecular dynamics simulations, to site-specifically interrogate the structure and hydration dynamics of the Trp41 gate in the transmembrane domain of the M2 proton channel. Our results suggest that the Trp41 sidechain adopts the t90 rotamer, the χ2 dihedral angle of which undergoes an increase of approximately 35° upon changing the pH from 7.4 to 5.0. Furthermore, we find that Trp41 is situated in an environment lacking bulk-like water, and somewhat surprisingly, the water density and dynamics do not show a measurable difference between the high (7.4) and low (5.0) pH states. Since previous studies have shown that upon channel opening water flows into the cavity above the histidine tetrad (His37), the present finding thus provides evidence indicating that the lack of sufficient water molecules near Trp41 needed to establish a continuous hydrogen bonding network poses an additional energetic bottleneck for proton conduction.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Wenkai Zhang
- Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas Troxler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
42
|
Dudev T, Grauffel C, Lim C. Influence of the Selectivity Filter Properties on Proton Selectivity in the Influenza A M2 Channel. J Am Chem Soc 2016; 138:13038-13047. [DOI: 10.1021/jacs.6b08041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Todor Dudev
- Faculty
of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cédric Grauffel
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
43
|
Martfeld AN, Greathouse DV, Koeppe RE. Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment. J Biol Chem 2016; 291:19146-56. [PMID: 27440045 PMCID: PMC5009283 DOI: 10.1074/jbc.m116.738583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/12/2016] [Indexed: 01/22/2023] Open
Abstract
We address the critically important ionization properties of histidine side chains of membrane proteins, when exposed directly to lipid acyl chains within lipid bilayer membranes. The problem is important for addressing general principles that may underlie membrane protein function. To this end, we have employed a favorable host peptide framework provided by GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide). We inserted His residues into position 12 or 14 of GWALP23 (replacing either Leu(12) or Leu(14)) and incorporated specific [(2)H]Ala labels within the helical core sequence. Solid-state (2)H NMR spectra report the folding and orientation of the core sequence, revealing marked differences in the histidine-containing transmembrane helix behavior between acidic and neutral pH conditions. At neutral pH, the GWALP23-H12 and GWALP23-H14 helices exhibit well defined tilted transmembrane orientations in dioleoylphosphatidylcholine (DOPC)and dilauroylphosphatidylcholine (DLPC) bilayer membranes. Under acidic conditions, when His(12) is protonated and charged, the GWALP23-H12 helix exhibits a major population that moves to the DOPC bilayer surface and a minor population that occupies multiple transmembrane states. The response to protonation of His(14) is an increase in helix tilt, but GWALP23-H14 remains in a transmembrane orientation. The results suggest pKa values of less than 3 for His(12) and about 3-5 for His(14) in DOPC membranes. In the thinner DLPC bilayers, with increased water access, the helices are less responsive to changes in pH. The combined results enable us to compare the ionization properties of lipid-exposed His, Lys, and Arg side chains in lipid bilayer membranes.
Collapse
Affiliation(s)
- Ashley N Martfeld
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Denise V Greathouse
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Roger E Koeppe
- From the Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
44
|
Georgieva ER, Borbat PP, Grushin K, Stoilova-McPhie S, Kulkarni NJ, Liang Z, Freed JH. Conformational Response of Influenza A M2 Transmembrane Domain to Amantadine Drug Binding at Low pH (pH 5.5). Front Physiol 2016; 7:317. [PMID: 27524969 PMCID: PMC4965473 DOI: 10.3389/fphys.2016.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
The M2 protein from influenza A plays important roles in its viral cycle. It contains a single transmembrane helix, which oligomerizes into a homotetrameric proton channel that conducts in the low-pH environment of the host-cell endosome and Golgi apparatus, leading to virion uncoating at an early stage of infection. We studied conformational rearrangements that occur in the M2 core transmembrane domain residing on the lipid bilayer, flanked by juxtamembrane residues (M2TMD21-49 fragment), upon its interaction with amantadine drug at pH 5.5 when M2 is conductive. We also tested the role of specific mutation and lipid chain length. Electron spin resonance (ESR) spectroscopy and electron microscopy were applied to M2TMD21-49, labeled at the residue L46C with either nitroxide spin-label or Nanogold® reagent, respectively. Electron microscopy confirmed that M2TMD21-49 reconstituted into DOPC/POPS at 1:10,000 peptide-to-lipid molar ratio (P/L) either with or without amantadine, is an admixture of monomers, dimers, and tetramers, confirming our model based on a dimer intermediate in the assembly of M2TMD21-49. As reported by double electron-electron resonance (DEER), in DOPC/POPS membranes amantadine shifts oligomer equilibrium to favor tetramers, as evidenced by an increase in DEER modulation depth for P/L's ranging from 1:18,000 to 1:160. Furthermore, amantadine binding shortens the inter-spin distances (for nitroxide labels) by 5-8 Å, indicating drug induced channel closure on the C-terminal side. No such effect was observed for the thinner membrane of DLPC/DLPS, emphasizing the role of bilayer thickness. The analysis of continuous wave (cw) ESR spectra of spin-labeled L46C residue provides additional support to a more compact helix bundle in amantadine-bound M2TMD 21-49 through increased motional ordering. In contrast to wild-type M2TMD21-49, the amantadine-bound form does not exhibit noticeable conformational changes in the case of G34A mutation found in certain drug-resistant influenza strains. Thus, the inhibited M2TMD21-49 channel is a stable tetramer with a closed C-terminal exit pore. This work is aimed at contributing to the development of structure-based anti-influenza pharmaceuticals.
Collapse
Affiliation(s)
- Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Kirill Grushin
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Svetla Stoilova-McPhie
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | | | - Zhichun Liang
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, NY, USA; National Biomedical Center for Advanced ESR TechnologyIthaca, NY, USA
| |
Collapse
|
45
|
Williams JK, Tietze D, Lee M, Wang J, Hong M. Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel. J Am Chem Soc 2016; 138:8143-55. [PMID: 27286559 DOI: 10.1021/jacs.6b03142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Together with the influenza A virus, influenza B virus causes seasonal flu epidemics. The M2 protein of influenza B (BM2) forms a tetrameric proton-conducting channel that is important for the virus lifecycle. BM2 shares little sequence homology with AM2, except for a conserved HxxxW motif in the transmembrane (TM) domain. Unlike AM2, no antiviral drugs have been developed to block the BM2 channel. To elucidate the proton-conduction mechanism of BM2 and to facilitate the development of BM2 inhibitors, we have employed solid-state NMR spectroscopy to investigate the conformation, dynamics, and hydration of the BM2 TM domain in lipid bilayers. BM2 adopts an α-helical conformation in lipid membranes. At physiological temperature and low pH, the proton-selective residue, His19, shows relatively narrow (15)N chemical exchange peaks for the imidazole nitrogens, indicating fast proton shuttling that interconverts cationic and neutral histidines. Importantly, pH-dependent (15)N chemical shifts indicate that His19 retains the neutral population to much lower pH than His37 in AM2, indicating larger acid-dissociation constants or lower pKa's. We attribute these dynamical and equilibrium differences to the presence of a second titratable histidine, His27, which may increase the proton-dissociation rate of His19. Two-dimensional (1)H-(13)C correlation spectra probing water (1)H polarization transfer to the peptide indicates that the BM2 channel becomes much more hydrated at low pH than at high pH, particularly at Ser12, indicating that the pore-facing serine residues in BM2 mediate proton relay to the proton-selective histidine.
Collapse
Affiliation(s)
- Jonathan K Williams
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Tietze
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, The University of Arizona , Tucson, Arizona 85721, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Yang P, Jian Y, Zhou X, Li G, Deng T, Shen H, Yang Z, Tian Z. Calix[3]carbazole: One-Step Synthesis and Host–Guest Binding. J Org Chem 2016; 81:2974-80. [DOI: 10.1021/acs.joc.6b00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Yong Jian
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Xue Zhou
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Gang Li
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Tuo Deng
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Hongyan Shen
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Zhaozheng Yang
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| | - Zhangmin Tian
- Key Laboratory
of Structure-Based
Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China
| |
Collapse
|
47
|
Okada M, Miura T. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4. J Inorg Biochem 2016; 159:45-9. [PMID: 26908286 DOI: 10.1016/j.jinorgbio.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
Abstract
Copper transporter Ctr4 of fission yeast has a quasi-palindromic sequence rich in cysteine and aromatic amino acid residues, CX4YWNWYX4C (where X represents any amino acid), in the N-terminal extracellular domain. A 24-mer peptide comprising this sequence is bound to Cu(I) through the cysteine thiolate coordination. Luminescence, UV absorption and resonance Raman spectra of the Cu(I)-peptide complex show that at least one of the two tryptophan side chains is located in close proximity to the thiolate-Cu(I) center and interacts with the Cu(I) ion via π-electrons of the indole ring. Although the thiolates and Cu(I) are oxidized to disulfide and Cu(II), respectively, only very slowly in air-saturated solutions, replacements of the tryptophan residues to phenylalanine significantly accelerate the oxidation reactions. The results obtained indicate that the interaction between Cu(I) and tryptophan via π-electrons plays a significant role in protecting the thiolate-Cu(I) center against the oxidation. The cysteine- and tryptophan-rich quasi-palindromic sequence may be a metal binding motif that stabilizes Cu(I) in the oxidizing extracellular environment.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| |
Collapse
|
48
|
Gosavi PM, Moroz YS, Korendovych IV. β-(1-Azulenyl)-L-alanine--a functional probe for determination of pKa of histidine residues. Chem Commun (Camb) 2016; 51:5347-50. [PMID: 25645241 DOI: 10.1039/c4cc08720h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-(1-Azulenyl)-L-alanine (AzAla) can be incorporated into the influenza A virus M2 proton channel. AzAla's sensitivity to the protonation state of the nearby histidines and the lack of environmental fluorescence dependence allow for direct and straightforward determination of histidine pKa values in ion channels.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
49
|
Lu M, Park JS. protonation behavior of histidine during HSF1 activation by physiological acidification. J Cell Biochem 2016; 116:977-84. [PMID: 25560907 DOI: 10.1002/jcb.25051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
Abstract
The expression of eukaryotic molecular chaperones (heat shock proteins, HSPs) is triggered in response to a wide range of environmental stresses, including: heat shock, hydrogen peroxide, heavy metal, low-pH, or virus infection. Biochemical and genetic studies have clearly shown the fundamental roles of heat shock factor 1 (HSF1) in stress-inducible HSP gene expression, resistance to stress-induced cell death, carcinogenesis, and other biological phenomena. Previous studies show that acidic pH changes within the physiological range directly activate the HSF1 function in vitro. However, the detailed mechanism is unclear. Though computational pKa-predications of the amino acid side-chain, acidic-pH induced protonation of a histidine residue was found to be most-likely involved in this process. The histidine 83 (His83) residue, which could be protonated by mild decrease in pH, causes mild acidic-induced HSF1 activation (including in-vitro trimerization, DNA binding, in-vivo nuclear accumulation, and HSPs expression). His83, which is located in the loop region of the HSF1 DNA binding domain, was suggested to enhance the intermolecular force with Arginine 79, which helps HSF1 form a DNA-binding competent. Therefore, low-pH-induced activation of HSF1 by the protonation of histidine can help us better to understand the HSF1 mechanism and develop more therapeutic applications (particularly in cancer therapy). J. Cell. Biochem. 116: 977-984, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming Lu
- Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266061, China; Department of Chemistry, Pusan National University, Busan, 609-735, Korea
| | | |
Collapse
|
50
|
Wu NC, Du Y, Le S, Young AP, Zhang TH, Wang Y, Zhou J, Yoshizawa JM, Dong L, Li X, Wu TT, Sun R. Coupling high-throughput genetics with phylogenetic information reveals an epistatic interaction on the influenza A virus M segment. BMC Genomics 2016; 17:46. [PMID: 26754751 PMCID: PMC4710013 DOI: 10.1186/s12864-015-2358-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022] Open
Abstract
Background Epistasis is one of the central themes in viral evolution due to its importance in drug resistance, immune escape, and interspecies transmission. However, there is a lack of experimental approach to systematically probe for epistatic residues. Results By utilizing the information from natural occurring sequences and high-throughput genetics, this study established a novel strategy to identify epistatic residues. The rationale is that a substitution that is deleterious in one strain may be prevalent in nature due to the presence of a naturally occurring compensatory substitution. Here, high-throughput genetics was applied to influenza A virus M segment to systematically identify deleterious substitutions. Comparison with natural sequence variation showed that a deleterious substitution M1 Q214H was prevalent in circulating strains. A coevolution analysis was then performed and indicated that M1 residues 121, 207, 209, and 214 naturally coevolved as a group. Subsequently, we experimentally validated that M1 A209T was a compensatory substitution for M1 Q214H. Conclusions This work provided a proof-of-concept to identify epistatic residues by coupling high-throughput genetics with phylogenetic information. In particular, we were able to identify an epistatic interaction between M1 substitutions A209T and Q214H. This analytic strategy can potentially be adapted to study any protein of interest, provided that the information on natural sequence variants is available. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2358-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA. .,Molecular Biology InstituteUniversity of California, Los Angeles, 90095, CA, USA. .,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, 92037, CA, USA.
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Shuai Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA. .,Department of Microbiology, Third Military Medical University, Chongqing, 400038, China.
| | - Arthur P Young
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Yuanyuan Wang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Jian Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Janice M Yoshizawa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Ling Dong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|