1
|
Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep 2007; 9:84-90. [PMID: 18064048 PMCID: PMC2246616 DOI: 10.1038/sj.embor.7401135] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 12/03/2022] Open
Abstract
F1-ATPase is a rotary molecular motor that makes 120° stepping rotations, with each step being driven by a single-ATP hydrolysis. In this study, a new reaction intermediate of F1-ATPase was discovered at a temperature below 4°C, which makes a pause at the same angle in its rotation as when ATP binds. The rate constant of the intermediate reaction was strongly dependent on temperature with a Q10 factor of 19, implying that the intermediate reaction accompanies a large conformational change. Kinetic analyses showed that the intermediate state does not correspond to ATP binding or hydrolysis. The addition of ADP to the reaction mixture did not alter the angular position of the intermediate state, but specifically lengthened the time constant of this state. Conversely, the addition of inorganic phosphate caused a pause at an angle of +80° from that of the intermediate state. These observations strongly suggest that the newly found reaction intermediate is an ADP-releasing step.
Collapse
|
2
|
Brown B SV, Stanislawski A, Perry QL, Williams N. Cloning and characterization of the subunits comprising the catalytic core of the Trypanosoma brucei mitochondrial ATP synthase. Mol Biochem Parasitol 2001; 113:289-301. [PMID: 11295183 DOI: 10.1016/s0166-6851(01)00233-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Trypanosoma brucei mitochondrial F(1)-ATPase has been previously isolated and characterized. It is composed of five subunits of molecular weights 55000, 42000, 32000, 22000, and 17000 [1]. We have identified the alpha and beta subunits of the T. brucei F(1)-ATPase by N-terminal sequence determination together with analysis of cDNA and genomic clones. The genes for both subunits are homologous to the same subunits from other organisms. They contain the Walker A and B boxes of homology and a putative mitochondrial import sequence. The isolated T. brucei alpha subunit is unusually small at 42 kDa. The alpha cDNA clone encodes a protein of predicted size 59 kDa with a mitochondrial import presequence at the N-terminus. The predicted size was confirmed by expression of a 59 kDa protein from the cDNA clone in vitro. These results suggest that the alpha subunit may have an unusually large mitochondrial presequence of 159 amino acids. In contrast, the estimated size of the native beta subunit (55 kDa) correlates well with the size predicted from the cDNA clone, 57 kDa, from which a 21 amino acid presequence has been removed in vivo. The size of the beta subunit was confirmed by expression in an in vitro and an Escherichia coli expression system. The purified recombinant beta subunit, like the native F(1)-ATPase, can be labeled by the photoaffinity nucleotide analogue 8-azido ATP. Binding of the 8-azido ATP probe is best competed by the natural substrate ATP, and is significantly reduced by pretreatment with the inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazide as has been shown with beta subunits of other organisms. The differential binding of this photoaffinity analogue was used to resolve the identities of the alpha and beta subunits of the ATP synthase from T. brucei. These results are in contrast to results previously obtained for a related trypanosomatid Crithidia fasciculata.
Collapse
Affiliation(s)
- S V Brown B
- Department of Microbiology, 253 Biomedical Research Building, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
3
|
Pedersen PL, Hullihen J, Bianchet M, Amzel LM, Lebowitz MS. Rat liver ATP synthase. Relationship of the unique substructure of the F1 moiety to its nucleotide binding properties, enzymatic states, and crystalline form. J Biol Chem 1995; 270:1775-84. [PMID: 7829514 DOI: 10.1074/jbc.270.4.1775] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The F1 moiety of rat liver ATP synthase has a molecular mass of 370,000, exhibits the unique substructure alpha 3 beta 3 gamma delta epsilon, and fully restores ATP synthesis to F1-depleted membranes. Here we provide new information about rat liver F1 as it relates to the relationship of its unique substructure to its nucleotide binding properties, enzymatic states, and crystalline form. Seven types of experiments were performed in a comprehensive study. First, the capacity of F1 to bind [3H]ADP, the substrate for ATP synthesis and [32P]AMP-PNP (5'-adenylyl-beta,gamma-imidodiphosphate), a nonhydrolyzable ATP analog, was quantified. Second, double-label experiments were performed to establish whether ADP and AMP-PNP bind to the same or different sites. Third, total nucleotide binding was assessed by the luciferin-luciferase assay. Fourth, F1 was subfractionated into an alpha gamma and a beta delta epsilon fraction, both of which were subjected to nucleotide binding assays. Fifth, the nucleotide binding capacity of F1 was quantified after undergoing ATP hydrolysis. Sixth, the intensity of the fluorescence probe pyrene maleimide bound at alpha subunits was monitored before and after F1 experienced ATP hydrolysis. Finally, the catalytic activity and nucleotide content of F1 obtained from crystals being used in x-ray crystallographic studies was determined. The picture of rat liver F1 that emerges is one of an enzyme molecule that 1) loads nucleotide readily at five sites; 2) requires for catalysis both the alpha gamma and the beta delta epsilon fractions; 3) directs the reversible binding of ATP and ADP to different regions of the enzyme's substructure; 4) induces inhibition of ATP hydrolysis only after ADP fills at least five sites; and 5) exists in several distinct forms, one an active, symmetrical form, obtained in the presence of ATP and high P(i) and on which an x-ray map at 3.6 A has been reported (Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991) J. Biol. Chem. 266, 21197-21201). These results are discussed within the context of a multistate model for rat liver F1 and also discussed relative to those reported for bovine heart F1, which has been crystallized with inhibitors in an asymmetrical form and has a propensity for binding nucleotides more tightly.
Collapse
Affiliation(s)
- P L Pedersen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | | | | | | |
Collapse
|
4
|
Issartel JP, Dupuis A, Garin J, Lunardi J, Michel L, Vignais PV. The ATP synthase (F0-F1) complex in oxidative phosphorylation. EXPERIENTIA 1992; 48:351-62. [PMID: 1533842 DOI: 10.1007/bf01923429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and P(i). The bacterial and mitochondrial H(+)-ATP synthases both consist of a membranous sector, F0, which forms a H(+)-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H(+)-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.
Collapse
Affiliation(s)
- J P Issartel
- Laboratoire de Biochimie (URA 1130 du CNRS), Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
5
|
Gagliardi D, Penin F, Gautheron DC. Large-scale purification and characterization of the five subunits of F1-ATPase from pig heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1059:323-31. [PMID: 1832960 DOI: 10.1016/s0005-2728(05)80217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A large-scale purification procedure was developed to isolate the five subunits of F1-ATPase from pig heart mitochondria. The previously described procedure (Williams, N. and Pedersen, P.L. (1986) Methods Enzymol. 126, 484-489) to dissociate the rat liver F1-ATPase by cold treatment followed by warming at 37 degrees C has been adapted for the pig heart enzyme. Removal of endogenous nucleotides from that enzyme before dissociation led to the efficient separation of the alpha and gamma subunits from beta, delta and epsilon subunits. The beta subunit was purified in the hundred-milligram range by anion-exchange chromatography in the absence of any denaturing agent. This subunit was free from any bound nucleotide and almost no ATPase and adenylate kinase-like activities were detected. The delta and epsilon subunits were purified by reversed-phase chromatography (RP-HPLC) in the milligram range. As recently reported (Penin, F., Deléage, G., Gagliardi, D., Roux, B. and Gautheron, D.C. (1990) Biochemistry 29, 9358-9364), these purified subunits kept biophysical features of folded proteins and their ability to reconstitute the tight delta epsilon complex. The alpha and gamma subunits remained poorly soluble and required dissociation by 8 M guanidinium chloride prior to their purification by RP-HPLC. In addition, characterizations of the five subunits by IEF and SDS-polyacrylamide gel electrophoresis are reported, as well as ultraviolet spectra and solubility properties of the beta, delta and epsilon subunits.
Collapse
Affiliation(s)
- D Gagliardi
- Laboratoire de Biologie et Technologie des Membranes et des Systèmes Intégrés du CNRS, Université Claude Bernard de Lyon I, Villeurbanne France
| | | | | |
Collapse
|
6
|
Falson P, Maffey L, Conrath K, Boutry M. Alpha subunit of mitochondrial F1-ATPase from the fission yeast. Deduced sequence of the wild type and identification of a mutation that alters apparent negative cooperativity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52433-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Bragg PD, Hou C. Role of minor subunits in the structural asymmetry of the Escherichia coli F1-ATPase. Biochem Biophys Res Commun 1990; 166:431-5. [PMID: 2137338 DOI: 10.1016/0006-291x(90)91963-s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
8
|
Wu JC, Lin J, Chuan H, Wang JH. Determination of the roles of active sites in F1-ATPase by controlled affinity labeling. Biochemistry 1989; 28:8905-11. [PMID: 2532546 DOI: 10.1021/bi00448a033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].
Collapse
Affiliation(s)
- J C Wu
- Bioenergetics Laboratory, State University of New York, Buffalo 14214-3094
| | | | | | | |
Collapse
|
9
|
Bulygin VV, Vinogradov AD. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites. FEBS Lett 1988; 236:497-500. [PMID: 2900778 DOI: 10.1016/0014-5793(88)80085-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Preincubation of submitochondrial particles with ADP in the presence of Mg2+ results in the complete inhibition of ATPase which is slowly reactivated in the assay mixture containing ATP and the ATP regenerating system. Significantly, the rate of activation increases as the concentration of ADP in the preincubation mixture rises from 1 microM to 20 microM and reaches a constant value at higher ADP concentrations. The first-order rate constant for the activation process in the assay mixture is ATP-dependent at any level of inhibitory ADP. The data obtained strongly suggest that two ADP-specific inhibitory sites and one ATP-specific hydrolytic site are present in F1-F0 ATPase. Taking into account the (3 alpha.3 beta).gamma.delta.epsilon structure of F1, it is concluded that the synchronous discharge of ADP from two inhibitory sites during the activation occurs after ATP binds to the ATPase catalytic site.
Collapse
Affiliation(s)
- V V Bulygin
- Department of Biochemistry, School of Biology, Moscow State University, USSR
| | | |
Collapse
|
10
|
Ysern X, Amzel LM, Pedersen PL. ATP synthases--structure of the F1-moiety and its relationship to function and mechanism. J Bioenerg Biomembr 1988; 20:423-50. [PMID: 2906060 DOI: 10.1007/bf00762202] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A great deal of progress has been made in understanding both the structure and the mechanism of F1-ATPase. The primary structure is now fully known for at least five species. Sequence comparison between chloroplast, photobacteria, aerobic bacteria, and mitochondrial representatives allow us to infer more general functional relationships and evolutionary trends. Although the F1 moiety is the most studied segment of the H+-ATPase complex, there is not a full understanding of the mechanism and regulation of its hydrolytic activity. The beta subunit is now known to contain one and probably two nucleotide binding domains, one of which is believed to be a catalytic site. Recently, two similar models have been proposed to attempt to describe the "active" part of the beta subunits. These models are mainly an attempt to use the structure of adenylate kinase to represent a more general working model for nucleotide binding phosphotransferases. Labelling experiments seem to indicate that several critical residues outside the region described by the "adenylate kinase" part of this model are also actively involved in the ATPase activity. New models will have to be introduced to include these regions. Finally, it seems that a consensus has been reached with regard to a broad acceptance of the asymmetric structure of the F1-moiety. In addition, recent experimental evidence points toward the presence of nonequivalent subunits to describe the functional activity of the F1-ATPase. A summary diagram of the conformational and binding states of the enzyme including the nonequivalent beta subunit is presented. Additional research is essential to establish the role of the minor subunits--and of the asymmetry they introduce in F1--on the physiological function of the enzyme.
Collapse
Affiliation(s)
- X Ysern
- Department of Biophysics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
11
|
Wang JH. Chemical modification of active sites in relation to the catalytic mechanism of F1. J Bioenerg Biomembr 1988; 20:407-22. [PMID: 2906059 DOI: 10.1007/bf00762201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies of chemically modified F1-ATPases have provided new information that requires a revision of our thinking on their catalytic mechanism. One of the beta subunits in F1-ATPase is distinguishable from the other two both structurally and functionally. The catalytic site and regulatory site of the same beta subunit are probably sufficiently close to each other, and the interaction between the various catalytic and regulatory sites are probably sufficiently strong to raise the uni-site rate of ATP hydrolysis by several orders of magnitude to that of promoted (multi-site) ATP hydrolysis. Although all three beta subunits in F1 possess weak uni-site ATPase activity, only one of them (beta') catalyzes promoted ATP hydrolysis. But all three beta subunits catalyze ATP synthesis driven by the proton flux. Internal rotation of the alpha 3beta 3 or beta 3 moiety relative to the remainder of the F0F1 complex did not occur during oxidative phosphorylation by reconstituted submitochondrial particles.
Collapse
Affiliation(s)
- J H Wang
- Bioenergetics Laboratory, State University of New York, Buffalo 14214-3094
| |
Collapse
|
12
|
Boekema EJ, van Heel M, Gräber P. Structure of the ATP synthase from chloroplasts studied by electron microscopy and image processing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90044-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
Tomita M, Knox BE, Tsong TY. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 894:16-28. [PMID: 2889470 DOI: 10.1016/0005-2728(87)90208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine heart submitochondrial particles in suspension were heated at a designated temperature for 3 min, then cooled for biochemical assays at 30 degrees C. By enzyme activity measurements and polarographic assay of oxygen consumption, it is shown that the thermal denaturation of the respiratory chain takes place in at least four stages and each stage is irreversible. The first stage occurs at 51.0 +/- 1.0 degrees C, with the inactivation of NADH-linked respiration, ATP-driven reverse electron transport, F0F1 catalyzed ATP/Pi exchange, NADH and succinate-driven ATP synthesis. The second stage occurs at 56.0 +/- 1.0 degrees C, with the inactivation of succinate-linked proton pumping and respiration. The third stage occurs at 59.0 +/- 1.0 degrees C, with the inactivation of electron transfer from cytochrome c to cytochrome oxidase and ATP-dependent proton pumping. The ATP hydrolysis activity of F0F1 persists to 61.0 +/- 1.0 degrees C. An additional transition, detectable by differential scanning calorimetry, occurring around 70.0 +/- 2.0 degrees C, is probably associated with thermal denaturation of cytochrome c and other stable membrane proteins. In the presence of either mitochondrial matrix fluid or 2 mM mercaptoethanol, all five stages give rise to endothermic effects, with the absorption of approx. 25 J/g protein. Under aerobic conditions, however, the first four transitions become strongly exothermic, and release a total of approx. 105 J/g protein. Solubilized and reconstituted F0F1 vesicles also exhibit different inactivation temperatures for the ATP/Pi exchange, proton pumping and ATP hydrolysis activities. The first two activities are abolished at 49.0 +/- 1.0 degrees C, but the latter at 58.0 +/- 2.0 degrees C. Differential scanning calorimetry also detects biphasic transitions of F0F1, with similar temperatures of denaturation (49.0 and 54.0 degrees C). From these and other results presented in this communication, the following is concluded. (1) A selective inactivation, by the temperature treatment, of various functions of the electron-transport chain and of the F0F1 complex can be done. (2) The ATP synthesis activity of the F0F1 complex involves either a catalytic or a regulation subunit(s) which is not essential for ATP hydrolysis and the proton translocation. This subunit is 10 degrees C less stable than the hydrolytic site. Micromolar ADP stabilizes it from thermal denaturation by 4-5 degrees C, although ADP up to millimolar concentration does not protect the hydrolytic site and the proton-translocation site.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Tomita
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | |
Collapse
|
15
|
Wang JH, Cesana J, Wu JC. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Biochemistry 1987; 26:5527-33. [PMID: 2890376 DOI: 10.1021/bi00391a047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bovine heart F1-adenosinetriphosphatase (F1) was labeled specifically and precisely with 7-chloro-4-nitro-2,1,3-[14C]benzoxadiazole ([14C]NBD-Cl). The stereospecifically labeled F1 (O-beta'-[14C]-NBD-F1) was partially reactivated by LiCl treatment, which could cause rearrangement of the beta subunits to form O-beta', beta''-[14C]NBD-F1. Both labeled enzymes were used to combine with F1-deficient submitochondrial particles (ASU) to form the reconstituted particles O-beta'-NBD-F1-ASU and O-beta', beta''-NBD-F1-ASU, respectively. A comparison of the observed steady-state rates of catalytic ATP hydrolysis and oxidative phosphorylation by these specifically labeled submitochondrial particles (SMP) with those of the unlabeled control samples suggests that oxidative phosphorylation involves more active sites of F1 than catalytic ATP hydrolysis. A comparison of the observed ATPase activity of uncoupled labeled SMP and the activity for ATP-driven reverse electron transport in coupled labeled SMP with the corresponding values of the unlabeled control samples shows that the observed fractional inhibition ATP hydrolysis is the same for both the coupled SMP and uncoupled SMP and is determined only by the state of stereospecific labeling of F1. The effect of preincubation under simulated oxidative phosphorylation conditions on the ATPase activity of the unperturbed, specifically NBD-labeled submitochondrial particles was also examined. The data show that respiration-generated proton flux does not cause the beta subunits in bovine heart proton-ATPase to continue switching places with each other during oxidative phosphorylation. Samples of NBD-F1 with specific labels on its nonhydrolytic beta'' subunits but none on its hydrolytic beta' subunit were prepared by a three-cycle process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J H Wang
- Bioenergetics Laboratory, State University of New York, Buffalo 14214-3094
| | | | | |
Collapse
|
16
|
Pedersen PL, Carafoli E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 1987. [DOI: 10.1016/0968-0004(87)90071-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Boekema EJ, Berden JA, van Heel MG. Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 851:353-60. [PMID: 2875733 DOI: 10.1016/0005-2728(86)90071-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of soluble F1-ATPase (EC 3.6.1.3) has been investigated by computer analysis of individual molecular images extracted from electron micrographs of negatively stained particles. A total of 1241 images was interactively selected from several digitized micrographs and these images were subsequently aligned relative to different reference images. They were then submitted to a multivariate statistical classification procedure. We have focussed our attention on the main 'hexagonal' view which represents some 40% of our population of images. In this view, six masses are located on the outer region of the projection which are associated with the alpha and the beta subunits of the protein. A seventh mass is located close to the centre of the hexagon, but slightly off its exact midpoint. It has the shape of the letter V and its two legs point to two of the outer protein masses, or one alpha-beta subunit pair. The corner of the V has a density as high as those of the large subunits. Possible subunit arrangements and their consequences for the mechanism of ATP synthesis are discussed.
Collapse
|
18
|
Stan-Lotter H, Bragg PD. N,N'-dicyclohexylcarbodiimide and 4-chloro-7-nitrobenzofurazan bind to different beta subunits of the F1 ATPase of Escherichia coli. Arch Biochem Biophys 1986; 248:116-20. [PMID: 2873791 DOI: 10.1016/0003-9861(86)90407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fluorescent thiol reagent 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid (IAANS) labels the gamma, delta, and one of the three beta subunits of the F1 ATPase from Escherichia coli (ECF1). This is the same beta subunit which incorporates 4-chloro-7-nitrobenzofurazan (Nbf) [H. Stan-Lotter and P. D. Bragg (1986) Eur. J. Biochem. 154, 321-327]. After inactivation of ECF1 with N,N'-dicyclohexylcarbodiimide (DCCD), IAANS labels in addition to the beta, gamma, and delta subunits also the alpha subunit. This suggests a conformational change of ECF1 upon binding of DCCD. The beta subunit which incorporates DCCD does does not bind IAANS. Likewise, IAANS-modified ECF1 does not incorporate DCCD into the same beta subunit. It is concluded that DCCD and Nbf bind to different beta subunits. Since neither of these reagents binds to that beta subunit which can be crosslinked to to the epsilon subunit by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, these data show that there is a difference in the chemical reactivity of each of the three beta subunits of ECF1, despite their identical primary structures. This suggests that there is an asymmetry in the F1 molecule.
Collapse
|
19
|
Falson P, Di Pietro A, Gautheron DC. Chemical modification of thiol groups of mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe. Involvement of alpha- and gamma-subunits in the enzyme activity. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38368-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Williams N, Pedersen PL. Rapid purification of F1-ATPase from rat liver mitochondria using a modified chloroform extraction procedure coupled to high-performance liquid chromatography. Methods Enzymol 1986; 126:477-84. [PMID: 2908461 DOI: 10.1016/s0076-6879(86)26048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Gromet-Elhanan Z, Khananshvili D. [53] Selective extraction and reconstitution of F1 subunits from Rhodospirillum rubrum chromatophores. Methods Enzymol 1986. [DOI: 10.1016/s0076-6879(86)26055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
22
|
Bragg PD, Hou C. Chemical crosslinking of alpha subunits in the F1 adenosine triphosphatase of Escherichia coli. Arch Biochem Biophys 1986; 244:361-72. [PMID: 2868692 DOI: 10.1016/0003-9861(86)90125-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The arrangement of the subunits in the F1 adenosine triphosphatase of Escherichia coli has been investigated using bifunctional chemical crosslinking agents to covalently link adjacent subunits in the enzyme molecule. The synthesis of the new cleavable crosslinking agent 2,2'-dithiobis(succinimidyl propionate) is described. The crosslinked products resulting from the reaction of the enzyme with 2,2'- and 3,3'-dithiobis(succinimidyl propionate), 3,3'-dithiobis(sulfosuccinimidyl propionate), disuccinimidyl tartrate, dimethyl adipimidate, 1-ethyl-3[3-(dimethylamino)propyl]carbodiimide, and 1,2:3,4-diepoxybutane were analyzed by "three-dimensional" polyacrylamide gel electrophoresis in which they were resolved first in a two-dimensional system. Following cleavage of the crosslinking bridge in the separated products, the constituent subunits were identified by a further one-dimensional gel electrophoresis step. This procedure greatly improved the precision with which crosslinked subunits could be identified. It largely overcame problems due to abnormal migration of crosslinked species on gel electrophoresis and to the formation of multiple species of the same crosslinked subunit dimers. The following crosslinked subunit dimers were identified: alpha alpha, alpha beta, beta gamma, alpha delta, beta epsilon, and gamma epsilon. The trimer alpha alpha delta was recognized. The formation of alpha alpha over alpha beta dimers was favored when more polar crosslinking agents were used. The constraints placed by the finding of adjacent alpha subunits upon current models for the arrangement of the subunits in the F1 ATPase are discussed.
Collapse
|
23
|
Williams N, Pedersen PL. Purification of alpha and beta subunits and subunit pairs from rat liver mitochondrial F1-ATPase. Methods Enzymol 1986; 126:484-9. [PMID: 2908462 DOI: 10.1016/s0076-6879(86)26049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Abstract
The reversible protonmotive F0F1 ATPases perform the uniquely important function of balancing the forces, and interconverting the potential energies, of phosphoryl transfer and proton translocation. The molecular mechanics of the processes of ligand conduction catalysed by the F0F1 ATPases is therefore especially interesting. This paper summarises the main structural and functional knowledge of the F0F1 ATPases in the light of current mechanistic hypotheses, and suggests a new type of rotating subunit hypothesis, which is related to that recently developed for bacterial flagellar motors.
Collapse
|
25
|
|
26
|
Hundal T, Norling B, Ernster L. The oligomycin sensitivity conferring protein (OSCP) of beef heart mitochondria: studies of its binding to F1 and its function. J Bioenerg Biomembr 1984; 16:535-50. [PMID: 6242246 DOI: 10.1007/bf00743244] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The binding of "oligomycin sensitivity conferring protein" (OSCP) to soluble beef-heart mitochondrial ATPase (F1) has been investigated. OSCP forms a stable complex with F1, and the F1 X OSCP complex is capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted submitochondrial particles. The F1 X OSCP complex retains 50% of its ATPase activity upon cold exposure while free F1 is inactivated by 90% or more. Both free F1 and the F1 X OSCP complex release upon cold exposure a part--probably 1 out of 3--of their beta subunits; whether alpha subunits are also lost is uncertain. The cold-treated F1 X OSCP complex is still capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted particles. OSCP also protects F1 against modification of its alpha subunit by mild trypsin treatment. This finding together with the earlier demonstration that trypsin-modified F1 cannot bind OSCP indicates that OSCP binds to the alpha subunit of F1 and that F1 contains three binding sites for OSCP. The results are discussed in relation to the possible role of OSCP in the interaction of F1 with the membrane sector of the mitochondrial ATPase system.
Collapse
|
27
|
Williams N, Amzel LM, Pedersen PL. Proton ATPase of rat liver mitochondria: a rapid procedure for purification of a stable, reconstitutively active F1 preparation using a modified chloroform method. Anal Biochem 1984; 140:581-8. [PMID: 6237596 DOI: 10.1016/0003-2697(84)90210-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A method is described for the purification of rat liver F1-ATPase by a modification of the chloroform extraction procedure originally described by Beechey et al. (Biochem. J. (1975) 148, 533). Purified liver membrane vesicles are extracted with chloroform in the presence of ATP and EDTA. The procedure yields pure F1 in only 2-3 h without the necessity of ion-exchange chromatography. The enzyme exhibits the alpha, beta, gamma, delta, and epsilon bands characteristic of F1-ATPase. It has a high ATPase specific activity, and is reconstitutively active, catalyzing high rates of ATP synthesis. Significantly, it can be readily crystallized. If desired, the enzyme can be passed over a gel filtration column to place it in a stabilizing phosphate-EDTA buffer, lyophilized and stored indefinitely at -20 degrees C.
Collapse
|