Pierik AJ, Hagen WR. S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1991;
195:505-16. [PMID:
1847685 DOI:
10.1111/j.1432-1033.1991.tb15731.x]
[Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sulfite reductases contain siroheme and iron-sulfur cluster prosthetic groups. The two groups are believed to be structurally linked via a single, common ligand. This chemical model is based on a magnetic model for the oxidized enzyme in which all participating iron ions are exchange coupled. This description leads to two serious discrepancies. Although the iron-sulfur cluster is assumed to be a diamagnetic cubane, [4Fe-4S]2+, all iron appears to be paramagnetic in Mössbauer spectroscopy. On the other hand, EPR spectroscopy has failed to detect anything but a single high-spin heme. We have re-addressed this problem by searching for new EPR spectroscopic clues in concentrated samples of dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). We have found several novel signals with effective g values of 17, 15.1, 11.7, 9.4, 9.0, 4. The signals are interpreted in terms of an S = 9/2 system with spin-Hamiltonian parameters g = 2.00, D = -0.56 cm-1, magnitude of E/D = 0.13 for the major component. In a reductive titration with sodium borohydride the spectrum disappears with Em = -205 mV at pH 7.5. Contrarily, the major high-spin siroheme component has S = 5/2, g = 1.99, D = +9 cm-1, magnitude of E/D = 0.042, and Em = -295 mV. The sum of all siroheme signals integrates to 0.2 spin/half molecule, indicating considerable demetallation of this prosthetic group. Rigorous quantification procedures for S = 9/2 are not available, however, estimation by an approximate method indicates 0.6 S = 9/2 spin/half molecule. The S = 9/2 system is ascribed to an iron-sulfur cluster. It follows that this cluster is probably not a cubane, is not necessarily exchange-coupled to the siroheme, and, therefore, is not necessarily structurally close to the siroheme. It is suggested that this iron-sulfur prosthetic group has a novel structure suitable for functioning in multiple electron transfer.
Collapse