1
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Tran QM, Fong C, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase. PLoS One 2012; 7:e32641. [PMID: 22393428 PMCID: PMC3290573 DOI: 10.1371/journal.pone.0032641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to −80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR) spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.
Collapse
Affiliation(s)
- Quang M. Tran
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carmen Fong
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard A. Rothery
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joel H. Weiner
- Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
3
|
Weiss R, Gold A, Terner J. Cytochromes c‘: Biological Models for the S = 3/2,5/2 Spin-State Admixture? Chem Rev 2006; 106:2550-79. [PMID: 16771459 DOI: 10.1021/cr040416l] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raymond Weiss
- Laboratoire de Chimie Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur de Strasbourg, 8 Allée Gaspard Monge, B.P.70028, F-67083 Strasbourg Cedex, France
| | | | | |
Collapse
|
4
|
Díaz-Moreno I, Díaz-Quintana A, Subías G, Mairs T, De la Rosa MA, Díaz-Moreno S. Detecting transient protein-protein interactions by X-ray absorption spectroscopy: The cytochromec6-photosystem I complex. FEBS Lett 2006; 580:3023-8. [PMID: 16678819 DOI: 10.1016/j.febslet.2006.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 11/18/2022]
Abstract
Reliable analysis of the functionality of metalloproteins demands a highly accurate description of both the redox state and geometry of the metal centre, not only in the isolated metalloprotein but also in the transient complex with its target. Here, we demonstrate that the transient interaction between soluble cytochrome c(6) and membrane-embedded photosystem I involves subtle changes in the heme iron, as inferred by X-ray absorption spectroscopy (XAS). A slight shift to lower energies of the absorption edge of Fe2+ in cytochrome c6 is observed upon interaction with photosystem I. This work constitutes a novel application of XAS to the analysis of weak complexes in solution.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Usov OM, Choi PST, Shapleigh JP, Scholes CP. ENDOR Investigation of the Liganding Environment of Mixed-Spin Ferric Cytochrome c‘. J Am Chem Soc 2005; 127:9485-94. [PMID: 15984875 DOI: 10.1021/ja043994s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic structure of the 5-coordinate quantum-mechanically mixed-spin (sextet-quartet) heme center in cytochrome c' was investigated by electron nuclear double resonance (ENDOR), a technique not previously applied to this mixed-spin system. Cytochrome c' was obtained from overexpressing variants of Rhodobacter sphaeroides 2.4.3. ENDOR for this study was done at the g(//) = 2.00 extremum where single-crystal-like, well-resolved spectra prevail. The heme meso protons of cytochrome c' showed a contact interaction that implied spin delocalization arising from the heme (d(z)(2)) orbital enhanced by iron out-of-planarity. An exchangeable proton ENDOR feature appeared from the proximal His123 Ndelta hydrogen. This Ndelta hydrogen, which crystallographically has no hydrogen-bonding partner and thus belongs to a neutral imidazole, showed a larger hyperfine coupling than the corresponding hydrogen-bonded Ndelta proton from metmyoglobin. The unique residue Phe14 occludes binding of a sixth ligand in cytochrome c', and ENDOR from a proton of the functionally important Phe14 ring, approximately 3.3 A away from the heme iron, was detected. ENDOR of the nitrogen ligand hyperfine structure is a direct probe into the sigma-antibonding (d(z)(2)) and (d(x)(2)-d(y)(2)) orbitals whose energies alter the relative stability and admixture of sextet and quartet states and whose electronic details were thus elucidated. ENDOR frequencies showed for cytochrome c' larger hyperfine couplings to the histidine nitrogen and smaller hyperfine couplings to the heme nitrogens than for high-spin ferric hemes. Both of these findings followed from the mixed-spin ground state, which has less (d(x)(2)-d(y)(2)) character than have fully high-spin ferric heme systems.
Collapse
Affiliation(s)
- Oleg M Usov
- Department of Chemistry, Center for Biochemistry and Biophysics, University at Albany, SUNY, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
6
|
Sakai T, Ohgo Y, Hoshino A, Ikeue T, Saitoh T, Takahashi M, Nakamura M. Electronic Structures of Five-Coordinate Iron(III) Porphyrin Complexes with Highly Ruffled Porphyrin Ring. Inorg Chem 2004; 43:5034-43. [PMID: 15285680 DOI: 10.1021/ic049825q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and Mössbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.
Collapse
Affiliation(s)
- Takanori Sakai
- Department of Chemistry, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Ikezaki A, Nakamura M. Models for cytochromes c': spin states of mono(imidazole)-ligated (meso-tetramesitylporphyrinato)iron(III) complexes as studied by UV-Vis, 13C NMR, 1H NMR, and EPR spectroscopy. Inorg Chem 2002; 41:6225-36. [PMID: 12444764 DOI: 10.1021/ic020378t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A number of mono(imidazole)-ligated complexes of perchloro(meso-tetramesitylporphyrinato)iron(III), [Fe(TMP)L]ClO(4), have been prepared, and their spin states have been examined by (1)H NMR, (13)C NMR, and EPR spectroscopy as well as solution magnetic moments. All the complexes examined have shown a quantum mechanical spin admixed state of high and intermediate-spin (S = 5/2 and 3/2) states though the contribution of the S = 3/2 state varies depending on the nature of axial ligands. While the complex with extremely bulky 2-tert-butylimidazole (2-(t)()BuIm) has exhibited an essentially pure S = 5/2 state, the complex with electron-deficient 4,5-dichloroimidazole (4,5-Cl(2)Im) adopts an S = 3/2 state with 30% of the S = 5/2 spin admixture. On the basis of the (1)H and (13)C NMR results, we have concluded that the S = 3/2 contribution at ambient temperature increases according to the following order: 2-(t)BuIm < 2-(1-EtPr)Im < 2-MeIm <or= 2-EtIm <or= 2-(i)PrIm < 4,5-Cl(2)Im. The effective magnetic moments determined by the Evans method in CH(2)Cl(2) solution are 5.9 and 5.0 mu(B) at 25 degrees C for [Fe(TMP)(2-(t)BuIm)]ClO(4) and [Fe(TMP)(2-MeIm)]ClO(4), respectively, which further verify the order given above. Comparison of the NMR and EPR data has revealed that the S = 3/2 contribution changes sensitively by the temperature; the S = 3/2 contribution decreases as the temperature is lowered for all the mono(imidazole) complexes examined in this study. The solvent polarity also affects the spin state; polar solvents such as methanol and acetonitrile increase the S = 3/2 contribution while nonpolar solvents such as benzene decrease it. These results are explained in terms of the structurally flexible nature of the mono(imidazole) complexes; structural parameters such as the Fe(III)-N(axial) bond length, displacement of the iron from the N4 core, tilting of the Fe(III)-N(axial) bond to the heme normal, orientation of the coordinated imidazole ligand, etc., could be altered by the nature of the axial ligands as well as by the solvent polarity and temperature. Some mysteries on the spin states of cytochromes c' isolated from various bacterial sources are possibly explained in terms of the flexible nature of the mono(imidazole)-ligated structure.
Collapse
Affiliation(s)
- Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | | |
Collapse
|
8
|
Tsan P, Caffrey M, Daku ML, Cusanovich M, Marion D, Gans P. Magnetic susceptibility tensor and heme contact shifts determinations in the Rhodobacter capsulatus ferricytochrome c': NMR and magnetic susceptibility studies. J Am Chem Soc 2001; 123:2231-42. [PMID: 11456869 DOI: 10.1021/ja0011663] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1H and 15N resonances of the carbon monoxide complex of ferrocytochrome c' of Rhodobacter capsulatus, a ferrous diamagnetic heme protein, have been extensively assigned by TOCSY-HSQC, NOESY-HSQC, and HSQC-NOESY-HSQC 3D heteronuclear experiments performed on a 7 mM sample labeled with 15N. Based on short-range and medium-range NOEs and H(N) exchange rates, the secondary structure consists of four helices: helix 1 (3-29), helix 2 (33-48), helix 3 (78-101), and helix 4 (103-125). The 15N, 1HN, and 1H(alpha) chemical shifts of the CO complex form are compared to those of the previously assigned oxidized (or ferric) state. From the chemical shift differences between these redox states, the orientation and the anisotropy of the paramagnetic susceptibility tensor have been determined using the crystallographic coordinates of the ferric state. The chi-tensor is axial, and the orientation of the z-axis is approximately perpendicular to the heme plane. The paramagnetic chemical shifts of the protons of the heme ligand have been determined and decomposed into the Fermi shift and dipolar shift contributions. Magnetic susceptibility studies in frozen solutions have been performed. Fits of the susceptibility data using the model of Maltempo (Maltempo, M. M. J. Chem. Phys. 1974, 61, 2540-2547) are consistent with a rather low contribution of the S = 3/2 spin state over the range of temperatures and confirm the value of the axial anisotropy. Values in the range 10.4-12.5 cm(-1) have been inferred for the axial zero-field splitting parameter (D). Analysis of the contact shift and the susceptibility data suggests that cytochrome c' of Rb. capsulatus exhibits a predominant high-spin character of the iron in the oxidized state at room temperature.
Collapse
Affiliation(s)
- P Tsan
- Contribution from the Institut de Biologie Structurale "Jean-Pierre Ebel" (CEA-CNRS), 41 Avenue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Tsan P, Caffrey M, Daku ML, Cusanovich M, Marion D, Gans P. Unusual Contact Shifts and Magnetic Tensor Orientation in Rhodobacter capsulatus Ferrocytochrome c‘: NMR, Magnetic Susceptibility, and EPR Studies. J Am Chem Soc 1999. [DOI: 10.1021/ja9820745] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pascale Tsan
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Michael Caffrey
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Max Lawson Daku
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Michael Cusanovich
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Dominique Marion
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Pierre Gans
- Contribution from the Institut de Biologie Structurale “Jean-Pierre Ebel” (CEA-CNRS), 41 Avenue des Martyrs, 38027 Grenoble Cedex, France, DRFMC-SCIB-SCPM, 85X, CEN-Grenoble, 38041 Grenoble Cedex, France, and Department of Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
10
|
Bertini I, Gori G, Luchinat C, Vila AJ. One- and two-dimensional NMR characterization of oxidized and reduced cytochrome c' from Rhodocyclus gelatinosus. Biochemistry 1993; 32:776-83. [PMID: 8380709 DOI: 10.1021/bi00054a006] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1D and 2D NMR spectra of both the reduced and oxidized forms of cytochrome c' from Rhodocyclus gelatinosus have been recorded. The analysis of the pH dependence of the 1H NMR spectrum of the ferric form has been performed, and two main ionizing groups have been identified. By comparison of the pH dependence of the available spectra of cytochromes c', an ambiguity remaining from previous studies on related cytochromes c' has been solved. By means of 2D spectra, an assignment of all the paramagnetically shifted signals is proposed both for the ferrous and for the ferric forms.
Collapse
Affiliation(s)
- I Bertini
- Department of Chemistry, University of Florence, Italy
| | | | | | | |
Collapse
|
11
|
La Mar GN, Jackson JT, Dugad LB, Cusanovich MA, Bartsch RG. Proton NMR study of the comparative electronic/magnetic properties and dynamics of the acid in equilibrium with alkaline transition in a series of ferricytochromes c'. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46204-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|