1
|
Johnson WA, Redding KE. Reconstitution of the heliobacterial photochemical reaction center and cytochrome c 553 into a proteoliposome system. PHOTOSYNTHESIS RESEARCH 2020; 143:241-250. [PMID: 31838634 DOI: 10.1007/s11120-019-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The heliobacterial reaction center (HbRC) is the simplest known photochemical reaction center, in terms of its polypeptide composition. In the heliobacterial cells, its electron donor is a cytochrome (cyt) c553 attached to the membrane via a covalent linkage with a diacylglycerol. We have reconstituted purified HbRC into liposomes mimicking the phospholipid composition of heliobacterial membranes. We also incorporated a lipid with a headgroup containing Ni(II):nitrilotriacetate (NTA) to provide a binding site for the soluble version of the heliobacterial cyt c553 in which the N-terminal membrane attachment site is replaced by a hexahistidine tag. The HbRC was inserted into the liposomes with the donor side preferentially exposed to the exterior; this bias increased to nearly 100% with higher concentrations (≥ 10 mol%) of the Ni(II)-NTA lipid in the membrane, and is most likely due to the net negative charge of the surface of the membrane. The HbRC in proteoliposomes without the Ni(II)-NTA lipid exhibited normal charge separation and subsequent charge recombination of the P800+FX- state in 15 ms; however, the oxidized primary donor (P800+) was not significantly reduced by added H6-cyt c553. In contrast, with proteoliposomes containing the Ni(II)-NTA lipid, addition of H6-cyt c553 resulted in a new kinetic component resulting from fast reduction (2-5 ms) of P800+ by H6-cyt c553. The contribution of this kinetic component varied with the concentration of added H6-cyt c553 and could represent 80% or more of the total P800+ decay. Thus, the HbRC and its interaction with its native electron donor have been reconstituted into an artificial membrane system.
Collapse
Affiliation(s)
- William A Johnson
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA.
| |
Collapse
|
2
|
Abstract
The utilization of light energy to power organic-chemical transformations is a fundamental strategy of the terrestrial energy cycle. Inspired by the elegance of natural photosynthesis, much interdisciplinary research effort has been devoted to the construction of simplified cell mimics based on artificial vesicles to provide a novel tool for biocatalytic cascade reactions with energy-demanding steps. By inserting natural or even artificial photosynthetic systems into liposomes or polymersomes, the light-driven proton translocation and the resulting formation of electrochemical gradients have become possible. This is the basis for the conversion of photonic into chemical energy in form of energy-rich molecules such as adenosine triphosphate (ATP), which can be further utilized by energy-dependent biocatalytic reactions, e.g. carbon fixation. This review compares liposomes and polymersomes as artificial compartments and summarizes the types of light-driven proton pumps that have been employed in artificial photosynthesis so far. We give an overview over the methods affecting the orientation of the photosystems within the membranes to ensure a unidirectional transport of molecules and highlight recent examples of light-driven biocatalysis in artificial vesicles. Finally, we summarize the current achievements and discuss the next steps needed for the transition of this technology from the proof-of-concept status to preparative applications.
Collapse
|
3
|
Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. Proc Natl Acad Sci U S A 2017; 114:3837-3842. [PMID: 28320948 DOI: 10.1073/pnas.1617593114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min-1 Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology.
Collapse
|
4
|
Husu I, Giustini M, Colafemmina G, Palazzo G, Mallardi A. Effects of the measuring light on the photochemistry of the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2011; 108:133-142. [PMID: 21785991 DOI: 10.1007/s11120-011-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.
Collapse
Affiliation(s)
- Ivan Husu
- Dipartimento di Chimica, Università La Sapienza, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
5
|
The local electric field within phospholipid membranes modulates the charge transfer reactions in reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1039-49. [DOI: 10.1016/j.bbabio.2009.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
|
6
|
Gibasiewicz K, Pajzderska M, Ziółek M, Karolczak J, Dobek A. Internal Electrostatic Control of the Primary Charge Separation and Recombination in Reaction Centers from Rhodobacter sphaeroides Revealed by Femtosecond Transient Absorption. J Phys Chem B 2009; 113:11023-31. [DOI: 10.1021/jp811234q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - M. Pajzderska
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - M. Ziółek
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - J. Karolczak
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - A. Dobek
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Gibasiewicz K, Pajzderska M. Primary Radical Pair P+H- Lifetime in Rhodobacter sphaeroides with Blocked Electron Transfer to QA. Effect of o-Phenanthroline. J Phys Chem B 2008; 112:1858-65. [DOI: 10.1021/jp075184j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Maria Pajzderska
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Milano F, Dorogi M, Szebényi K, Nagy L, Maróti P, Váró G, Giotta L, Agostiano A, Trotta M. Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids. Bioelectrochemistry 2007; 70:18-22. [PMID: 16713374 DOI: 10.1016/j.bioelechem.2006.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Indexed: 10/24/2022]
Abstract
The thermodynamics and kinetics of light-induced electron transfer in bacterial photosynthetic RCs are sensitive to physiologically important lipids (phosphatidylcholine, cardiolipin and phosphatidylglycerol) in the environment. The analysis of the temperature-dependence of the rate of the P(+)Q(A)(-)Q(B)-->P(+)Q(A)Q(B)(-) interquinone electron transfer revealed high enthalpy change of activation in zwitterionic or neutral micelles and vesicles and low enthalpy change of activation in vesicles constituted of negatively charged phospholipids. The entropy change of activation was compensated by the changes of enthalpy, thus the free energy change of activation ( approximately 500 meV) did not show large variation in vesicles of different lipids.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici, Sezione di Bari, c/o Dipartimento di Chimica, Via Orabona, 4 I-70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Palazzo G, Mallardi A, Giustini M, Berti D, Venturoli G. Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles. Biophys J 2000; 79:1171-9. [PMID: 10968981 PMCID: PMC1301013 DOI: 10.1016/s0006-3495(00)76371-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The kinetics of charge recombination between the primary photoxidized donor (P(+)) and the secondary reduced quinone acceptor (Q(B)(-)) have been studied in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides incorporated into lecithin vesicles containing large ubiquinone pools over the temperature range 275 K </= T </= 307 K. To account for the non-exponential kinetics of P(+) re-reduction observed following a flash, a new approach has been developed, based on the following assumptions: 1) the exchange of quinone between different vesicles is negligible; 2) the exchange of quinone between the Q(B) site of the RC and the quinone pool within each single vesicle is faster than the return of the electron from the primary reduced acceptor Q(A)(-) to P(+); 3) the size polydispersity of proteoliposomes and the distribution of quinone molecules among them result in a quinone concentration distribution function, P(Q). The first and second moments of P(Q) have been evaluated from the size distribution of proteoliposomes probed by quasi-elastic light scattering (mean radius, <R> = (50 +/- 15) nm). Following these premises, we describe the kinetics of P(+)Q(B)(-) recombination with a truncated cumulant expansion and relate it to P(Q) and to the free energy changes for Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer (DeltaG(AB)(o)) and for quinone binding (DeltaG(bind)(o)) at Q(B). The model accounts well for the temperature and quinone dependence of the charge recombination kinetics, yielding DeltaG(AB)(o) = -7.67 +/- 0.05 kJ mol(-1) and DeltaG(bind)(o) = -14.6 +/- 0.6 kJ mol(-1) at 298 K.
Collapse
Affiliation(s)
- G Palazzo
- Dip. Chimica, Università di Bari, I-70126 Bari, Italy.
| | | | | | | | | |
Collapse
|
10
|
Hara M, Kaneko T, Nakamura C, Asada Y, Miyake J. Redox properties of an H-subunit-depleted photosynthetic reaction center from Rhodopseudomonas viridis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:199-208. [PMID: 9518612 DOI: 10.1016/s0005-2728(98)00004-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recently, we reported that a H-subunit-depleted photosynthetic reaction center (RC-H) was purified from purple nonsulfer photosynthetic bacterium Rhodopseudomonas viridis (Rps. viridis) using a strong detergent sodium alkyl ether sulfate. We compared the redox properties of a native photosynthetic reaction center (RC) and RC-H of Rps. viridis. In RC-H prepared by our method, secondary quinone (QB) was removed while primary quinone (QA) was retained. Absorption spectrum of RC-H was similar to that of RC. After reconstitution of ubiquinone 10 into QB sites, RC-H showed electron transfer activity that was the same as that for native RC. This is the first report about the redox properties of RC-H of Rps. viridis.
Collapse
Affiliation(s)
- M Hara
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (AIST), Ministry of International Trade and Industry (MITI), 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
11
|
Laporte LL, Palaniappan V, Davis DG, Kirmaier C, Schenck CC, Holten D, Bocian DF. Influence of Electronic Asymmetry on the Spectroscopic and Photodynamic Properties of the Primary Electron Donor in the Photosynthetic Reaction Center. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp961658v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent L. Laporte
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Vaithianathan Palaniappan
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dianna G. Davis
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Craig C. Schenck
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| | - David F. Bocian
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, Department of Chemistry, University of California at Riverside, Riverside, California 92521, and Department of Biochemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
12
|
Agalidis I, Sebban P. Energetics of the quinone electron acceptor complex in Rubrivivax gelatinosus. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:180-6. [PMID: 8534672 DOI: 10.1016/0005-2728(95)00110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pH and temperature dependences of the free energy stabilization of the Q-A and Q-B semiquinone anions (QA and QB are respectively the primary and secondary quinone electron acceptors) were studied in antenna-reaction centre complex from Rubrivivax (R.) gelatinosus. This was achieved by measuring the rate constants of the P+Q-A (kAP) and P+Q-B (kBP) (P is the primary electron donor) charge recombination processes by flash-induced absorption spectroscopy. Despite the high primary sequence analogies of the QA and QB protein pockets between R. gelatinosus and the much more studied species as Rps. viridis, Rb. sphaeroides and Rb. capsulatus, the energetic behaviour of the quinone complex of R. gelatinosus appears to be somewhat different: (i) above pH 10, kAP decreases, whereas it increases in Rps. viridis; this suggests the presence of a protonatable group that stabilizes I- (I is a bacteriopheophytin electron acceptor) rather than Q-A; (ii) the pH dependence of kBP is unusually flat in the range 4-7.5, possibly reflecting that a substantial part of the P+Q-B charge recombination proceeds via the direct route through the protein by an electron tunnelling mechanism, at variance to what is observed in the three species mentioned above; (iii) the very substantial increase of kBP observed above pH 7.5 is reasonably well described by the presence of two apparent protonatable groups: pK1QB = 9.4, pK1Q-B = 11 and pK2QB = 8.5, pK2Q-B = 9.4. The latter group was not reported in Rps. viridis, Rb. sphaeroides or Rb. capsulatus. We conclude that the apparent pK values measured here in R. gelatinosus may reflect the contribution as a whole of several and/or distant groups rather than of well-defined residues.
Collapse
Affiliation(s)
- I Agalidis
- Centre de Génétique Moléculaire, Photosynthèse, Bât. 24, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
13
|
Hillmann B, Schlodder E. Electron transfer reactions in Photosystem II core complexes from Synechococcus at low temperature — difference spectrum of P680+QA−P680 QA at 77 K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00068-t] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Baciou L, Sebban P. HETEROGENEITY OF THE QUINONE ELECTRON ACCEPTOR SYSTEM IN BACTERIAL REACTION CENTERS. Photochem Photobiol 1995. [DOI: 10.1111/j.1751-1097.1995.tb05269.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|
16
|
Sebban P, Maróti P, Schiffer M, Hanson DK. Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus. Biochemistry 1995; 34:8390-7. [PMID: 7599129 DOI: 10.1021/bi00026a021] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two point mutants from the purple bacterium Rhodobacter capsulatus, both modified in the M protein of the photosynthetic reaction center, have been studied by flash-induced absorbance spectroscopy. These strains carry either the M231Arg --> Leu or M43ASN --> Asp mutations, which are located 9 and 15 A, respectively, from the terminal electron acceptor QB. In the wild-type Rb. sphaeroides structure, M231Arg is involved in a conserved salt bridge with H125Glu and H232Glu and M43Asn is located among several polar residues that form or surround the QB binding site. These substitutions were originally uncovered in phenotypic revertants isolated from the photosynthetically incompetent L212Glu-L213Asp --> Ala-Ala site-specific double mutant. As second-site suppressor mutations, they have been shown to restore the proton transfer function that is interrupted in the L212Ala-L213Ala double mutant. The electrostatic effects that are induced in reaction centers by the M231Arg --> Leu and M43Asn --> Asp substitutions are roughly the same in either the double-mutant or wild-type backgrounds. In a reaction center that is otherwise wild type in sequence, they decrease the free energy gap between the QA- and QB- states by 24 +/- 5 and 45 +/- 5 meV, respectively. The pH dependences of K2, the QA-QB <--> QAQB- equilibrium constant, are altered in reaction centers that carry either of these substitutions, revealing differences in the pKas of titratable groups compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Sebban
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif/Yvette, France
| | | | | | | |
Collapse
|
17
|
Krishtalik LI. Fast electron transfers in photosynthetic reaction centre: effect of the time-evolution of dielectric response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00160-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Leguijt T, Parot P, Verméglio A, Crielaard W, Hellingwerf KJ. Properties of the primary and secondary quinone electron acceptors in RC/LH1 complexes from the purple sulfur bacterium Ectothiorhodospira mobilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90230-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Maróti P. Flash-induced proton transfer in photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 1993; 37:1-17. [PMID: 24317650 DOI: 10.1007/bf02185435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/1992] [Accepted: 03/27/1993] [Indexed: 06/02/2023]
Abstract
A proton electrochemical potential across the membranes of photosynthetic purple bacteria is established by a light-driven proton pump mechanism: the absorbed light in the reaction center initiates electron transfer which is coupled to the vectorial displacement of protons from the cytoplasm to the periplasm. The stoichiometry and kinetics of proton binding and release can be tracked directly by electric (glass electrodes), spectrophotometric (pH indicator dyes) and conductimetric techniques. The primary step in the formation of the transmembrane chemiosmotic potential is the uptake of two protons by the doubly reduced secondary quinone in the reaction center and the subsequent exchange of hydroquinol for quinone from the membrane quinone-pool. However, the proton binding associated with singly reduced promary and/or secondary quinones of the reaction center is substoichiometric, pH-dependent and its rate is electrostatically enhanced but not diffusion limited. Molecular details of protonation are discussed based on the crystallographic structure of the reaction center of purple bacteriaRb. sphaeroides andRps. viridis, structure-based molecular (electrostatic) calculations and mutagenesis directed at protonatable amino acids supposed to be involved in proton conduction pathways.
Collapse
Affiliation(s)
- P Maróti
- Institute of Biophysics, József Attila University Szeged, Egyetem utca 2, H-6722, Szeged, Hungary
| |
Collapse
|
20
|
Venturoli G, Trotta M, Feick R, Melandri BA, Zannoni D. Temperature dependence of charge recombination from the P+QA- and P+QB- states in photosynthetic reaction centers isolated from the thermophilic bacterium Chloroflexus aurantiacus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:625-34. [PMID: 1761060 DOI: 10.1111/j.1432-1033.1991.tb16416.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The temperature dependence of charge recombination from the P+QA- and from the P+QB- states produced by a flash was studied in reaction centers isolated from the photosynthetic thermophilic bacterium Chloroflexus aurantiacus. P designates the primary electron donor; QA and QB the primary and secondary quinone electron acceptors respectively. In QB-depleted reaction centers the rate constant (kAP) for P+QA- recombination was temperature independent between 0-50 degrees C (17.6 +/- 0.7 s-1 at pH 8 and pH 10). The same value was obtained in intact membranes in the presence of o-phenanthroline. Upon lowering the temperature from 250 K to 160 K, kAP increased by a factor of two and remained constant down to 80 K. The overall temperature dependence of kAP was consistent with an activationless process. Ubiquinone (UQ-3) and different types of menaquinone were used for QB reconstitution. In UQ-3 reconstituted reaction centers charge recombination was monoexponential (rate constant k = 0.18 +/- 0.03 s-1) and temperature independent between 5-40 degrees C. In contrast, in menaquinone-3- and menaquinone-4-reconstituted reaction centers P+ rereduction following a flash was markedly biphasic and temperature dependent. In menaquinone-6-reconstituted reaction centers a minor contribution from a third kinetic phase corresponding to P+QA- charge recombination was detected. Analysis of these kinetics and of the effects of the inhibitor o-phenanthroline at high temperature suggest that in detergent suspensions of menaquinone-reconstituted reaction centers a redox reaction removing electrons from the quinone acceptor complex competes with charge recombination. Instability of the semiquinone anions is more pronounced when QB is a short-chain menaquinone. From the temperature dependence of P+ decay the activation parameters for the P+QB- recombination and for the competing side oxidation of the reduced menaquinone acceptor have been derived. For both reactions the activation enthalpies and entropies change markedly with menaquinone chain length but counterbalance each other, resulting in activation free energies at ambient temperature independent of the menaquinone tail. When reaction centers are incorporated into phospholipid vesicles containing menaquinone-8 a temperature-dependent, monophasic, o-phenanthroline-sensitive recombination from the P+QB- state is observed, which is consistent with the formation of stable semiquinone anions. This result seems to indicate a proper QB functioning in the two-subunit reaction center isolated from Chlorflexus aurantiacus when the complex is inserted into a lipid bilayer.
Collapse
Affiliation(s)
- G Venturoli
- Dipartimento di Biologia, Università di Bologna, Italy
| | | | | | | | | |
Collapse
|
21
|
Booth PJ, Crystall B, Ahmad I, Barber J, Porter G, Klug DR. Observation of multiple radical pair states in photosystem 2 reaction centers. Biochemistry 1991; 30:7573-86. [PMID: 1854756 DOI: 10.1021/bi00244a029] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Charge recombination of the primary radical pair in D1/D2 reaction centers from photosystem 2 has been studied by time-resolved fluorescence and absorption spectroscopy. The kinetics of the primary radical pair are multiexponential and exhibit at least two lifetimes of 20 and 52 ns. In addition, a third lifetime of approximately 500 ps also appears to be present. These multiexponential charge-recombination kinetics reflect either different conformational states of D1/D2 reaction centers, with the different conformers exhibiting different radical pair lifetimes, or relaxations in the free energy of the radical pair state. Whichever model is invoked, the free energies of formation of the different radical pair states exhibit a linear temperature dependence from 100 to 220 K, indicating that they are dominated by entropy with negligible enthalpy contributions. These results are in agreement with previous determinations of the thermodynamics that govern primary charge separation in both D1/D2 reaction centers [Booth, P.J., Crystall, B., Giorgi, L. B., Barber, J., Klug, D.R., & Porter, G. (1990) Biochim. Biophys. Acta 1016, 141-152] and reaction centers of purple bacteria [Woodbury, N.W.T., & Parson, W.W. (1984) Biochim. Biophys. Acta 767, 345-361]. It is possible that these observations reflect structural changes that accompanying primary charge separation and assist in stabilization of the radical pair state thus optimizing the efficiency of primary electron transfer.
Collapse
Affiliation(s)
- P J Booth
- Photochemistry Research Group, Department of Biology, Imperial College, London, U.K
| | | | | | | | | | | |
Collapse
|
22
|
Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80141-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Sebban P, Parot P, Baciou L, Mathis P, Verméglio A. Effects of low temperature and lipid rigidity on the charge recombination process in Rps. viridis and Rb. sphaeroides reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80090-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Baciou L, Gulik-Krzywicki T, Sebban P. Involvement of the protein-protein interactions in the thermodynamics of the electron-transfer process in the reaction centers from Rhodopseudomonas viridis. Biochemistry 1991; 30:1298-302. [PMID: 1991111 DOI: 10.1021/bi00219a020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reaction centers from Rhodopseudomonas viridis were reconstituted into dimyristoylphosphatidylcholine (DMPC) and dielaidoylphosphatidylcholine (DEPC) liposomes. Freeze-fracture electron micrographs were performed on the samples frozen from temperatures above and below the phase transition temperatures of those lipids (Tc = 23 and 9.5 degrees C, in DMPC and DEPC, respectively). Above Tc, in the fluid conformation of the lipids, the reaction centers are randomly distributed in the vesicle membranes. Below Tc, aggregation of the proteins occurs. The Arrhenius plots of the rate constants of the charge recombination between P+ and QA- display a break at about 24 degrees C in DMPC vesicles and about 10 degrees C in DEPC vesicles (P represents the primary electron donor, a dimer of bacteriochlorophyll, and QA the primary quinone electron acceptor). This is in contrast to what was previously observed for the proteoliposomes of egg yolk phosphatidylcholine and for chromatophores [Baciou, L., Rivas, E., & Sebban, P. (1990) Biochemistry 29, 2966-2976], for which Arrhenius plots were linear. In DMPC and DEPC proteoliposomes, the activation parameters were very different on the two sides of Tc (delta H degrees for T less than Tc = 2.5 times delta H degrees for T greater than Tc), leading however, to the same delta G degrees values. Taking into account the structural and thermodynamic data, we suggest that, in vivo, protein-protein interactions play a role in the thermodynamic parameters associated with the energy stabilization process within the reaction centers.
Collapse
Affiliation(s)
- L Baciou
- UPR 407, CNRS, Gif/Yvette, France
| | | | | |
Collapse
|
25
|
Gao JL, Shopes RJ, Wraight CA. Heterogeneity of kinetics and electron transfer equilibria in the bacteriopheophytin and quinone electron acceptors of reaction centers from Rhodopseudomonas viridis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80057-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Literature Alerts. J Microencapsul 1991. [DOI: 10.3109/02652049109021866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|