1
|
Schreiner M, Schlesinger R, Heberle J, Niemann HH. Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site. Acta Crystallogr F Struct Biol Commun 2016; 72:692-9. [PMID: 27599860 PMCID: PMC5012209 DOI: 10.1107/s2053230x16012796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 05/17/2023] Open
Abstract
The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.
Collapse
Affiliation(s)
- Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
3
|
Hutson MS, Shilov SV, Krebs R, Braiman MS. Halide dependence of the halorhodopsin photocycle as measured by time-resolved infrared spectra. Biophys J 2001; 80:1452-65. [PMID: 11222305 PMCID: PMC1301336 DOI: 10.1016/s0006-3495(01)76117-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Time-resolved Fourier transform infrared (FTIR) difference spectra of the halorhodopsin (hR) photocycle have been collected from 3 micros to 100 ms in saturating concentrations of KCl or KBr. Kinetic analysis of these data revealed two decay processes, with time constants of tau(1) approximately 150 micros and tau(2) approximately 16 ms in the presence of either halide, with tau(2) describing the return to the starting (hR) state. Comparison to previous low-temperature FTIR spectra of hR intermediates confirms that characteristic hK and hL spectral features are both present before the tau(1) decay, in a state previously defined as hK(L) (Dioumaev, A., and M. Braiman. 1997. Photochem. Photobiol. 66:755-763). However, the relative sizes of these features depend on which halide is present. In Br-, the hL features are clearly more dominant than in Cl-. Therefore, the state present before tau(1) is probably best described as an hK(L)/hL(1) equilibrium, instead of a single hK(L) state. Different halides affect the relative amounts of hK(L) and hL(1) present, i.e., Cl- produces a much more significant back-reaction from hL(1) to hK(L) than does Br-. The halide dependence of this back-reaction could therefore explain the halide selectivity of the halorhodopsin anion pump.
Collapse
Affiliation(s)
- M S Hutson
- Biophysics Program, University of Virginia Health Sciences Center 456, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
4
|
Chosrowjan H, Mataga N, Shibata Y, Tachibanaki S, Kandori H, Shichida Y, Okada T, Kouyama T. Rhodopsin Emission in Real Time: A New Aspect of the Primary Event in Vision. J Am Chem Soc 1998. [DOI: 10.1021/ja981659w] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haik Chosrowjan
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Noboru Mataga
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Yutaka Shibata
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Shuji Tachibanaki
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Hideki Kandori
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Yoshinori Shichida
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Tetsuji Okada
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| | - Tsutomu Kouyama
- Institute for Laser Technology, Utsubo-Hommachi 1-8-4 Nishi-ku, Osaka 550, Japan Department of Biophysics, Graduate School of Science Kyoto University, Sakyo-ku, Kyoto 601-01, Japan Department of Physics, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-01, Japan
| |
Collapse
|
5
|
Dioumaev AK, Braiman MS. Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle. Photochem Photobiol 1997; 66:755-63. [PMID: 9421962 DOI: 10.1111/j.1751-1097.1997.tb03220.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Step-scan Fourier transform infrared spectroscopy with 50 ns time resolution was applied to the early stages of the photocycle of halorhodopsin (hR) for the temperature range 3-42 degrees C. Kinetic data analysis with global fitting revealed two distinct kinetic processes associated with relaxations of the early red-shifted photoproduct hK; these processes have time constants tau 1 approximately equal to 280 ns and tau 2 approximately equal to 360 microns at 20 degrees C. Spectral features demonstrate that the tau 1 process corresponds to a transition between two distinct bathointermediates, hKE and hKL. The vibrational difference bands associated with both tau 1 and tau 2 transitions are spread throughout the whole 1800-900 cm-1 range. However, the largest bands correspond to ethylenic C=C stretches, fingerprint C-C stretches and hydrogen out-of-plane (HOOP) wags of the retinal chromophore. The time evolution of these difference bands indicate that both the tau 1 and tau 2 decay processes involve principally a relaxation of the chromophore and its immediate environment. The decay of the intense HOOP vibrations is nearly equally divided between the tau 1 and tau 2 processes, indicating a complex chromophore relaxation from a twisted nonrelaxed conformation in the primary (hKE) bathointermediate, to a less-twisted structure in hKL, and finally to a roughly planar structure in the hypsochromically shifted hL intermediate. This conclusion is also supported by the unexpectedly large positive entropy of activation observed for the tau 1 process. The two relaxations from hKE to hL are largely analogous to corresponding relaxations (KE-->KL-->L) in the bacteriorhodopsin photocycle, except that the second step is slowed down by over 200-fold in hR.
Collapse
Affiliation(s)
- A K Dioumaev
- University of Virginia Health Sciences Center, Biochemistry Department, Charlottesville 22908, USA
| | | |
Collapse
|
6
|
Váró G, Zimányi L, Fan X, Sun L, Needleman R, Lanyi JK. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J 1995; 68:2062-72. [PMID: 7612849 PMCID: PMC1282110 DOI: 10.1016/s0006-3495(95)80385-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The light-driven chloride pump, halorhodopsin, is a mixture containing all-trans and 13-cis retinal chromophores under both light and dark-adapted conditions and can exist in chloride-free and chloride-binding forms. To describe the photochemical cycle of the all-trans, chloride-binding state that is associated with the transport, and thereby initiate study of the chloride translocation mechanism, one must first dissect the contributions of these species to the measured spectral changes. We resolved the multiple photochemical reactions by determining flash-induced difference spectra and photocycle kinetics in halorhodopsin-containing membranes prepared from Halobacterium salinarium, with light- and dark-adapted samples at various chloride concentrations. The high expression of cloned halorhodopsin made it possible to do these measurements with unfractionated cell envelope membranes in which the chromophore is photostable not only in the presence of NaCl but also in the Na2SO4 solution used for reference. Careful examination of the flash-induced changes at selected wavelengths allowed separating the spectral changes into components and assigning them to the individual photocycles. According to the results, a substantial revision of the photocycle model for H. salinarium halorhodopsin, and its dependence on chloride, is required. The cycle of the all-trans chloride-binding form is described by the scheme, HR-hv-->K<==>L1<==>L2<==>N-->HR, where HR, K, L, and N designate halorhodopsin and its photointermediates. Unlike the earlier models, this is very similar to the photoreaction of bacteriorhodopsin when deprotonation of the Schiff base is prevented (e.g., at low pH or in the D85N mutant). Also unlike in the earlier models, no step in this photocycle was noticeably affected when the chloride concentration was varied between 20 mM and 2 M in an attempt to identify a chloride-binding reaction.
Collapse
Affiliation(s)
- G Váró
- Department of Physiology and Biophysics, University of California, Irvine 92717, USA
| | | | | | | | | | | |
Collapse
|
8
|
Oesterhelt D, Tittor J, Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr 1992; 24:181-91. [PMID: 1526960 DOI: 10.1007/bf00762676] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
First, halorhodopsin is capable of pumping protons after illumination with green and blue light in the same direction as chloride. Second, mutated bacteriorhodopsin where the proton acceptor Asp85 and the proton donor Asp96 are replaced by Asn showed proton pump activity after illumination with blue light in the same direction as wildtype after green light illumination. These results can be explained by and are discussed in light of our new hypothesis: structural changes in either molecule lead to a change in ion affinity and accessibility for determining the vectoriality of the transport through the two proteins.
Collapse
Affiliation(s)
- D Oesterhelt
- Max-Planck-Institu für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|