1
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Barrantes FJ. Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London's Methodological Approaches. J Membr Biol 2022; 255:563-574. [PMID: 35534578 DOI: 10.1007/s00232-022-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Geometry and water accessibility of the inhibitor binding site of Na +-pump: Pulse- and CW-EPR study. Biophys J 2021; 120:2679-2690. [PMID: 34087213 PMCID: PMC8390900 DOI: 10.1016/j.bpj.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Spin labels based on cinobufagin, a specific inhibitor of the Na,K-ATPase, have proved valuable tools to characterize the binding site of cardiotonic steroids (CTSs), which also constitutes the extracellular cation pathway. Because existing literature suggests variations in the physiological responses caused by binding of different CTSs, we extended the original set of spin-labeled inhibitors to the more potent bufalin derivatives. Positioning of the spin labels within the Na,K-ATPase site was defined and visualized by molecular docking. Although the original cinobufagin labels exhibited lower affinity, continuous-wave electron paramagnetic resonance spectra of spin-labeled bufalins and cinobufagins revealed a high degree of pairwise similarity, implying that these two types of CTS bind in the same way. Further analysis of the spectral lineshapes of bound spin labels was performed with emphasis on their structure (PROXYL vs. TEMPO), as well as length and rigidity of the linkers. For comparable structures, the dynamic flexibility increased in parallel with linker length, with the longest linker placing the spin label at the entrance to the binding site. Temperature-related changes in spectral lineshapes indicate that six-membered nitroxide rings undergo boat-chair transitions, showing that the binding-site cross section can accommodate the accompanying changes in methyl-group orientation. D2O-electron spin echo envelope modulation in pulse-electron paramagnetic resonance measurements revealed high water accessibilities and similar polarity profiles for all bound spin labels, implying that the vestibule leading to steroid-binding site and cation-binding sites is relatively wide and water-filled.
Collapse
|
4
|
Páli T, Kóta Z. Studying Lipid-Protein Interactions with Electron Paramagnetic Resonance Spectroscopy of Spin-Labeled Lipids. Methods Mol Biol 2019; 2003:529-561. [PMID: 31218632 DOI: 10.1007/978-1-4939-9512-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin-label EPR spectroscopy is the technique of choice to characterize the protein solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin-labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intramembranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to a so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intramembranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature (see ref. Marsh, Eur Biophys J 39:513-525, 2010 for a recent review), here we focus more on how to spin label model membranes and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a previous methodological paper (Marsh, Methods 46:83-96, 2008). The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
Affiliation(s)
- Tibor Páli
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| |
Collapse
|
5
|
From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 2016; 63:1-13. [DOI: 10.1016/j.plipres.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
|
6
|
Barrantes FJ. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1796-805. [PMID: 25839355 DOI: 10.1016/j.bbamem.2015.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
7
|
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
|
8
|
ESR spectroscopic characterization of spin labeled procaine in homogeneous solutions and membrane mimetic systems. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2012.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Marsh D. Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2010; 39:513-25. [PMID: 19669751 PMCID: PMC2841276 DOI: 10.1007/s00249-009-0512-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid-protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10x slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments.
Collapse
Affiliation(s)
- Derek Marsh
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
10
|
Arias HR. Interaction of lipids and ligands with nicotinic acetylcholine receptor vesicles assessed by electron paramagnetic resonance spectroscopy. Methods Mol Biol 2010; 606:291-318. [PMID: 20013404 DOI: 10.1007/978-1-60761-447-0_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that permits the study of membrane-embedded proteins in its lipid environment by assessing the interaction of spin labels with the protein in its natural environment (i.e., native membranes) or in reconstituted systems prepared with exogenous lipid species. Nicotinic acetylcholine receptors (AChRs) contain a large surface in intimate contact with the lipid membrane. AChRs, members of the Cys-loop receptor superfamily, have essential functional roles in the nervous system and its malfunctioning has been considered as the origin of several neurological diseases including Alzheimer's disease, drug addiction, depression, and schizophrenia. In this regard, these receptors have been extensively studied as therapeutic targets for the action of several drugs. The majority of the marketed medications bind to the neurotransmitter sites, the so-called agonists. However, several drugs, some of them still in clinical trials, interact with non-competitive antagonist (NCA) binding sites. A potential location for these binding sites is the proper ion channel, blocking ion flux and thus, inhibiting membrane depolarization. However, several NCAs also bind to the lipid-protein interface, modulating the AChR functional properties. The best known examples of these NCAs are local and general anesthetics. Several endogenous molecules such as free fatty acids and neurosteroids also bind to the lipid-protein interface, probably mediating important physiological functions. Phospholipids, natural components of lipid membranes interacting with the AChR, are also essential to maintain the structural and functional properties of the AChR. EPR studies showed that local anesthetics bind to the lipid-protein interface by essentially the same dynamic mechanisms found in lipids, and that local and general anesthetics preferably decrease the phospholipid but not the fatty acid interactions with the AChR. This is consistent with the existence of annular and non-annular lipid domains on the AChR.
Collapse
Affiliation(s)
- Hugo Rubén Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
11
|
Fantini J, Barrantes FJ. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2345-61. [PMID: 19733149 DOI: 10.1016/j.bbamem.2009.08.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/17/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Like all other monomeric or multimeric transmembrane proteins, receptors for neurotransmitters are surrounded by a shell of lipids which form an interfacial boundary between the protein and the bulk membrane. Among these lipids, cholesterol and sphingolipids have attracted much attention because of their well-known propensity to segregate into ordered platform domains commonly referred to as lipid rafts. In this review we present a critical analysis of the molecular mechanisms involved in the interaction of cholesterol/sphingolipids with neurotransmitter receptors, in particular acetylcholine and serotonin receptors, chosen as representative members of ligand-gated ion channels and G protein-coupled receptors. Cholesterol and sphingolipids interact with these receptors through typical binding sites located in both the transmembrane helices and the extracellular loops. By altering the conformation of the receptors ("chaperone-like" effect), these lipids can regulate neurotransmitter binding, signal transducing functions, and, in the case of multimeric receptors, subunit assembly and subsequent receptor trafficking to the cell surface. Several sphingolipids (especially gangliosides) also exhibit low/moderate affinity for neurotransmitters. We suggest that such lipids could facilitate (i) the attachment of neurotransmitters to the post-synaptic membrane and in some cases (ii) their subsequent delivery to specific protein receptors. Overall, various experimental approaches provide converging evidence that the biological functions of neurotransmitters and their receptors are highly dependent upon sphingolipids and cholesterol, which are active partners of synaptic transmission. Several decades of research have been necessary to untangle the skein of a complex network of molecular interactions between neurotransmitters, their receptors, cholesterol and sphingolipids. This sophisticated crosstalk between all four distinctive partners may allow a fine biochemical tuning of synaptic transmission.
Collapse
Affiliation(s)
- Jacques Fantini
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), University of Aix-Marseille 2 and Aix-Marseille 3, CNRS UMR 6231, INRA USC 2027, Faculté des Sciences de St. Jérôme, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
12
|
Arias HR, Xing H, Macdougall K, Blanton MP, Soti F, Kem WR. Interaction of benzylidene-anabaseine analogues with agonist and allosteric sites on muscle nicotinic acetylcholine receptors. Br J Pharmacol 2009; 157:320-30. [PMID: 19338581 DOI: 10.1111/j.1476-5381.2009.00156.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Benzylidene-anabaseines (BAs) are partial agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) but their mechanism(s) of action are unknown. Our study explores several possibilities, including direct interactions of BAs with the nAChR channel. EXPERIMENTAL APPROACH Functional and radioligand-binding assays were used to examine the interaction of two BA analogues, 3-(2,4-dimethoxybenzylidene)-anabaseine (DMXBA) and its primary metabolite 3-(4-hydroxy-2-methoxybenzylidene)-anabaseine (4OH-DMXBA) with both agonist and non-competitive antagonist (NCA)-binding sites on muscle-type nAChRs. KEY RESULTS Both BAs non-competitively inhibited ACh activation of human fetal muscle nAChRs and sterically inhibited the specific binding of the NCAs [piperidyl-3,4-3H(N)]-(N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]TCP) and [(3)H]dizocilpine to Torpedo nAChRs in the desensitized state. These compounds modulated [(3)H]tetracaine, [(14)C]amobarbital and [(3)H]TCP binding to resting nAChRs by allosteric mechanisms. Both BAs enhanced [(3)H]TCP binding when the nAChR was initially in the resting but activatable state, suggesting that both compounds desensitized the Torpedo nAChR. Although DMXBA failed to activate human fetal muscle nAChRs, 4OH-DMXBA was found to be a partial agonist. [(3)H]Nicotine competition-binding experiments confirmed that 4OH-DMXBA has higher affinity than DMXBA for the agonist sites, and that DMXBA is also a competitive antagonist. CONCLUSIONS AND IMPLICATIONS 3-(4-hydroxy-2-methoxybenzylidene)-anabaseine is a partial agonist for human fetal muscle nAChRs, whereas DMXBA only has competitive and NCA activities. The NCA-binding site for BAs overlaps both the phencyclidine- and dizocilpine-binding sites in the desensitized Torpedo nAChR ion channel. The desensitizing property of BAs suggests another possible mode of non-competitive inhibition in addition to direct channel-blocking mechanisms.
Collapse
Affiliation(s)
- H R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308-3550, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Electron spin resonance in membrane research: Protein–lipid interactions. Methods 2008; 46:83-96. [DOI: 10.1016/j.ymeth.2008.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 11/20/2022] Open
|
14
|
Marsh D. Protein modulation of lipids, and vice-versa, in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1545-75. [DOI: 10.1016/j.bbamem.2008.01.015] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 11/29/2022]
|
15
|
Dopico AM, Tigyi GJ. A glance at the structural and functional diversity of membrane lipids. Methods Mol Biol 2007; 400:1-13. [PMID: 17951723 DOI: 10.1007/978-1-59745-519-0_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In the postgenomic era, spatially and temporally regulated molecular interactions as signals are beginning to take center stage in the understanding of fundamental biological events. For years, reductionism derived from the "fluid mosaic" model of the cell membrane has portrayed membrane lipids as rather passive molecules that, whereas separating biologically relevant aqueous phases, provided an environment so that membrane proteins could fulfill the specificity and selectivity required for proper cell signaling. Whereas these roles for membrane lipids still stand, the structural diversity of lipids and their complex arrangement in supramolecular assemblies have expanded such limited, although fundamental roles. Growing developments in the field of membrane lipids help to understand biological phenomena at the nanoscale domain, and reveal this heterogeneous group of organic compounds as a long underestimated group of key regulatory molecules. In this introductory chapter, brief overviews of the structural diversity of membrane lipids, the impact of different lipids on membrane properties, the vertical organization of lipids into rafts and caveolae, and the functional role of lipids as mediators of inter- and intracellular signals are provided. Any comprehensive review on membrane lipids, whether emphasizing structural or functional aspects, will require several volumes. The purpose of this chapter is to provide both introduction and rationale for the selection of topics that lie ahead in this book. For this reason, the list of references primarily includes reviews on particular issues dealing with membrane lipids wherein the reader can find further references.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
16
|
Dixon N, Páli T, Kee TP, Ball S, Harrison MA, Findlay JBC, Nyman J, Väänänen K, Finbow ME, Marsh D. Interaction of spin-labeled inhibitors of the vacuolar H+-ATPase with the transmembrane Vo-sector. Biophys J 2007; 94:506-14. [PMID: 17872954 PMCID: PMC2157245 DOI: 10.1529/biophysj.107.111781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The osteoclast variant of the vacuolar H(+)-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC(50) in the 10-nanomolar range.
Collapse
Affiliation(s)
- Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Terence P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Stephen Ball
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jonas Nyman
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Kalervo Väänänen
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany; University of Leeds, School of Chemistry and School of Biochemistry and Molecular Biology, Leeds, United Kingdom; University of Turku, Institute of Biomedicine, Department of Anatomy, Turku, Finland; and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
17
|
Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. ACTA ACUST UNITED AC 2004; 47:71-95. [PMID: 15572164 DOI: 10.1016/j.brainresrev.2004.06.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 11/22/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the archetype molecule in the superfamily of ligand-gated ion channels (LGIC). Members of this superfamily mediate fast intercellular communication in response to endogenous neurotransmitters. This review is focused on the structural and functional crosstalk between the AChR and lipids in the membrane microenvironment, and the modulation exerted by the latter on ligand binding and ion translocation. Experimental approaches using Laurdan extrinsic fluorescence and Förster-type resonance energy transfer (FRET) that led to the characterization of the polarity and molecular dynamics of the liquid-ordered phase AChR-vicinal lipids and the bulk membrane lipids, and the asymmetry of the AChR-rich membrane are reviewed first. The topological relationship between protein and lipid moieties and the changes in physical properties induced by exogenous lipids are discussed next. This background information lays the basis for understanding the occurrence of lipid sites in the AChR transmembrane region, and the selectivity of the protein-lipid interactions. Changes in FRET efficiency induced by fatty acids, phospholipid and cholesterol (Chol), led to the identification of discrete sites for these lipids on the AChR protein, and electron-spin resonance (ESR) spectroscopy has recently facilitated determination of the stoichiometry and selectivity for the AChR of the shell lipid. The influence of lipids on AChR function is discussed next. Combined single-channel and site-directed mutagenesis data fostered the recognition of lipid-sensitive residues in the transmembrane region, dissecting their contribution to ligand binding and channel gating, opening and closing. Experimental evidence supports the notion that the interface between the protein moiety and the adjacent lipid shell is the locus of a variety of pharmacologically relevant processes, including the action of steroids and other lipids.
Collapse
Affiliation(s)
- F J Barrantes
- UNESCO Chair of Biophysics and Molecular Neurobiology.
| |
Collapse
|
18
|
Marsh D, Páli T. The protein–lipid interface: perspectives from magnetic resonance and crystal structures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:118-41. [PMID: 15519312 DOI: 10.1016/j.bbamem.2004.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/13/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Lipid-protein interactions in membranes are dynamic, and consequently are well studied by magnetic resonance spectroscopy. More recently, lipids associated with integral membrane proteins have been resolved in crystals by X-ray diffraction, mostly at cryogenic temperatures. The conformation and chain ordering of lipids in crystals of integral proteins are reviewed here and are compared and contrasted with results from magnetic resonance and with the crystal structures of phospholipid bilayers. Various aspects of spin-label magnetic resonance studies on lipid interactions with single integral proteins are also reviewed: specificity for phosphatidylcholine, competition with local anaesthetics, oligomer formation of single transmembrane helices, and protein-linked lipid chains. Finally, the interactions between integral proteins and peripheral or lipid-linked proteins, as reflected by the lipid-protein interactions in double reconstitutions, are considered.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany.
| | | |
Collapse
|
19
|
Barrantes FJ, Antollini SS, Bouzat CB, Garbus I, Massol RH. Nongenomic effects of steroids on the nicotinic acetylcholine receptor. Kidney Int 2000; 57:1382-9. [PMID: 10760071 DOI: 10.1046/j.1523-1755.2000.00979.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fast signaling mode of natural and synthetic steroids is exerted on some ion channels and cell-surface receptors. This activity contrasts with their classic mode of action, via intracellular receptors. Early studies from our laboratory demonstrated that spin-labeled androstanol and cholestane interact with the nicotinic acetylcholine receptor (AChR) and that lipid mobility at the lipid belt surrounding the AChR is reduced relative to that of the bulk membrane lipid. The occurrence of discrete and independent sites for phospholipids and sterols, both accessible to fatty acids, was subsequently disclosed in the native membrane. Synthetic and natural glucocorticoids were found to act as noncompetitive inhibitors of AChR function. The influence of different substituent groups in the cyclepentane perhydrophenanthrene ring on the channel-shortening potency of various steroids has also been assayed in muscle-type AChR, and we found a certain selectivity of this effect. Some organochlorine pesticides are xenoestrogens, that is, environmental agents capable of disrupting endocrine system signaling. We determined their effects on the AChR membrane using novel fluorescence techniques.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquímicas, UNS/CONICET, Bahía Blanca, Argentina.
| | | | | | | | | |
Collapse
|
20
|
Arias HR. Role of local anesthetics on both cholinergic and serotonergic ionotropic receptors. Neurosci Biobehav Rev 1999; 23:817-43. [PMID: 10541058 DOI: 10.1016/s0149-7634(99)00020-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A great body of experimental evidence indicates that the main target for the pharmacological action of local anesthetics (LAs) is the voltage-gated Na+ channel. However, the epidural and spinal anesthesia as well as the behavioral effects of LAs cannot be explained exclusively by its inhibitory effect on the voltage-gated Na+ channel. Thus, the involvement of other ion channel receptors has been suggested. Particularly, two members of the neurotransmitter-gated ion channel receptor superfamily, the nicotinic acetylcholine receptor (AChR) and the 5-hydroxytryptamine receptor (5-HT3R type). In this regard, the aim of this review is to explain and delineate the mechanism by which LAs inhibit both ionotropic receptors from peripheral and central nervous systems. Local anesthetics inhibit the ion channel activity of both muscle- and neuronal-type AChRs in a noncompetitive fashion. Additionally, LAs inhibit the 5-HT3R by competing with the serotonergic agonist binding sites. The noncompetitive inhibitory action of LAs on the AChR is ascribed to two possible blocking mechanisms. An open-channel-blocking mechanism where the drug binds to the open channel and/or an allosteric mechanism where LAs bind to closed channels. The open-channel-blocking mechanism is in accord with the existence of high-affinity LA binding sites located in the ion channel. The allosteric mechanism seems to be physiologically more relevant than the open-channel-blocking mechanism. The inhibitory property of LAs is also elicited by binding to several low-affinity sites positioned at the lipid-AChR interface. However, there is no clearcut evidence indicating whether these sites are located at either the annular or the nonannular lipid domain. Both tertiary (protonated) and quaternary LAs gain the interior of the channel through the hydrophilic pathway formed by the extracellular ion channel's mouth with the concomitant ion flux blockade. Nevertheless, an alternative mode of action is proposed for both deprotonated tertiary and permanently-uncharged LAs: they may pass from the lipid membrane core to the lumen of the ion channel through a hydrophobic pathway. Perhaps this hydrophobic pathway is structurally related to the nonannular lipid domain. Regarding the LA binding site location on the 5-HT3R, at least two amino acids have been involved. Glutamic acid at position 106 which is located in a residue sequence homologous to loop A from the principal component of the binding site for cholinergic agonists and competitive antagonists, and Trp67 which is positioned in a stretch of amino acids homologous to loop F from the complementary component of the cholinergic ligand binding site.
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Argentina.
| |
Collapse
|
21
|
Marsh D. Spin-label electron spin resonance and Fourier transform infrared spectroscopy for structural/dynamic measurements on ion channels. Methods Enzymol 1999; 294:59-92. [PMID: 9916223 DOI: 10.1016/s0076-6879(99)94007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D Marsh
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
22
|
Marsh D, Horváth LI. Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:267-96. [PMID: 9804973 DOI: 10.1016/s0304-4157(98)00009-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Implications of the data on lipid-protein interactions involving integral proteins that are obtained from EPR spectroscopy with spin-labelled lipids in membranes are reviewed. The lipid stoichiometry, selectivity and exchange dynamics at the lipid-protein interface can be determined, in addition to information on the configuration and rotational dynamics of the protein-associated lipid chains. These parameters, particularly the stoichiometry and selectivity, are directly related to the intramembranous structure and degree of oligomerisation of the integral protein, and conversely may be used to study the state of assembly of such proteins in the membrane. Insertion of proteins into membranes can be studied by analogous methods. Comparison with the results obtained from integral proteins helps to define the extent of membrane penetration and degree of transmembrane crossing that are relevant to protein translocation mechanisms.
Collapse
Affiliation(s)
- D Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, D-37070 Göttingen, Germany.
| | | |
Collapse
|
23
|
Abstract
Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design of new drugs and drug-delivery systems therefore requires insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality.
Collapse
Affiliation(s)
- O G Mouritsen
- Department of Chemistry, Technical University of Denmark, Lyngby.
| | | |
Collapse
|
24
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
25
|
Arias HR. Topology of ligand binding sites on the nicotinic acetylcholine receptor. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:133-91. [PMID: 9403137 DOI: 10.1016/s0165-0173(97)00020-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of both alpha subunits there exist the binding sites for agonists such as the neurotransmitter acetylcholine (ACh) and for competitive antagonists such as d-tubocurarine. Agonists trigger the channel opening upon binding while competitive antagonists compete for the former ones and inhibit its pharmacological action. Identification of all residues involved in recognition and binding of agonist and competitive antagonists is a primary objective in order to understand which structural components are related to the physiological function of the AChR. The picture for the localisation of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are mainly located on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are sequentially identical, the observed high and low affinity for agonists on the receptor is conditioned by the interaction of the alpha subunit with the delta or the gamma chain, respectively. This relationship is opposite for curare-related drugs. This molecular interaction takes place probably at the interface formed by the different subunits. The principal component for the agonist/competitive antagonist binding sites involves several aromatic residues, in addition to the cysteine pair at 192-193, in three loops-forming binding domains (loops A-C). Other residues such as the negatively changed aspartates and glutamates (loop D), Thr or Tyr (loop E), and Trp (loop F) from non-alpha subunits were also found to form the complementary component of the agonist/competitive antagonist binding sites. Neurotoxins such as alpha-, kappa-bungarotoxin and several alpha-conotoxins seem to partially overlap with the agonist/competitive antagonist binding sites at multiple point of contacts. The alpha subunits also carry the binding site for certain acetylcholinesterase inhibitors such as eserine and for the neurotransmitter 5-hydroxytryptamine which activate the receptor without interacting with the classical agonist binding sites. The link between specific subunits by means of the binding of ACh molecules might play a pivotal role in the relative shift among receptor subunits. This conformational change would allow for the opening of the intrinsic receptor cation channel transducting the external chemical signal elicited by the agonist into membrane depolarisation. The ion flux activity can be inhibited by non-competitive inhibitors (NCIs). For this kind of drugs, a population of low-affinity binding sites has been found at the lipid-protein interface of the AChR. In addition, several high-affinity binding sites have been found to be located at different rings on the M2 transmembrane domain, namely luminal binding sites. In this regard, the serine ring is the locus for exogenous NCIs such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222, phencyclidine, and trifluoromethyliodophenyldiazirine. Trifluoromethyliodophenyldiazirine also binds to the valine ring, which is the postulated site for cembranoids. Additionally, the local anaesthetic meproadifen binding site seems to be located at the outer or extracellular ring. Interestingly, the M2 domain is also the locus for endogenous NCIs such as the neuropeptide substance P and the neurotransmitter 5-hydroxytryptamine. In contrast with this fact, experimental evidence supports the hypothesis for the existence of other NCI high-affinity binding sites located not at the channel lumen but at non-luminal binding domains. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| |
Collapse
|
26
|
Arias HR. The high-affinity quinacrine binding site is located at a non-annular lipid domain of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1347:9-22. [PMID: 9233683 DOI: 10.1016/s0005-2760(97)00045-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work deals with the localization of the high-affinity non-competitive quinacrine binding site on the muscle-type nicotinic acetylcholine receptor (AChR). Specifically, quantitative steady-state fluorescence spectroscopy is used to determine whether quinacrine binds to a site located at either the annular or the non-annular lipid domain. For this purpose, we measure the ability of spin-labelled phosphatidylcholine (SL-PC) to quench AChR-bound quinacrine, AChR-bound ethidium and membrane-partitioned 7-(9-anthroyloxy)stearate (7-AS) fluorescence. Additionally, we compare the accessibility of SL-PC which is considered to bind only to the annular lipid domain of the AChR with the accessibility of two non-annular domain-sensing lipids such as 5-doxylstearate (5-SAL) and spin-labelled androstane (ASL). Initial experiments using 7-AS established the experimental conditions for maximum SL-PC membrane partitioning. The non-specific quenching elicited by increasing turbidity of the sample after addition of SL-PC is corrected by means of parallel experiments with unlabelled egg yolk phosphatidylcholine. After correction, the SL-PC quenching experiments show the following order in quenching efficiency: 7-AS > quinacrine >> ethidium. The relative intrinsic sensitivity of quinacrine to TEMPO paramagnetic quenching in acetonitrile is considered to be approximately two times higher than that for 7-AS. Thus, SL-PC was found to be more accessible (about 5-fold) to the membrane-partitioned 7-AS than to the quinacrine locus. In addition, SL-PC was virtually not accessible to the high-affinity non-luminal binding site for ethidium. The relative capacity of SL-PC, 5-SAL, and ASL to quench AChR-bound quinacrine fluorescence indicated that the spin-labelled lipid accessibility to the quinacrine binding site follows the order: 5-SAL > ASL >> SL-PC. Examination of the effect of high concentrations of 5-SAL, of its unlabelled parent stearate, and of SL-PC on ethidium and quinacrine binding showed that: (a) both fatty acids displace quinacrine, but not ethidium, from its high-affinity binding site, however (b) 5-SAL was found to be more effective than stearate to displace quinacrine from its locus, whereas (c) SL-PC competes neither for the ethidium locus nor for the quinacrine binding site. The results suggest that the high-affinity binding site for quinacrine is located at a non-annular lipid domain of the AChR. This particular area has been considered to be located at the intramolecular interfaces of the five AChR subunits and/or at the interstices of the transmembrane domains.
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
27
|
Barrantes GE, Ortells MO, Barrantes FJ. Screening structural-functional relationships of neuropharmacologically active organic compounds at the nicotinic acetylcholine receptor. Neuropharmacology 1997; 36:269-79. [PMID: 9175605 DOI: 10.1016/s0028-3908(97)00004-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanisms of action and pharmacological effects on the nicotinic cholinoceptor of a large database of organic compounds were analyzed using a new computational procedure. This procedure is a screening method based on comparison of the molecular structures (shape and charge) of the putative active organic compounds. The resulting predictions can be used as an exploratory tool in the design of experiments aimed at testing the effects of several compounds on a target macromolecule. Unlike a conventional database search for structural similarities, the present method is able to circumscribe objectively the results to the most statistically significant molecules.
Collapse
Affiliation(s)
- G E Barrantes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Argentina
| | | | | |
Collapse
|
28
|
Arias HR. Luminal and non-luminal non-competitive inhibitor binding sites on the nicotinic acetylcholine receptor. Mol Membr Biol 1996; 13:1-17. [PMID: 9147657 DOI: 10.3109/09687689609160569] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nicotinic acetylcholine receptor presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of the alpha subunit exist the binding sites for agonists such as the neurotransmitter acetylcholine, which upon binding trigger the channel opening, and for competitive antagonists such as d-tubocurarine, which compete for the former inhibiting its pharmacological action. For non-competitive inhibitors, a population of low-affinity binding sites have been found at the lipid-protein interface of the nicotinic acetylcholine receptor. In addition, at the M2 transmembrane domain, several high-affinity binding sites have been found for non-competitive inhibitors such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222 and the hydrophobic probe trifluoromethyl-iodophenyldiazirine. They are known as luminal binding sites. Although the local anaesthetic meproadifen seems to be located between the hydrophobic domains M2-M3, this locus is considered to form part of the channel mouth, thus this site can also be called a luminal binding site. In contraposition, experimental evidences support the hypothesis of the existence of other high-affinity binding sites for non-competitive inhibitors located not at the channel lumen, but at non-luminal binding domains. Among them, we can quote the binding site for quinacrine, which is located at the lipid-protein interface of the alpha M1 domain, and the binding site for ethidium, which is believed to interact with the wall of the vestibule very far away from both the lumen channel and the lipid membrane surface. The aim of this review is to discuss these recent findings relative to both structurally and functionally relevant aspects of non-competitive inhibitors of the nicotinic acetylcholine receptor. We will put special emphasis on the description of the localization of molecules with non-competitive antagonist properties that bind with high-affinity to luminal and non-luminal domains. The information described herein was principally obtained by means of methods such as photolabelling and site-directed mutagenesis in combination with patch-clamp. Our laboratory has contributed with data obtained by using biophysical approaches such as paramagnetic electron spin resonance and quantitative fluorescence spectroscopy.
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquimicas de Bahia Blanca, Argentina
| |
Collapse
|
29
|
Specificity of lipid-protein interactions. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1874-5342(06)80057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Abstract
Various order and disorder phenomena in lipid bilayers are considered as they arise due to the very many-particle character of the bilayer. Particular attention is paid to dynamically maintained order in terms of lateral density- and compositional fluctuations that lead to dynamic heterogeneity, local structure, and lipid-domain formation on length scales of 10-1000 A. The influence of cholesterol and various drugs on the local structure is described. A discussion is presented of the possible role played by lipid order and disorder phenomena for the functional dynamics of membranes.
Collapse
Affiliation(s)
- O G Mouritsen
- Department of Physical Chemistry, Technical University of Denmark, Lyngby
| | | |
Collapse
|
31
|
Arias HR, Alonso-Romanowski S, Disalvo EA, Barrantes FJ. Interaction of merocyanine 540 with nicotinic acetylcholine receptor membranes from Discopyge tschudii electric organ. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1190:393-401. [PMID: 8142441 DOI: 10.1016/0005-2736(94)90099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interactions between merocyanine 540 (MC540) and nicotinic acetylcholine receptor (AChR) have been studied by visible absorption spectroscopy using native receptor-rich membranes from Discopyge tschudii electric tissue and liposomes obtained by aqueous dispersion of endogenous lipids extracted from the same tissue. The fact that merocyanine partitions into the membrane when this is in the liquid-crystalline state, exhibiting a characteristic peak at 567 nm, was exploited to obtain quantitative information about the physical state of the AChR-rich membrane. Spectra of MC540 revealed that this molecule was preferentially incorporated into AChR-rich membranes, with an affinity (Kdapp 30 microM) 10-fold higher than that in liposomes (Kdapp 290 microM). Changes were observed in the equilibrium dissociation constant of MC540 at different temperatures: the two-fold higher affinity at 8 degrees C than at 23 degrees C can be rationalized in terms of a higher value of the overall dimerization constant (Kdim) at the lower temperature. The local anaesthetic benzocaine competed for MC540 binding sites with higher potency in AChR-rich native membranes than in liposomes made with endogenous lipids. This competition was found to be AChR concentration-dependent, whereas in liposomes the displacement was constant at different lipid/MC540 molar ratios. Titration experiments yielded an apparent dissociation constant for benzocaine of 0.6 mM and 0.7 mM for liposomes and AChR-rich membranes, respectively. The possible location of the benzocaine binding site is deduced from the competition experiments to be at the lipid annulus surrounding the nicotinic AChR protein.
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, CONICET/Universidad Nac. del Sur, Argentina
| | | | | | | |
Collapse
|
32
|
Chapter 1 Protein-lipid interactions and membrane heterogeneity. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Chapter 10 The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Barrantes FJ. Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 1992; 6:463-82. [PMID: 1285935 DOI: 10.1007/bf02757947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) is a transmembrane protein belonging to the superfamily of rapid, ligand-operated channels. Theoretical models based on thermodynamic criteria assign portions of the polypeptide chains to the lipid bilayer region. From an experimental point of view, however, the relationship between the two moieties remains largely unexplored. Current studies from our laboratory are aimed at defining the structural, dynamic, and functional relationship between membrane lipids and AChR. We are particularly interested in establishing the characteristics of and differences between the lipids in each leaflet of the bilayer and the belt or "annular" lipids immediately surrounding AChR and the bulk bilayer lipids. We are also interested in determining the possible implications of lipid modifications on AChR channel properties. Toward these ends, fluorescence and other spectroscopic techniques, together with biochemical analyses and patch-clamp studies, are currently being undertaken. Correlations can be established between structural aspects of phospholipid packing in the immediate perimeter of AChR and other properties of these annular lipids revealed by dynamic spectroscopic and molecular modeling techniques. Lipid compositional analyses of the clonal muscle cell line BC3H-1 and chemical modification studies have been carried out by incubation of intact cells in culture and of membrane patches excised therefrom with liposomes of different lipid composition. These studies have been combined with electrophysiological measurements using the patch-clamp technique, with the aim of determining the possible effects of lipids on the channel properties of muscle-type AChR. A variety of experimental conditions, involving polar head and fatty acyl chain substitution of phospholipids and cholesterol incorporation, are being assayed in the BC3H-1 cells.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquimicas, Consejo de Investigaciones Cientificas y Tecnicas, Bahia Blanca, Argentina
| |
Collapse
|
35
|
|
36
|
Mouritsen OG, Jørgensen K. Dynamic lipid-bilayer heterogeneity: a mesoscopic vehicle for membrane function? Bioessays 1992; 14:129-36. [PMID: 1575713 DOI: 10.1002/bies.950140211] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lipid-bilayer component of cell membranes is an aqueous bimolecular aggregate characterized by a heterogeneous lateral organization of its molecular constituents. The heterogeneity may be sustained statically as well as dynamically. On the basis of recent experimental and theoretical progress in the study of the physical properties of lipid-bilayer membranes, it is proposed that the dynamically heterogeneous membrane states are important for membrane functions such as transport of matter across the membrane and enzymatic activity. The heterogeneous membrane states undergo significant structural changes in response to changes in compositional, thermodynamic, and environmental conditions. The diverse effects of a variety of molecular compounds interacting with membranes, such as cholesterol and drugs like anaesthetics, may be understood in terms of the ability of these compounds to affect and modulate the dynamic membrane heterogeneity.
Collapse
Affiliation(s)
- O G Mouritsen
- Department of Physical Chemistry, Technical University of Denmark, Lyngby
| | | |
Collapse
|
37
|
Miyazaki J, Hideg K, Marsh D. Interfacial ionization and partitioning of membrane-bound local anesthetics. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:62-8. [PMID: 1309661 DOI: 10.1016/0005-2736(92)90057-s] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Consideration of the interfacial protonation equilibria of membrane-associated amphiphiles indicates that the partition coefficients of the protonated and unprotonated species will differ considerably. The partition coefficients of the charged and uncharged forms of spin-labelled myristic acid in dimyristoylphosphatidylcholine bilayer dispersions have been measured by EPR spectroscopy and found to be approximately 140-fold higher for the protonated acid than for the dissociated salt form. This ratio of partition coefficients is found to be in good agreement with that predicted from the interfacial shift in pKa of the fatty acid on its partitioning into the membrane. The latter was determined from the changes in the EPR spectra of the membrane-associated fatty acid with pH and was found to be +2.1 pH units. The interfacial shifts in pKa for a series of spin-labelled analogues of tertiary amine local anaesthetics have been determined from the pH dependence of the partition coefficients in dimyristoylphosphatidylcholine bilayer dispersions and are found mostly to be in the range of approx. -1.0 to -1.5 pH units, corresponding to a 10- to 30-fold higher partition coefficient of the uncharged base compared with that of the charged ammonium form.
Collapse
Affiliation(s)
- J Miyazaki
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany
| | | | | |
Collapse
|
38
|
Ortells MO, Cockcroft VB, Lunt GG, Marsh D, Barrantes FJ. The Nicotinic Acetylcholine Receptor and its Lipid Microenvironment. THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1992. [DOI: 10.1007/978-94-011-2718-9_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Jørgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ. The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anaesthetics and insecticides. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1067:241-53. [PMID: 1878375 DOI: 10.1016/0005-2736(91)90050-i] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An extensive computer-simulation study is performed on a simple but general molecular model recently proposed (Jørgensen et al. (1991) Biochem. Biophys. Acta 1062, 277-238) to describe foreign molecules interacting with lipid bilayers. The model is a multi-state lattice model of the main bilayer transition in which the foreign molecules are assumed to intercalate at interstitial lattice positions. Specific as well as non-specific interactions between the foreign molecules and the lipid acyl chains are considered. Particular attention is paid to the fluctuating properties of the membrane and how the presence of the foreign molecules modulates these fluctuations in the transition region. By means of computer-stimulation techniques, a detailed account is given of the macroscopic as well as microscopic consequences of the fluctuations. The macroscopic consequences of the fluctuations are seen in the thermal anomalies of the specific heat and the passive trans-membrane permeability. Microscopically, the fluctuations manifest themselves in lipid-domain formation in the transition region which implies an effective dynamic membrane heterogeneity. Within the model it is found that certain anaesthetics and insecticides which are characterised by specific interactions with the lipids have a strong effect on the heterogeneity of the membrane inducing regions of locally very high concentration of the foreign molecules. This leads to a broadening of the specific heat peak and a maximum in the membrane/water partition coefficient. These results are in accordance with available experimental data for volatile general anaesthetics like halothane, local anaesthetics like cocain derivatives, and insecticides like lindane.
Collapse
Affiliation(s)
- K Jørgensen
- Royal Danish School of Pharmacy, Universitetsparken 2, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- P F Knowles
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | |
Collapse
|