1
|
Feng R, Yang S, Zhao X, Sun B, Zhang S, Shen Q, Wan Q. Characterization of the Three DHFRs and K65P Variant: Enhanced Substrate Affinity and Molecular Dynamics Analysis. Protein J 2024; 43:935-948. [PMID: 39179691 DOI: 10.1007/s10930-024-10228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Dihydrofolate reductase (DHFR) is ubiquitously present in all living organisms and plays a crucial role in the growth of the fungal pathogen R.solani. Sequence alignment confirmed the evolutionary conservation of the essential lid domain, with the amino acid 'P' within the PEKN lid domain appearing with a frequency of 89.5% in higher organisms and 11.8% in lower organisms. Consequently, a K65P variant was introduced into R.solani DHFR (rDHFR). Subsequent enzymatic kinetics assays were conducted for human DHFR (hDHFR), rDHFR, E. coli DHFR (eDHFR), and the K65P variant. hDHFR exhibited the highest kcat of 0.95 s-1, followed by rDHFR with 0.14 s-1, while eDHFR displayed the lowest kcat of 0.09 s-1. Remarkably, the K65P variant induced a significant reduction in Km, resulting in a 1.8-fold enhancement in catalytic efficiency (kcat/Km) relative to the wild type. Differential scanning fluorimetry and binding free energy calculations confirmed the enhanced substrate affinity for both folate and NADPH in the K65P variant. These results suggest that the K65P mutation enhances substrate affinity and catalytic efficiency in DHFR, highlighting the evolutionary and functional importance of the K65 residue.
Collapse
Affiliation(s)
- Ruirui Feng
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shuanghao Yang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xingchu Zhao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bo Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shengkai Zhang
- Institute of Advanced Science Facilities, Shenzhen, 518107, People's Republic of China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qun Wan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
2
|
Giugliano G, Gajo M, Marforio TD, Zerbetto F, Mattioli EJ, Calvaresi M. Identification of Potential Drug Targets of Calix[4]arene by Reverse Docking. Chemistry 2024; 30:e202400871. [PMID: 38777795 DOI: 10.1002/chem.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.
Collapse
Affiliation(s)
- Giulia Giugliano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Margherita Gajo
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| |
Collapse
|
3
|
Rana S, Dranchak P, Dahlin JL, Lamy L, Li W, Oliphant E, Shrimp JH, Rajacharya GH, Tharakan R, Holland DO, Whitten AS, Wilson KM, Singh PK, Durum SK, Tao D, Rai G, Inglese J. Methotrexate-based PROTACs as DHFR-specific chemical probes. Cell Chem Biol 2024; 31:221-233.e14. [PMID: 37875111 PMCID: PMC10922102 DOI: 10.1016/j.chembiol.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.
Collapse
Affiliation(s)
- Sandeep Rana
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Patricia Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jayme L Dahlin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Laurence Lamy
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Wenqing Li
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Erin Oliphant
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Jonathan H Shrimp
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Girish H Rajacharya
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ravi Tharakan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - David O Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Apryl S Whitten
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Pankaj K Singh
- Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA; OU Health Stephenson Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Scott K Durum
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Dingyin Tao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA.
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA; Metabolic Medicine Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Feng R, Sun B, Zhang S, Su E, Kovalevsky A, Zhang F, Bennett BC, Shen Q, Wan Q. Discovery of Novel Rhizoctonia solani DHFR Inhibitors as Fungicides Using Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19385-19395. [PMID: 38038282 DOI: 10.1021/acs.jafc.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Dihydrofolate reductase (DHFR) is an essential enzyme in the folate pathway and has been recognized as a well-known target for antibacterial and antifungal drugs. We discovered eight compounds from the ZINC database using virtual screening to inhibit Rhizoctonia solani (R. solani), a fungal pathogen in crops. These compounds were evaluated with in vitro assays for enzymatic and antifungal activity. Among these, compound Hit8 is the most active R. solani DHFR inhibitor, with the IC50 of 10.2 μM. The selectivity of inhibition is 22.3 against human DHFR with the IC50 of 227.7 μM. Moreover, Hit8 has higher antifungal activity against R. solani (EC50 of 38.2 mg L-1) compared with validamycin A (EC50 of 67.6 mg L-1), a well-documented fungicide. These results suggest that Hit8 may be a potential fungicide. Our study exemplifies a computer-aided method to discover novel inhibitors that could target plant pathogenic fungi.
Collapse
Affiliation(s)
- Ruirui Feng
- College of Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bo Sun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shengkai Zhang
- Institute of Advanced Science Facilities, Shenzhen 518107, People's Republic of China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Feng Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Brad C Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qun Wan
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
5
|
Ma Y, Yi M, Wang W, Liu X, Wang Q, Liu C, Chen Y, Deng H. Oxidative degradation of dihydrofolate reductase increases CD38-mediated ferroptosis susceptibility. Cell Death Dis 2022; 13:944. [PMID: 36351893 PMCID: PMC9646779 DOI: 10.1038/s41419-022-05383-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
High expression of CD38 in tissues is a characteristic of aging, resulting in a decline in nicotinamide adenine dinucleotide (NAD) and increasing cellular reactive oxygen species (ROS). However, whether CD38 increases susceptibility to ferroptosis remains largely unexplored. Our previous study showed that CD38 overexpression decreased dihydrofolate reductase (DHFR). In the present study, we confirmed that high expression of CD38 increased ROS levels and induced DHFR degradation, which was prevented by nicotinamide mononucleotide (NMN) replenishment. We further revealed that ROS-mediated sulfonation on Cys7 of DHFR induced its degradation via the autophagy and non-canonical proteasome pathways. Mutation of Cys7 to alanine abolished ROS-induced DHFR degradation. Moreover, oxidative degradation of DHFR was responsible for the increased ferroptosis susceptibility of cells in which CD38 was highly expressed. We also found that CD38 expression was higher in bone-marrow-derived macrophages (BMDMs) from aged mice than those from young mice, while the DHFR level was lower. Consequently, we demonstrated that BMDMs from aged mice were more susceptible to ferroptosis that can be reverted by NMN replenishment, suggesting that CD38 high expression rendered cells more susceptible to ferroptosis. Taken together, these results indicated that CD38-mediated NAD+ decline promoted DHFR oxidative degradation, thus resulting in increased cellular susceptibility to ferroptosis and suggesting that NMN replenishment may protect macrophages from ferroptosis in aged mice.
Collapse
Affiliation(s)
- Yingying Ma
- grid.12527.330000 0001 0662 3178MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Meiqi Yi
- grid.459355.b0000 0004 6014 2908BeiGene (Beijing) Co., Ltd., 100084 Beijing, China
| | - Weixuan Wang
- grid.411847.f0000 0004 1804 4300Institute of Chinese Medicine, Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Xiaohui Liu
- grid.12527.330000 0001 0662 3178MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Qingtao Wang
- grid.24696.3f0000 0004 0369 153XBeijing Chao-yang Hospital, Capital Medical University, 100043 Beijing, China
| | - Chongdong Liu
- grid.24696.3f0000 0004 0369 153XBeijing Chao-yang Hospital, Capital Medical University, 100043 Beijing, China
| | - Yuling Chen
- grid.12527.330000 0001 0662 3178MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Haiteng Deng
- grid.12527.330000 0001 0662 3178MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
6
|
Ceborska M, Dąbrowa K, Cędrowski J, Zimnicka M. Hydrogen-bonded supramolecular assemblies of folic acid with simple hexoses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
8
|
Spizzichino S, Boi D, Boumis G, Lucchi R, Liberati FR, Capelli D, Montanari R, Pochetti G, Piacentini R, Parisi G, Paone A, Rinaldo S, Contestabile R, Tramonti A, Paiardini A, Giardina G, Cutruzzolà F. Cytosolic localization and in vitro assembly of human de novo thymidylate synthesis complex. FEBS J 2021; 289:1625-1649. [PMID: 34694685 PMCID: PMC9299187 DOI: 10.1111/febs.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5‐fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein–protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Lucchi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Angela Tramonti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
9
|
Takamura A, Thuy-Boun PS, Kitamura S, Han Z, Wolan DW. A photoaffinity probe that targets folate-binding proteins. Bioorg Med Chem Lett 2021; 40:127903. [PMID: 33713779 DOI: 10.1016/j.bmcl.2021.127903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Folate and related derivatives are essential small molecules required for survival. Of significant interest is the biological role and necessity of folate in the crosstalk between commensal organisms and their respective hosts, including the tremendously complex human distal gut microbiome. Here, we designed a folate-based probe consisting of a photo-crosslinker to detect and quantitate folate-binding proteins from proteomic samples. We demonstrate the selectivity of our probe for the well-established human folate-binding protein dihydrofolate reductase and show no promiscuous labeling occurs with human caspase-3 or bovine serum albumin, which served as negative controls. Affinity-based enrichment of folate-binding proteins from an E. coli lysate in combination with mass spectrometry proteomics verified the ability of our probe to isolate low-abundance folate-dependent proteins. We envision that our probe will serve as a tool to elucidate the roles of commensal microbial folate-binding proteins in health and microbiome-related diseases.
Collapse
Affiliation(s)
- Akihiro Takamura
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 3213497, Japan
| | - Peter S Thuy-Boun
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Seiya Kitamura
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhen Han
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis W Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Burley SK. Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. J Biol Chem 2021; 296:100559. [PMID: 33744282 PMCID: PMC8059052 DOI: 10.1016/j.jbc.2021.100559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Protein Data Bank (PDB) is an international core data resource central to fundamental biology, biomedicine, bioenergy, and biotechnology/bioengineering. Now celebrating its 50th anniversary, the PDB houses >175,000 experimentally determined atomic structures of proteins, nucleic acids, and their complexes with one another and small molecules and drugs. The importance of three-dimensional (3D) biostructure information for research and education obtains from the intimate link between molecular form and function evident throughout biology. Among the most prolific consumers of PDB data are biomedical researchers, who rely on the open access resource as the authoritative source of well-validated, expertly curated biostructures. This review recounts how the PDB grew from just seven protein structures to contain more than 49,000 structures of human proteins that have proven critical for understanding their roles in human health and disease. It then describes how these structures are used in academe and industry to validate drug targets, assess target druggability, characterize how tool compounds and other small-molecules bind to drug targets, guide medicinal chemistry optimization of binding affinity and selectivity, and overcome challenges during preclinical drug development. Three case studies drawn from oncology exemplify how structural biologists and open access to PDB structures impacted recent regulatory approvals of antineoplastic drugs.
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Wang Y, Hilty C. Determination of Ligand Binding Epitope Structures Using Polarization Transfer from Hyperpolarized Ligands. J Med Chem 2019; 62:2419-2427. [PMID: 30715877 DOI: 10.1021/acs.jmedchem.8b01711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug discovery processes require the determination of the protein binding site structure, which can be achieved via nuclear magnetic resonance (NMR) spectroscopy. While traditional NMR spectroscopy suffers from low sensitivity, NMR signals can be significantly enhanced through hyperpolarization of nuclear spins. Here, folic acid is hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Polarization transfer to dihydrofolate reductase is compared to signal evolution predicted for docking-derived structures. The results demonstrate that a scoring function derived from the experimental data improves the ranking of structures. With data from six methyl groups, Spearman's correlation coefficient of the experimental scoring function to the root-mean-square deviation from a reference structure is 0.88 for five individually addressed ligand protons and 0.59 for the entire ligand, while the same correlation coefficient of the energy calculated from docking alone is 0.49. D-DNP NMR-derived ranking, therefore, is capable of determining the ligand structure with a small number of individually addressed source spins.
Collapse
Affiliation(s)
- Yunyi Wang
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77843 , United States
| | - Christian Hilty
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , Texas 77843 , United States
| |
Collapse
|
12
|
Evolutionarily Related Dihydrofolate Reductases Perform Coequal Functions Yet Show Divergence in Their Trajectories. Protein J 2018; 37:301-310. [PMID: 30019321 DOI: 10.1007/s10930-018-9784-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The enzyme dihydrofolate reductase (DHFR) catalyzes NADPH dependent reduction of dihydrofolate to tetrahydrofolate. It plays a crucial role in the DNA synthesis. The investigation of evolution of DHFR generates immense curiosity. It aids in predicting how the enzyme has adapted to the surroundings of various cell types. In spite of great similarity in the structure of E. coli DHFR and human DHFR, their primary sequences are divergent to a great extent, which is evident in variations in the kinetics mechanism of their catalysis. In presence of physiological levels of ligands, they possess distinct kinetics and different rate limiting steps. We have reviewed the process of their unfolding and refolding, their behaviour in denaturing conditions and in presence of various chaperones. Although there is structural similarity between these two homologous enzymes yet they have established distinct mechanisms to accomplish the coequal functions.
Collapse
|
13
|
Lee YH, Choi H, Park S, Lee B, Yi GS. Drug repositioning for enzyme modulator based on human metabolite-likeness. BMC Bioinformatics 2017; 18:226. [PMID: 28617219 PMCID: PMC5471945 DOI: 10.1186/s12859-017-1637-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme's metabolites and drugs. METHODS We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden's index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness. RESULTS In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes were concordant with the literature evidence. CONCLUSIONS This study introduced a method to predict the repositioning of known drugs to possible modulators of disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly with known antimetabolite drugs and showed that the proposed method has better performance compared to other drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more disease associated metabolite-target protein relations.
Collapse
Affiliation(s)
- Yoon Hyeok Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hojae Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seongyong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Boah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
14
|
Bennike TB, Ellingsen T, Glerup H, Bonderup OK, Carlsen TG, Meyer MK, Bøgsted M, Christiansen G, Birkelund S, Andersen V, Stensballe A. Proteome Analysis of Rheumatoid Arthritis Gut Mucosa. J Proteome Res 2016; 16:346-354. [PMID: 27627584 DOI: 10.1021/acs.jproteome.6b00598] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disease leading to cartilage damage and ultimately impaired joint function. To gain new insight into the systemic immune manifestations of RA, we characterized the colon mucosa proteome from 11 RA-patients and 10 healthy controls. The biopsies were extracted by colonoscopy and analyzed by label-free quantitative proteomics, enabling the quantitation of 5366 proteins. The abundance of dihydrofolate reductase (DHFR) was statistically significantly increased in RA-patient biopsies compared with controls and correlated with the administered dosage of methotrexate (MTX), the most frequently prescribed immunosuppressive drug for RA. Additionally, our data suggest that treatment with Leflunomide, a common alternative to MTX, increases DHFR. The findings were supported by immunohistochemistry with confocal microscopy, which furthermore demonstrated that DHFR was located in the cytosol of the intestinal epithelial and interstitial cells. Finally, we identified 223 citrullinated peptides from 121 proteins. Three of the peptides were unique to RA. The list of citrullinated proteins was enriched in extracellular and membrane proteins and included known targets of anticitrullinated protein antibodies (ACPAs). Our findings support that the colon mucosa could trigger the production of ACPAs, which could contribute to the onset of RA. The MS data have been deposited to ProteomeXchange with identifiers PXD001608 and PXD003082.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Departments of Pathology, Boston Children's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital , Odense DK-5000, Denmark.,University Research Clinic for Innovative Patient Pathways, Aarhus University , Aarhus DK- 8000, Denmark
| | - Henning Glerup
- University Research Clinic for Innovative Patient Pathways, Aarhus University , Aarhus DK- 8000, Denmark.,Diagnostic Center, Section of Gastroenterology, Regional Hospital Silkeborg , Silkeborg DK-8600, Denmark
| | - Ole Kristian Bonderup
- University Research Clinic for Innovative Patient Pathways, Aarhus University , Aarhus DK- 8000, Denmark.,Diagnostic Center, Section of Gastroenterology, Regional Hospital Silkeborg , Silkeborg DK-8600, Denmark
| | - Thomas Gelsing Carlsen
- Department of Health Science and Technology, Aalborg University , Aalborg DK-9220, Denmark
| | - Michael Kruse Meyer
- Department of Health Science and Technology, Aalborg University , Aalborg DK-9220, Denmark.,Department of Rheumatology and Center for Clinical Research, North Denmark Regional Hospital , Hjoerring DK-9800, Denmark
| | - Martin Bøgsted
- Department of Clinical Medicine, Aalborg University , Aalborg DK-9220, Denmark.,Department of Haematology, Aalborg University Hospital , Aalborg DK-9000, Denmark
| | | | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University , Aalborg DK-9220, Denmark
| | - Vibeke Andersen
- Institute of Regional Health Research-Center Soenderjylland, University of Southern Denmark , Odense DK-5230, Denmark.,Molecular Diagnostic and Clinical Research Unit, Hospital of Southern Jutland , Aabenraa DK-6200, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University , Aalborg DK-9220, Denmark
| |
Collapse
|
15
|
Wong LH, Sinha S, Bergeron JR, Mellor JC, Giaever G, Flaherty P, Nislow C. Reverse Chemical Genetics: Comprehensive Fitness Profiling Reveals the Spectrum of Drug Target Interactions. PLoS Genet 2016; 12:e1006275. [PMID: 27588687 PMCID: PMC5010250 DOI: 10.1371/journal.pgen.1006275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023] Open
Abstract
The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development. One of the most profound outcomes of fast, reliable genome sequencing is the ability to tailor drug therapy to an individual’s genotype. This ‘personalized’ or ‘precision medicine’ is the realization of a decades-long effort to maximize drug effect and limit unwanted side effects. An undesirable consequence of such targeted therapies, however, is the emergence of drug resistance. This outcome is the result of an evolutionary process where mutations in the drug target render the drug perturbation allow such mutant cells to proliferate. Because of the unbiased, and stochastic nature of the emergence of drug resistance, it is impossible to predict. We developed a test where hundreds of thousands of mutant cells are exposed to a drug simultaneously and those cells that modulate resistance survive. This method is innovative because it partners a high-throughput experimental protocol with a tailored statistical model to identify all mutations that modulate resistance. Finally, we used synthetic biology to re-create these mutations and demonstrate that they were, in fact, bona fide drug-resistant variants. These mutations were further extended and confirmed to also be resistant in the human orthologue. This combined biological-computational approach allows one to identify drug’s degree of resistance to both guide treatments and future drug discovery.
Collapse
Affiliation(s)
- Lai H. Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Julien R. Bergeron
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (PF); (CN)
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- * E-mail: (PF); (CN)
| |
Collapse
|
16
|
Jack BR, Meyer AG, Echave J, Wilke CO. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes. PLoS Biol 2016; 14:e1002452. [PMID: 27138088 PMCID: PMC4854464 DOI: 10.1371/journal.pbio.1002452] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 12/26/2022] Open
Abstract
Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.
Collapse
Affiliation(s)
- Benjamin R. Jack
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Austin G. Meyer
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Julian Echave
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Claus O. Wilke
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
17
|
Arrested Hematopoiesis and Vascular Relaxation Defects in Mice with a Mutation in Dhfr. Mol Cell Biol 2016; 36:1222-36. [PMID: 26830229 DOI: 10.1128/mcb.01035-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/22/2016] [Indexed: 01/06/2023] Open
Abstract
Dihydrofolate reductase (DHFR) is a critical enzyme in the folate metabolism pathway and also plays a role in regulating nitric oxide (NO) signaling in endothelial cells. Although both coding and noncoding mutations with phenotypic effects have been identified in the human DHFR gene, no mouse model is currently available to study the consequences of perturbing DHFR in vivo In order to identify genes involved in definitive hematopoiesis, we performed a forward genetic screen and produced a mouse line, here referred to as Orana, with a point mutation in the Dhfr locus leading to a Thr136Ala substitution in the DHFR protein. Homozygote Orana mice initiate definitive hematopoiesis, but expansion of progenitors in the fetal liver is compromised, and the animals die between embryonic day 13.5 (E13.5) and E14.5. Heterozygote Orana mice survive to adulthood but have tissue-specific alterations in folate abundance and distribution, perturbed stress erythropoiesis, and impaired endothelium-dependent relaxation of the aorta consistent with the role of DHFR in regulating NO signaling. Orana mice provide insight into the dual roles of DHFR and are a useful model for investigating the role of environmental and dietary factors in the context of vascular defects caused by altered NO signaling.
Collapse
|
18
|
Bhosle A, Chandra N. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities. FEBS J 2016; 283:1139-67. [PMID: 26797763 DOI: 10.1111/febs.13662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/03/2015] [Accepted: 01/14/2016] [Indexed: 11/28/2022]
Abstract
Antifolates are competitive inhibitors of dihydrofolate reductase (DHFR), a conserved enzyme that is central to metabolism and widely targeted in pathogenic diseases, cancer and autoimmune disorders. Although most clinically used antifolates are known to be target specific, some display a fair degree of cross-reactivity with DHFRs from other species. A method that enables identification of determinants of affinity and specificity in target DHFRs from different species and provides guidelines for the design of antifolates is currently lacking. To address this, we first captured the potential druggable space of a DHFR in a substructure called the 'supersite' and classified supersites of DHFRs from 56 species into 16 'site-types' based on pairwise structural similarity. Analysis of supersites across these site-types revealed that DHFRs exhibit varying extents of dissimilarity at structurally equivalent positions in and around the binding site. We were able to explain the pattern of affinities towards chemically diverse antifolates exhibited by DHFRs of different site-types based on these structural differences. We then generated an antifolate-DHFR network by mapping known high-affinity antifolates to their respective supersites and used this to identify antifolates that can be repurposed based on similarity between supersites or antifolates. Thus, we identified 177 human-specific and 458 pathogen-specific antifolates, a large number of which are supported by available experimental data. Thus, in the light of the clinical importance of DHFR, we present a novel approach to identifying differences in the druggable space of DHFRs that can be utilized for rational design of antifolates.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Bastos LDC, de Souza FR, Guimarães AP, Sirouspour M, Cuya Guizado TR, Forgione P, Ramalho TC, França TCC. Virtual screening, docking, and dynamics of potential new inhibitors of dihydrofolate reductase from Yersinia pestis. J Biomol Struct Dyn 2016; 34:2184-98. [DOI: 10.1080/07391102.2015.1110832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Leonardo da Costa Bastos
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ 22290-270, Brazil
| | - Felipe Rodrigues de Souza
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ 22290-270, Brazil
| | - Ana Paula Guimarães
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ 22290-270, Brazil
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG 36570-000 Brazil
| | - Mehdi Sirouspour
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, Canada
| | - Teobaldo Ricardo Cuya Guizado
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ 22290-270, Brazil
- Faculty of Technology, University of the State of Rio de Janeiro, Resende, RJ 27.537-000, Brazil
| | - Pat Forgione
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, Canada
| | - Teodorico Castro Ramalho
- Laboratory of Molecular Modeling, Chemistry Department, Federal University of Lavras, Lavras, MG, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ 22290-270, Brazil
- Department of Chemistry & Biochemistry, Concordia University, Montreal, QC, Canada
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Wang N, McCammon JA. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Protein Sci 2015; 25:79-86. [PMID: 26096018 DOI: 10.1002/pro.2720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022]
Abstract
In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa.
Collapse
Affiliation(s)
- Nuo Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92037
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92037.,Department of Pharmacology, University of California San Diego, La Jolla, California, 92037.,Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, 92037
| |
Collapse
|
21
|
Xu F, Sudo Y, Sanechika S, Yamashita J, Shimaguchi S, Honda SI, Sumi-Ichinose C, Mori-Kojima M, Nakata R, Furuta T, Sakurai M, Sugimoto M, Soga T, Kondo K, Ichinose H. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett 2014; 588:3924-31. [PMID: 25240194 DOI: 10.1016/j.febslet.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/31/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Quinonoid dihydropteridine reductase (QDPR) catalyzes the regeneration of tetrahydrobiopterin (BH4), a cofactor for monoamine synthesis, phenylalanine hydroxylation and nitric oxide production. Here, we produced and analyzed a transgenic Qdpr(-/-) mouse model. Unexpectedly, the BH4 contents in the Qdpr(-/-) mice were not decreased and even increased in some tissues, whereas those of the oxidized form dihydrobiopterin (BH2) were significantly increased. We demonstrated that unlike the wild-type mice, dihydrofolate reductase regenerated BH4 from BH2 in the mutants. Furthermore, we revealed wide alterations in folate-associated metabolism in the Qdpr(-/-) mice, which suggests an interconnection between folate and biopterin metabolism in the transgenic mouse model.
Collapse
Affiliation(s)
- Feng Xu
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yusuke Sudo
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Sho Sanechika
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Junpei Yamashita
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Sho Shimaguchi
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shun-ichiro Honda
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Masayo Mori-Kojima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Kazunao Kondo
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
22
|
Al-Rashood ST, Hassan GS, El-Messery SM, Nagi MN, Habib ESE, Al-Omary FA, El-Subbagh HI. Synthesis, biological evaluation and molecular modeling study of 2-(1,3,4-thiadiazolyl-thio and 4-methyl-thiazolyl-thio)-quinazolin-4-ones as a new class of DHFR inhibitors. Bioorg Med Chem Lett 2014; 24:4557-4567. [DOI: 10.1016/j.bmcl.2014.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
|
23
|
Behiry EM, Luk LYP, Matthews SM, Loveridge EJ, Allemann RK. Role of the occluded conformation in bacterial dihydrofolate reductases. Biochemistry 2014; 53:4761-8. [PMID: 25014833 DOI: 10.1021/bi500507v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli (EcDHFR) adopts two major conformations, closed and occluded, and movement between these two conformations is important for progression through the catalytic cycle. DHFR from the cold-adapted organism Moritella profunda (MpDHFR) on the other hand is unable to form the two hydrogen bonds that stabilize the occluded conformation in EcDHFR and so remains in a closed conformation during catalysis. EcDHFR-S148P and MpDHFR-P150S were examined to explore the influence of the occluded conformation on catalysis by DHFR. Destabilization of the occluded conformation did not affect hydride transfer but altered the affinity for the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP(+)) and changed the rate-determining step of the catalytic cycle for EcDHFR-S148P. Even in the absence of an occluded conformation, MpDHFR follows a kinetic pathway similar to that of EcDHFR with product release being the rate-limiting step in the steady state at pH 7, suggesting that MpDHFR uses a different strategy to modify its affinity for NADP(+). DHFRs from many organisms lack a hydrogen bond donor in the appropriate position and hence most likely do not form an occluded conformation. The link between conformational cycling between closed and occluded forms and progression through the catalytic cycle is specific to EcDHFR and not a general characteristic of prokaryotic DHFR catalysis.
Collapse
Affiliation(s)
- Enas M Behiry
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modeling study. Eur J Med Chem 2014; 74:234-45. [DOI: 10.1016/j.ejmech.2014.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/22/2022]
|
25
|
Tuttle LM, Dyson HJ, Wright PE. Side chain conformational averaging in human dihydrofolate reductase. Biochemistry 2014; 53:1134-45. [PMID: 24498949 PMCID: PMC3985697 DOI: 10.1021/bi4015314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The three-dimensional structures
of the dihydrofolate reductase
enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather
low level of sequence identity. Whereas the active site loops of ecDHFR
undergo major conformational rearrangements during progression through
the reaction cycle, hDHFR remains fixed in a closed loop conformation
in all of its catalytic intermediates. To elucidate the structural
and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility
and dynamics in complexes of hDHFR that represent intermediates in
the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion
experiments show that, in marked contrast to the functionally important
motions that feature prominently in the catalytic intermediates of
ecDHFR, millisecond time scale fluctuations cannot be detected for
hDHFR side chains. Ligand flux in hDHFR is thought to be mediated
by conformational changes between a hinge-open state when the substrate/product-binding
pocket is vacant and a hinge-closed state when this pocket is occupied.
Comparison of X-ray structures of hinge-open and hinge-closed states
shows that helix αF changes position by sliding between the
two states. Analysis of χ1 rotamer populations derived
from measurements of 3JCγCO and 3JCγN couplings
indicates that many of the side chains that contact helix αF
exhibit rotamer averaging that may facilitate the conformational change.
The χ1 rotamer adopted by the Phe31 side chain depends
upon whether the active site contains the substrate or product. In
the holoenzyme (the binary complex of hDHFR with reduced nicotinamide
adenine dinucleotide phosphate), a combination of hinge opening and
a change in the Phe31 χ1 rotamer opens the active
site to facilitate entry of the substrate. Overall, the data suggest
that, unlike ecDHFR, hDHFR requires minimal backbone conformational
rearrangement as it proceeds through its enzymatic cycle, but that
ligand flux is brokered by more subtle conformational changes that
depend on the side chain motions of critical residues.
Collapse
Affiliation(s)
- Lisa M Tuttle
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
26
|
Ubhi D, Kago G, Monzingo AF, Robertus JD. Structural analysis of a fungal methionine synthase with substrates and inhibitors. J Mol Biol 2014; 426:1839-47. [PMID: 24524835 DOI: 10.1016/j.jmb.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
Abstract
The cobalamin-independent methionine synthase from Candida albicans, known as Met6p, is a 90-kDa enzyme that consists of two (βα)8 barrels. The active site is located between the two domains and has binding sites for a zinc ion and substrates L-homocysteine and 5-methyl-tetrahydrofolate-glutamate3. Met6p catalyzes transfer of the methyl group of 5-methyl-tetrahydrofolate-glutamate3 to the L-homocysteine thiolate to generate methionine. Met6p is essential for fungal growth, and we currently pursue it as an antifungal drug design target. Here we report the binding of L-homocysteine, methionine, and several folate analogs. We show that binding of L-homocysteine or methionine results in conformational rearrangements at the amino acid binding pocket, moving the catalytic zinc into position to activate the thiol group. We also map the folate binding pocket and identify specific binding residues, like Asn126, whose mutation eliminates catalytic activity. We also report the development of a robust fluorescence-based activity assay suitable for high-throughput screening. We use this assay and an X-ray structure to characterize methotrexate as a weak inhibitor of fungal Met6p.
Collapse
Affiliation(s)
- Devinder Ubhi
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Grace Kago
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Arthur F Monzingo
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon D Robertus
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Bukar N, Zhao SS, Charbonneau DM, Pelletier JN, Masson JF. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor. Chem Commun (Camb) 2014; 50:4947-50. [DOI: 10.1039/c4cc01423e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Insight into the molecular mechanism about lowered dihydrofolate binding affinity to dihydrofolate reductase-like 1 (DHFRL1). J Mol Model 2013; 19:5187-98. [PMID: 24122410 DOI: 10.1007/s00894-013-2018-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Human dihydrofolate reductase-like 1 (DHFRL1) has been identified as a second human dihydrofolate reductase (DHFR) enzyme. Although DHFRL1 have high sequence homology with human DHFR, dihydrofolate (DHF) exhibits a lowered binding affinity to DHFRL1 and the corresponding molecular mechanism is still unknown. To address this question, we studied the binding of DHF to DHFRL1 and DHFR by using molecular dynamics simulation. Moreover, to investigate the role the 24th residue of DHFR/DHFRL1 plays in DHF binding, R24W DHFRL1 mutant was also studied. The van der Waals interaction are more crucial for the total DHF binding energies, while the difference between the DHF binding energies of human DHFR and DHFRL1 can be attributed to the electrostatic interaction and the polar desolvation free energy.More specifically, lower DHF affinity to DHFRL1 can be mainly attributed to the reduction of net electrostatic interactions of residues Arg32 and Gln35 of DHFRL1 with DHF as being affected by Arg24. The side chain of Arg24 in DHFRL1 can extend deeply into the binding sites of DHF and NADPH, and disturb the DHF binding by steric effect, which rarely happens in human DHFR and R24W DHFRL1 mutant. Additionally, the conformation of loop I in DHFRL1 was also studied in this work. Interestingly, the loop conformation resemble to normal closed state of Escherichia coli DHFR other than the closed state of human DHFR. We hope this work will be useful to understand the general characteristics of DHFRL1.
Collapse
|
29
|
Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat Struct Mol Biol 2013; 20:1243-9. [PMID: 24077226 PMCID: PMC3823643 DOI: 10.1038/nsmb.2676] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022]
Abstract
Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, E. coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics, following a pattern of divergent evolution that is tuned by the cellular environment.
Collapse
|
30
|
Tosso RD, Andujar SA, Gutierrez L, Angelina E, Rodríguez R, Nogueras M, Baldoni H, Suvire FD, Cobo J, Enriz RD. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J Chem Inf Model 2013; 53:2018-32. [PMID: 23834278 DOI: 10.1021/ci400178h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular modeling study on dihydrofolate reductase (DHFR) inhibitors was carried out. By combining molecular dynamics simulations with semiempirical (PM6), ab initio, and density functional theory (DFT) calculations, a simple and generally applicable procedure to evaluate the binding energies of DHFR inhibitors interacting with the human enzyme is reported here, providing a clear picture of the binding interactions of these ligands from both structural and energetic viewpoints. A reduced model for the binding pocket was used. This approach allows us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the quantum theory of atoms in molecules (QTAIM) technique. Thus, molecular aspects of the binding interactions between inhibitors and the DHFR are discussed in detail. A significant correlation between binding energies obtained from DFT calculations and experimental IC₅₀ values was obtained, predicting with an acceptable qualitative accuracy the potential inhibitor effect of nonsynthesized compounds. Such correlation was experimentally corroborated synthesizing and testing two new inhibitors reported in this paper.
Collapse
Affiliation(s)
- Rodrigo D Tosso
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Connelly S, DeMartino JK, Boger DL, Wilson IA. Biological and structural evaluation of 10R- and 10S-methylthio-DDACTHF reveals a new role for sulfur in inhibition of glycinamide ribonucleotide transformylase. Biochemistry 2013; 52:5133-44. [PMID: 23869564 DOI: 10.1021/bi4005182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycinamide ribonucleotide transformylase (GAR Tfase) is a folate-dependent enzyme in the de novo purine biosynthesis pathway, which has long been considered a potential target for development of anti-neoplastic therapeutics. Here we report the biological and X-ray crystallographic evaluations of both independent C10 diastereomers, 10S- and 10R-methylthio-DDACTHF, bound to human GAR Tfase, including the highest-resolution apo GAR Tfase structure to date (1.52 Å). Both diastereomers are potent inhibitors (Ki = 210 nM for 10R, and Ki = 180 nM for 10S) of GAR Tfase and exhibit effective inhibition of human leukemia cell growth (IC₅₀ = 80 and 50 nM, respectively). Their inhibitory activity was surprisingly high, and these lipophilic C10-substituted analogues show distinct advantages over their hydrophilic counterparts, most strikingly in retaining potency in mutant human leukemia cell lines that lack reduced folate carrier protein activity (IC₅₀ = 70 and 60 nM, respectively). Structural characterization reveals a new binding mode for these diastereoisomers, in which the lipophilic thiomethyl groups penetrate deeper into a hydrophobic pocket within the folate-binding site. In silico docking simulations of three other sulfur-containing folate analogues also indicate that this hydrophobic cleft represents a favorable region for binding lipophilic substituents. Overall, these results suggest sulfur and its substitutions play an important role in not only the binding of anti-folates to GAR Tfase but also the selectivity and cellular activity (growth inhibition), thereby presenting new possibilities for the future design of potent and selective anti-folate drugs that target GAR Tfase.
Collapse
Affiliation(s)
- Stephen Connelly
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
32
|
Hassan GS, El-Messery SM, Al-Omary FAM, Al-Rashood ST, Shabayek MI, Abulfadl YS, Habib ESE, El-Hallouty SM, Fayad W, Mohamed KM, El-Menshawi BS, El-Subbagh HI. Nonclassical antifolates, part 4. 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR inhibitors: synthesis, biological evaluation and molecular modeling study. Eur J Med Chem 2013; 66:135-45. [PMID: 23792351 DOI: 10.1016/j.ejmech.2013.05.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/19/2013] [Accepted: 05/25/2013] [Indexed: 11/18/2022]
Abstract
A new series of compounds possessing 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol skeleton was designed, synthesized, and evaluated for their in vitro DHFR inhibition, antimicrobial, antitumor and schistosomicidal activities. Four active compounds were allocated, the antibacterial 22 (comparable to gentamicin and ciprofloxacin), the schistosomicidal 29 (comparable to praziquantel), the DHFR inhibitor 34 (IC₅₀ 0.03 μM, 2.7 fold more active than MTX), and the antitumor 36 (comparable to doxorubicin). Molecular modeling studies concluded that recognition with key amino acid Leu4 and Val1 is essential for DHFR binding. Flexible alignment and surface mapping revealed that the obtained model could be useful for the development of new class of DHFR inhibitors.
Collapse
Affiliation(s)
- Ghada S Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci U S A 2013; 110:10159-64. [PMID: 23733948 DOI: 10.1073/pnas.1307130110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.
Collapse
|
34
|
Weikl TR, Boehr DD. Conformational selection and induced changes along the catalytic cycle of Escherichia coli
dihydrofolate reductase. Proteins 2012; 80:2369-83. [DOI: 10.1002/prot.24123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023]
|
35
|
Oliveira AA, Rennó MN, de Matos CAS, Bertuzzi MD, Ramalho TC, Fraga CA, França TCC. Molecular Modeling Studies ofYersinia pestisDihydrofolate Reductase. J Biomol Struct Dyn 2011; 29:351-67. [DOI: 10.1080/07391102.2011.10507390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Quiñonero D, López KA, Deyà PM, Piña MN, Morey J. Synthetic Tripodal Squaramido-Based Receptors for the Complexation of Antineoplastic Folates in Water. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 2011; 332:234-8. [PMID: 21474759 DOI: 10.1126/science.1198542] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.
Collapse
Affiliation(s)
- Gira Bhabha
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Adinarayana KPS, Devi RK. Protein-Ligand interaction studies on 2, 4, 6- trisubstituted triazine derivatives as anti-malarial DHFR agents using AutoDock. Bioinformation 2011; 6:74-7. [PMID: 21544169 PMCID: PMC3082864 DOI: 10.6026/97320630006074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/23/2011] [Indexed: 12/04/2022] Open
Abstract
The dihydrofolate reductase (DHFR) domain of P. falciparum is one of the few well defined targets in malarial chemotherapy. The enzyme catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH) dependent reduction of dihydrofolate to tetrahydrofolate. Protein-ligand interactions were studied using DHFR protein 2BL9, extracted from PDB to evaluate the strength of affinity of various molecules towards ligand binding site and to study the extent of correlation between experimental values and computational dock scores. AutoDock runs resulted in binding energy scores from -7.14 to -10.72 kcal/mol. Among the five inhibitors (Bioorganic and Medicinal Chemistry Letters 15 2005 531-533) selected for docking studies, an excellent correlation was observed in all cases, for instance, experimentally reported most active molecule 2a (MIC: 1µg/ml) showed a high dock score (-10.72 kcal/mol) than the remaining inhibitors. Therefore, molecular docking using AutoDock suggests the importance of evaluating the prediction accuracy of various molecules as evidenced by a correlation coefficient of 0.961 between experimental activities and AutoDock binding energies.
Collapse
Affiliation(s)
- Katika Prabhakara Surya Adinarayana
- Department of Anatomy, Andhra Medical College, Visakhapatnam – 530001, India
- Bio-Lab, Research Gateway for Biosciences (RGBio), 47-3-30, Dwaraka Nagar, 5th Lane, Visakhapatnam – 530016, India
| | | |
Collapse
|
39
|
Gangjee A, Zaware N, Raghavan S, Ihnat M, Shenoy S, Kisliuk RL. Single agents with designed combination chemotherapy potential: synthesis and evaluation of substituted pyrimido[4,5-b]indoles as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents. J Med Chem 2010; 53:1563-78. [PMID: 20092323 DOI: 10.1021/jm9011142] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combinations of antiangiogenic agents (AAs) with cytotoxic agents have shown significant promise in cancer treatment, and several such clinical trials are currently underway. We have designed, synthesized, and evaluated two compounds that each inhibit vascular endothelial growth factor receptor-2 (VEGFR-2) and platelet-derived growth factor receptor-beta (PDGFR-beta) for antiangiogenic effects and also inhibit human thymidylate synthase (hTS) for cytotoxic effects in single agents. The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate benzenethiols. The inhibitory potency of both these single agents against VEGFR-2, PDGFR-beta, and hTS is better than or close to standards. In a COLO-205 xenograft mouse model, one of the analogs significantly decreased tumor growth (tumor growth inhibition (TGI) = 76% at 35 mg/kg), liver metastases, and tumor blood vessels compared with a standard drug and with control and thus demonstrated potent tumor growth inhibition, inhibition of metastasis, and antiangiogenic effects in vivo. These compounds afford combination chemotherapeutic potential in single agents.
Collapse
Affiliation(s)
- Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Volpato JP, Yachnin BJ, Blanchet J, Guerrero V, Poulin L, Fossati E, Berghuis AM, Pelletier JN. Multiple conformers in active site of human dihydrofolate reductase F31R/Q35E double mutant suggest structural basis for methotrexate resistance. J Biol Chem 2009; 284:20079-89. [PMID: 19478082 PMCID: PMC2740434 DOI: 10.1074/jbc.m109.018010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/06/2009] [Indexed: 11/06/2022] Open
Abstract
Methotrexate is a slow, tight-binding, competitive inhibitor of human dihydrofolate reductase (hDHFR), an enzyme that provides key metabolites for nucleotide biosynthesis. In an effort to better characterize ligand binding in drug resistance, we have previously engineered hDHFR variant F31R/Q35E. This variant displays a >650-fold decrease in methotrexate affinity, while maintaining catalytic activity comparable to the native enzyme. To elucidate the molecular basis of decreased methotrexate affinity in the doubly substituted variant, we determined kinetic and inhibitory parameters for the simple variants F31R and Q35E. This demonstrated that the important decrease of methotrexate affinity in variant F31R/Q35E is a result of synergistic effects of the combined substitutions. To better understand the structural cause of this synergy, we obtained the crystal structure of hDHFR variant F31R/Q35E complexed with methotrexate at 1.7-A resolution. The mutated residue Arg-31 was observed in multiple conformers. In addition, seven native active-site residues were observed in more than one conformation, which is not characteristic of the wild-type enzyme. This suggests that increased residue disorder underlies the observed methotrexate resistance. We observe a considerable loss of van der Waals and polar contacts with the p-aminobenzoic acid and glutamate moieties. The multiple conformers of Arg-31 further suggest that the amino acid substitutions may decrease the isomerization step required for tight binding of methotrexate. Molecular docking with folate corroborates this hypothesis.
Collapse
Affiliation(s)
| | | | - Jonathan Blanchet
- the Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7 and
| | - Vanessa Guerrero
- the Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7 and
| | - Lucie Poulin
- the Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7 and
| | | | - Albert M. Berghuis
- the Departments of Biochemistry and
- Microbiology and Immunology, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Joelle N. Pelletier
- From the Département de Biochimie and
- the Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7 and
| |
Collapse
|
41
|
Tanrikulu Y, Proschak E, Werner T, Geppert T, Todoroff N, Klenner A, Kottke T, Sander K, Schneider E, Seifert R, Stark H, Clark T, Schneider G. Homology Model Adjustment and Ligand Screening with a Pseudoreceptor of the Human Histamine H4Receptor. ChemMedChem 2009; 4:820-7. [DOI: 10.1002/cmdc.200800443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison. Drug Resist Updat 2009; 12:28-41. [PMID: 19272832 DOI: 10.1016/j.drup.2009.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 02/04/2009] [Indexed: 12/16/2022]
Abstract
Human dihydrofolate reductase (DHFR) is a primary target for antifolate drugs in cancer treatment, while DHFRs from Plasmodium falciparum, Plasmodium vivax and various bacterial species are primary targets in the treatment of malaria and bacterial infections. Mutations in each of these DHFRs can result in resistance towards clinically relevant antifolates. We review the structural and functional impact of active-site mutations with respect to enzyme activity and antifolate resistance of DHFRs from mammals, protozoa and bacteria. The high structural homology between DHFRs results in a number of cross-species, active-site 'hot-spots' for broad-based antifolate resistance. In addition, we identify mutations that confer species-specific resistance, or antifolate-specific resistance. This comparative review of antifolate binding in diverse species provides new insights into the relationship between antifolate design and the development of mutational resistance. It also presents avenues for designing antifolate-resistant mammalian DHFRs as chemoprotective agents.
Collapse
|
43
|
Srivastava V, Kumar A, Mishra BN, Siddiqi MI. Molecular docking studies on DMDP derivatives as human DHFR inhibitors. Bioinformation 2008; 3:180-8. [PMID: 19238244 PMCID: PMC2639668 DOI: 10.6026/97320630003180] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/30/2008] [Indexed: 11/23/2022] Open
Abstract
Molecular docking is routinely used for understanding drug-receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literature to DHFR and studied their specific interactions with DHFR. A new shape-based method, LigandFit, was used for docking DMDP derivatives into DHFR active sites. The result indicates that the molecular docking approach is reliable and produces a good correlation coefficient (r² = 0.499) for the 73 compounds between docking score and IC(50) values (Inhibitory Activity). The chloro substituted naphthyl ring of compound 63 makes significant hydrophobic contact with Leu 22, Phe 31 and Pro 61 of the DHFR active site leading to enhanced inhibition of the enzyme. The docked complexes provide better insights to design more potent DHFR inhibitors prior to their synthesis.
Collapse
Affiliation(s)
- Vivek Srivastava
- Department of Biotechnology, Institute of Engineering and Technology, Sitapur Road, Lucknow 21
| | | | | | | |
Collapse
|
44
|
Gangjee A, Qiu Y, Li W, Kisliuk RL. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. J Med Chem 2008; 51:5789-97. [PMID: 18800768 DOI: 10.1021/jm8006933] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-{4-[(2-Amino-6-methyl-4-oxo-3,4-dihydrothieno[2,3- d]pyrimidin-5-yl)sulfanyl]benzoyl}-L-glutamic acid (4) and nine nonclassical analogues 5-13 were synthesized as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. The key intermediate in the synthesis was 2-amino-6-methylthieno[2,3-d]pyrimidin-4(3 H)-one (16), which was converted to the 5-bromo-substituted compound 17 followed by an Ullmann reaction to afford 5-13. The classical analogue 4 was synthesized by coupling the benzoic acid derivative 19 with diethyl L-glutamate and saponification. Compound 4 is the most potent dual inhibitor of human TS (IC 50 = 40 nM) and human DHFR (IC 50 = 20 nM) known to date. The nonclassical analogues 5- 13 were moderately potent against human TS with IC 50 values ranging from 0.11 to 4.6 microM. The 4-nitrophenyl analogue 7 was the most potent compound in the nonclassical series, demonstrating potent dual inhibitory activities against human TS and DHFR. This study indicated that the 5-substituted 2-amino-4-oxo-6-methylthieno[2,3-d]pyrimidine scaffold is highly conducive to dual human TS-DHFR inhibitory activity.
Collapse
Affiliation(s)
- Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | |
Collapse
|
45
|
Fossati E, Volpato JP, Poulin L, Guerrero V, Dugas DA, Pelletier JN. 2-tier bacterial and in vitro selection of active and methotrexate-resistant variants of human dihydrofolate reductase. ACTA ACUST UNITED AC 2008; 13:504-14. [PMID: 18566481 DOI: 10.1177/1087057108318783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a rapid and reliable 2-tier selection and screen for detection of activity as well as drug-resistance in mutated variants of a clinically-relevant drug-target enzyme. Human dihydrofolate reductase point-mutant libraries were subjected to a 1st-tier bacterial complementation assay, such that bacterial propagation served as an indicator of enzyme activity. Alternatively, when selection was performed in the presence of the inhibitor methotrexate (MTX), propagation indicated MTX resistance. The selected variants were then subjected to a 2nd-tier in vitro screen in 96-well plate format using crude bacterial lysate. Conditions were defined to establish a threshold for activity or for MTX resistance. The 2nd-tier assay allowed rapid detection of the best variants among the leads and provided reliable estimates of relative reactivity, (k(cat)) and IC(50)(MTX). Screening saturation libraries of active-site positions 7, 15, 24, 70, and 115 revealed a variety of novel mutations compatible with reactivity as well as 2 novel MTX-resistant variants: V115A and V115C. Both variants displayed K(i)(MTX)=20 nM, a 600-fold increase relative to the wild-type. We also present preliminary results from screening against further antifolates following simple modifications of the protocol. The flexibility and robustness of this method will provide new insights into interactions between ligands and active-site residues of this clinically relevant human enzyme.
Collapse
Affiliation(s)
- Elena Fossati
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Regulation of human dihydrofolate reductase activity and expression. VITAMINS AND HORMONES 2008; 79:267-92. [PMID: 18804698 DOI: 10.1016/s0083-6729(08)00409-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dihydrofolate reductase (DHFR) enzyme catalyzes tetrahydrofolate regeneration by reduction of dihydrofolate using NADPH as a cofactor. Tetrahydrofolate and its one carbon adducts are required for de novo synthesis of purines and thymidylate, as well as glycine, methionine and serine. DHFR inhibition causes disruption of purine and thymidylate biosynthesis and DNA replication, leading to cell death. Therefore, DHFR has been an attractive target for chemotherapy of many diseases including cancer. Over the following years, in order to develop better antifolates, a detailed understanding of DHFR at every level has been undertaken such as structure-functional analysis, mechanisms of action, transcriptional and translation regulation of DHFR using a wide range of technologies. Because of this wealth of information created, DHFR has been used extensively as a model system for enzyme catalysis, investigating the relations between structure in-silico structure-based drug design, transcription from TATA-less promoters, regulation of transcription through the cell cycle, and translational autoregulation. In this review, the current understanding of human DHFR in terms of structure, function and regulation is summarized.
Collapse
|
47
|
Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE. Crystal structure of a type II dihydrofolate reductase catalytic ternary complex. Biochemistry 2007; 46:14878-88. [PMID: 18052202 PMCID: PMC3743094 DOI: 10.1021/bi701532r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism. We describe here the first structure of a ternary R67 DHFR.DHF.NADP+ catalytic complex, resolved to 1.26 A. This structure provides the first clear picture of how this enzyme, which lacks the active site carboxyl residue that is ubiquitous in Type I DHFRs, is able to function. In the catalytic complex, the polar backbone atoms of two symmetry-related I68 residues provide recognition motifs that interact with the carboxamide on the nicotinamide ring, and the N3-O4 amide function on the pteridine ring. This set of interactions orients the aromatic rings of substrate and cofactor in a relative endo geometry in which the reactive centers are held in close proximity. Additionally, a central, hydrogen-bonded network consisting of two pairs of Y69-Q67-Q67'-Y69' residues provides an unusually tight interface, which appears to serve as a "molecular clamp" holding the substrates in place in an orientation conducive to hydride transfer. In addition to providing the first clear insight regarding how this extremely unusual enzyme is able to function, the structure of the ternary complex provides general insights into how a mutationally challenged enzyme, i.e., an enzyme whose evolution is restricted to four-residues-at-a-time active site mutations, overcomes this fundamental limitation.
Collapse
Affiliation(s)
- Joseph M. Krahn
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Michael R. Jackson
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Eugene F. DeRose
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Elizabeth E. Howell
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Robert E. London
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| |
Collapse
|
48
|
Volpato JP, Fossati E, Pelletier JN. Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase. J Mol Biol 2007; 373:599-611. [PMID: 17868689 DOI: 10.1016/j.jmb.2007.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.
Collapse
Affiliation(s)
- Jordan P Volpato
- Département de biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
49
|
El-Hamamsy MHRI, Smith AW, Thompson AS, Threadgill MD. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis. Bioorg Med Chem 2007; 15:4552-76. [PMID: 17451962 DOI: 10.1016/j.bmc.2007.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/02/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Tuberculosis is an increasing threat, owing to the spread of AIDS and to the development of resistance of the causative organism, Mycobacterium tuberculosis, to the currently available drugs. Dihydrofolate reductase (DHFR) is an important enzyme of the folate cycle; inhibition of DHFR inhibits growth and causes cell death. The crystal structure of M. tuberculosis DHFR revealed a glycerol tightly bound close to the binding site for the substrate dihydrofolate; this glycerol-binding motif is absent from the human enzyme. A series of pyrimidine-2,4-diamines was designed with a two-carbon tether between a glycerol-mimicking triol and the 6-position of the heterocycle; these compounds also carried aryl substituents at the 5-position. These, their diastereoisomers, analogues lacking two hydroxy groups and analogues lacking the two-carbon spacing linker were synthesised by acylation of the anions derived from phenylacetonitriles with ethyl (4S,5R)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, ethyl (4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, tetrahydrooxepin-2-one and 2,3-O-isopropylidene-d-erythronolactone, respectively, to give the corresponding alpha-acylphenylacetonitriles. Formation of the methyl enol ethers, condensation with guanidine and deprotection gave the pyrimidine-2,4-diamines. Preliminary assay of the abilities of these compounds to inhibit the growth of TB5 Saccharomyces cerevisiae carrying the DHFR genes from M. tuberculosis, human and yeast indicated that 5-phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine selectively inhibited M. tuberculosis DHFR and had little effect on the human or yeast enzymes.
Collapse
|
50
|
Proschak E, Rupp M, Derksen S, Schneider G. Shapelets: Possibilities and limitations of shape-based virtual screening. J Comput Chem 2007; 29:108-14. [PMID: 17516427 DOI: 10.1002/jcc.20770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Complementarity of molecular surfaces is crucial for molecular recognition. A method for representation of molecular shape is presented. We decompose the molecular surface into commensurate patches with defined shape by fitting hyperbolical paraboloids onto a triangulated isosurface of the Gaussian model of a molecule. As a result of this decomposition we obtain a 3D graph representation of the molecular shape, which can be used for complete and partial shape matching and isosteric group searching. To point out the possibilities and limitations of shape-only models, we challenged our method by three scenarios in a virtual screening contest: rigid body alignment, consensus shape filtering, and target-specific screening.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Johann Wolfgang Goethe-Universität, Beilstein Endowed Chair for Cheminformatics, Institut für Organische Chemie und Chemische Biologie, Siesmayerstr 70, D-60323, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|