1
|
Holfeltz VE, Campbell EL, Peterman DR, Standaert RF, Paulenova A, Lumetta GJ, Levitskaia TG. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process. SOLVENT EXTRACTION AND ION EXCHANGE 2017. [DOI: 10.1080/07366299.2017.1412111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vanessa E Holfeltz
- Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Emily L. Campbell
- Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dean R. Peterman
- Aqueous Separations and Radiochemistry Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Robert F. Standaert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Shull Wollan Center — a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alena Paulenova
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Gregg J. Lumetta
- Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tatiana G Levitskaia
- Nuclear Chemistry and Engineering Group, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
2
|
Puglisi EV, Puglisi JD. Probing the conformation of human tRNA(3)(Lys) in solution by NMR. FEBS Lett 2007; 581:5307-14. [PMID: 17963705 DOI: 10.1016/j.febslet.2007.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/02/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
Abstract
Human tRNA(3)(Lys) acts as a primer for the reverse transcription of human immunodeficiency virus genomic RNA. To form an initiation complex with genomic RNA, tRNA(3)(Lys) must reorganize its secondary structure. To provide a starting point for mechanistic studies of the formation of the initiation complex, we here present solution NMR investigations of human tRNA(3)(Lys). We use a straightforward set of NMR experiments to show that tRNA(3)(Lys) adopts a standard transfer ribonucleic acid tertiary structure in solution, and that Mg(2+) is required for this folding. The results underscore the power of NMR to reveal rapidly the conformation of RNAs.
Collapse
Affiliation(s)
- Elisabetta Viani Puglisi
- Department of Structural Biology, D105A Fairchild Building, 299 Campus Drive West, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | |
Collapse
|
3
|
Ho CN, Lam SL. Random coil phosphorus chemical shift of deoxyribonucleic acids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:193-200. [PMID: 15546744 DOI: 10.1016/j.jmr.2004.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 08/27/2004] [Indexed: 05/24/2023]
Abstract
Random coil phosphorus chemical shift has been studied using 16 17-nucleotide DNA sequences. Due to the presence of residual base stacking in these sequences, the temperature and sequence effects were investigated at 50 and 55 degrees C. The phosphorus chemical shifts of random coil DNA sequences have been found to be independent of temperature. Sequence effect analysis shows that the phosphorus chemical shift of a nucleotide in a random coil DNA sequence depends on both its 5'- and 3'-nearest neighbors. A trimer model has been used to establish the random coil 31P chemical shift prediction protocol which shows an accuracy of 0.02 ppm.
Collapse
Affiliation(s)
- Cheuk Nang Ho
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
4
|
Affiliation(s)
- R L Gonzalez
- Department of Structural Biology, Physical Biosciences Division, University of California, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
5
|
Richter C, Reif B, Griesinger C, Schwalbe H. NMR Spectroscopic Determination of Angles α and ζ in RNA from CH-Dipolar Coupling, P-CSA Cross-Correlated Relaxation. J Am Chem Soc 2000. [DOI: 10.1021/ja001432c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hayashi I, Kawai G, Watanabe K. Higher-order structure and thermal instability of bovine mitochondrial tRNASerUGA investigated by proton NMR spectroscopy. J Mol Biol 1998; 284:57-69. [PMID: 9811542 DOI: 10.1006/jmbi.1998.2151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although mammalian mitochondrial serine-specific tRNA with the anticodon UGA (tRNASerUGA) appears to possess an almost normal cloverleaf secondary structure, it exhibits an extraordinarily low melting temperature (tm). An in vitro tRNASerUGA transcript without modified nucleosides had an even lower tm and slightly less hyperchromicity, but its tertiary structure was apparently very similar to that of the native counterpart judging from its aminoacylation activity and the body of experimental evidence so far obtained for canonical tRNAs. The transcript was therefore used to investigate the higher-order structure and thermal instability of tRNASerUGA. 1H-NMR analysis of the transcript showed that it takes a nearly L-shaped tertiary structure with similar tertiary base-pairings to those found in yeast tRNAPhe, which is representative of canonical tRNAs. However, magnesium ion titration revealed that Mg2+ affected the chemical shifts of the tRNASerUGA transcript differently than those of canonical tRNAs so far studied; the former was less sensitive toward Mg2+, especially in the D-arm region. This observation was confirmed by NMR analysis with paramagnetic manganese ion titration. Hill plots derived from the CD spectral changes caused by titration with Mg2+ suggested that the tRNASerUGA transcript had fewer Mg2+ binding sites than those of yeast tRNAPhe as well as its transcript, a finding that was consistent with the NMR data. We thus surmise that the thermal instability of both the transcript and tRNASerUGA itself originated from a reduction in the number of the divalent ion binding sites within the tRNA molecule. These results suggest a new type of thermal instability for mitochondrial tRNA.
Collapse
MESH Headings
- Animals
- Base Pairing
- Binding Sites
- Cattle
- Circular Dichroism
- Codon
- Magnesium/chemistry
- Magnesium/pharmacology
- Magnetic Resonance Spectroscopy/methods
- Manganese/chemistry
- Manganese/pharmacology
- Models, Molecular
- Nucleic Acid Conformation
- RNA/chemistry
- RNA/drug effects
- RNA/genetics
- RNA, Mitochondrial
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/drug effects
- RNA, Transfer, Ser/metabolism
- Reproducibility of Results
- Temperature
- Transcription, Genetic
- Tritium
Collapse
Affiliation(s)
- I Hayashi
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Tokyo, Bunkyo-ku, 113-8656, Japan
| | | | | |
Collapse
|
7
|
Powers R, Olsen RK, Gorenstein DG. Two-dimensional 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex and a quinoxaline ((MeCys3, MeCys7)(TANDEM) drug duplex complex. J Biomol Struct Dyn 1989; 7:515-56. [PMID: 2627298 DOI: 10.1080/07391102.1989.10508507] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assignment of the 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex, d(CCCGATCGGG), and its quinoxaline ((MeCys3, MeCys7]TANDEM) drug duplex complex has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The 31P chemical shifts of this 10 base pair oligonucleotide follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. While the 31P chemical shifts show sequence-specific variations, they also do not generally follow the Calladine "rules" previously demonstrated. 31P NMR also provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the drug to the duplex. Although the quinoxaline drug, [MeCys3, MeCys7]TANDEM, is generally expected to bind to duplex DNA by bis-intercalation, only small 31P chemical shift changes are observed upon binding the drug to duplex d(CCCGATCGGG). Additionally, only small perturbations in the 1H NMR and UV spectra are observed upon binding the drug to the decamer, although association of the drug stabilizes the duplex form relative to the other states. These results are consistent with a non-intercalative mode of association of the drug. Modeling and molecular mechanics energy minimization demonstrate that a novel structure in which the two quinoxaline rings of the drug binds in the minor groove of the duplex is possible.
Collapse
Affiliation(s)
- R Powers
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
8
|
Gorenstein DG. Phosphorus-31 nuclear magnetic resonance of enzyme complexes: bound ligand structure, dynamics, and environment. Methods Enzymol 1989; 177:295-316. [PMID: 2607984 DOI: 10.1016/0076-6879(89)77017-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Van de Ven FJ, Hilbers CW. Nucleic acids and nuclear magnetic resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:1-38. [PMID: 3060357 DOI: 10.1111/j.1432-1033.1988.tb14425.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- F J Van de Ven
- Department of Biophysical Chemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Abstract
The early NMR research on nucleic acids was of a qualitative nature and was restricted to partial characterization of short oligonucleotides in aqueous solution. Major advances in magnet design, spectrometer electronics, pulse techniques, data analysis and computational capabilities coupled with the availability of pure and abundant supply of long oligonucleotides have extended these studies towards the determination of the 3-D structure of nucleic acids in solution.
Collapse
Affiliation(s)
- D J Patel
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
11
|
Hyde EI. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 155:57-68. [PMID: 2419133 DOI: 10.1111/j.1432-1033.1986.tb09458.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The imino region of the proton NMR spectrum of Escherichia coli tRNA3Gly has been assigned mainly by sequential nuclear Overhauser effects between neighbouring base pairs and by comparison of assignments of other tRNAs. The effects of magnesium, spermine and temperature on the 1H and 31P NMR spectra of this tRNA were studied. Both ions affect resonances close to the G15 . C48 tertiary base pair and in the ribosylthymine loop. The magnesium studies indicate the presence of an altered tRNA conformer at low magnesium concentrations in equilibrium with the high magnesium form. The temperature studies show that the A7 . U66 imino proton (from a secondary base pair) melts before some of the tertiary hydrogen bonds and that the anticodon stem does not melt sequentially from the ends. Correlation of the ion effects in the 1H and 31P NMR spectra has led to the tentative assignment of two 31P resonances not assigned in the comparable 31P NMR spectrum of yeast tRNAPhe. 31P NMR spectra of E. coli tRNA3Gly lack resolved peaks corresponding to peaks C and F in the spectra of E. coli tRNAPhe and yeast tRNAPhe. In the latter tRNAs these peaks have been assigned to phosphate groups in the anticodon loop. Ion binding E. coli tRNA3Gly and E. coli tRNAPhe had different effects on their 1H NMR spectra which may reflect further differences in their charge distribution and conformation.
Collapse
|
12
|
Gorenstein DG, Luxon BA, Goldfield EM, Lai K, Vegeais D. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles. Biochemistry 1982; 21:580-9. [PMID: 6175342 DOI: 10.1021/bi00532a026] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The temperature dependence to the 31P NMR spectra of poly[d(GC)] . poly [d(GC)],d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and "Z" helix. The increasing downfield shift with temperature of the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A separate upfield peak (20-60% of the total phosphates) is observed at lower temperatures in the oligo(U) . poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.
Collapse
|