1
|
Kim J, Kim KJ. Crystal structure and biochemical characterization of a 3-ketoacyl-CoA thiolase from Ralstoniaeutropha H16. Int J Biol Macromol 2015; 82:425-31. [PMID: 26499087 DOI: 10.1016/j.ijbiomac.2015.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
The protein ReH16_B0759 from Ralstoniaeutropha is a 3-ketoacyl-coenzyme A (CoA) thiolase that catalyzes the fourth step of the β-oxidation degradative pathways by converting 3-ketoacyl-CoAto acyl-CoA. The crystal structures of ReH16_B0759 in its apo form and as a complex with its CoA substrate have been determined. Although ReH16_B0759 exhibited an overall structure similar to the ReH16_A1887 isozyme, the proteindoes not make a complex for β-oxidation. Similar to other degradative thiolases, ReH16_B0759 functions as a dimer, and the monomer comprises three subdomains. Unlike ReH16_A1887, a substantial structural change was not observed upon the binding of the CoA substrate in ReH16_B0759. Exceptionally, the Arg220 residue moved about 5.00Å to make room for the binding of the adenosine ring. Several charged residues including Arg220 are involved in the stabilization of CoA through hydrogen bond interactions. At the active site of ReH16_B0759, highly conserved residues such as Cys89, His347, and Cys377 were located near the thiol-group of CoA, suggesting that ReH16_B0759 may catalyze the thiolase reaction in a manner similar to that of other degradative thiolases. The residues involved in substrate binding and enzyme catalysis were further confirmed by site-directed mutagenesis.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, South Korea.
| |
Collapse
|
2
|
Kim J, Kim KJ. Purification, crystallization and preliminary X-ray diffraction analysis of 3-ketoacyl-CoA thiolase A1887 from Ralstonia eutropha H16. Acta Crystallogr F Struct Biol Commun 2015; 71:758-62. [PMID: 26057808 PMCID: PMC4461343 DOI: 10.1107/s2053230x15007888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
The gene product of A1887 from Ralstonia eutropha (ReH16_A1887) has been annotated as a 3-ketoacyl-CoA thiolase, an enzyme that catalyzes the fourth step of β-oxidation degradative pathways by converting 3-ketoacyl-CoA to acyl-CoA. ReH16_A1887 was overexpressed and purified to homogeneity by affinity and size-exclusion chromatography. The degradative thiolase activity of the purified ReH16_A1887 was measured and enzyme-kinetic parameters for the protein were obtained, with Km, Vmax and kcat values of 158 µM, 32 mM min(-1) and 5 × 10(6) s(-1), respectively. The ReH16_A1887 protein was crystallized in 17% PEG 8K, 0.1 M HEPES pH 7.0 at 293 K and a complete data set was collected to 1.4 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 129.52, c = 114.13 Å, α = β = γ = 90°. The asymmetric unit contained two molecules, with a solvent content of 58.9%.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
3
|
Kim J, Kim KJ. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16. Biochem Biophys Res Commun 2015; 459:547-52. [PMID: 25749345 DOI: 10.1016/j.bbrc.2015.02.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 11/25/2022]
Abstract
ReH16_A1887 from Ralstonia eutropha is an enzyme annotated as a 3-ketoacyl-CoA thiolase, and it catalyzes the fourth step of β-oxidation degradative pathways by converting 3-ketoacyl-CoA to acyl-CoA. We determined the crystal structures of ReH16_A1887 in the apo-form and in complex with its CoA substrate. ReH16_A1887 functions as a dimer, and the monomer of ReH16_A1887 comprises three subdomains (I, II, and III). The structural comparison between the apo-form and the CoA-bound form revealed that ReH16_A1887 undergoes a structural change in the lid-subdomain (subdomain III) upon the binding of the CoA substrate. The CoA molecule was stabilized by hydrogen bonding with positively charged residues such as Lys18, Arg210, and Arg217, and residues Thr213 and Gln151 aid its binding as well. At the active site of ReH16_A1887, highly conserved residues such as Cys91, His348, and Cys378 were located near the thiol-group of CoA, indicating that ReH16_A1887 might catalyze the thiolase reaction in a way similar to other thiolases. Moreover, in the vicinity of the covalent nucleophile Cys91, a hydrophobic hole that might serve as a binding site for the acyl-group of 3-ketoacyl-CoA was observed. The residues involved in enzyme catalysis and substrate-binding were further confirmed by site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| |
Collapse
|
4
|
Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure 2014; 23:21-33. [PMID: 25482540 DOI: 10.1016/j.str.2014.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022]
Abstract
With the exception of HIV, tuberculosis (TB) is the leading cause of mortality among infectious diseases. The urgent need to develop new antitubercular drugs is apparent due to the increasing number of drug-resistant Mycobacterium tuberculosis (Mtb) strains. Proteins involved in cholesterol import and metabolism have recently been discovered as potent targets against TB. FadA5, a thiolase from Mtb, is catalyzing the last step of the β-oxidation reaction of the cholesterol side-chain degradation under release of critical metabolites and was shown to be of importance during the chronic stage of TB infections. To gain structural and mechanistic insight on FadA5, we characterized the enzyme in different stages of the cleavage reaction and with a steroid bound to the binding pocket. Structural comparisons to human thiolases revealed that it should be possible to target FadA5 specifically, and the steroid-bound structure provides a solid basis for the development of inhibitors against FadA5.
Collapse
Affiliation(s)
- Christin M Schaefer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Natasha M Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Johannes Schiebel
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| |
Collapse
|
5
|
Kiema TR, Harijan RK, Strozyk M, Fukao T, Alexson SEH, Wierenga RK. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. ACTA ACUST UNITED AC 2014; 70:3212-25. [PMID: 25478839 DOI: 10.1107/s1399004714023827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022]
Abstract
Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of the Zoogloea ramigera biosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2-Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.
Collapse
Affiliation(s)
- Tiila Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | - Malgorzata Strozyk
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
6
|
Bernasconi CF, Wenzel PJ. Carbon-to-carbon identity proton transfers from propyne, acetimide, thioacetaldehyde, and nitrosomethane to their respective conjugate anions in the gas phase. An ab initio study. J Org Chem 2001; 66:968-79. [PMID: 11430120 DOI: 10.1021/jo001543u] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase acidities of CH3Y (Y: NO, C identical to CH, CH=NH, and CH=S), barriers to the identity proton-transfer CH3Y + CH2=Y- reversible CH2=Y- + CH3Y, as well as geometries and charge distributions of CH3Y, CH2=Y- and the transition states of the proton transfers were determined by ab initio methods at the MP2/6-311 + G(d,p)//MP2/6-311 + G(d,p), B3LYP/6-311 + G(d,p), and BPW-91/6-311 + G-(d,p) levels of theory. The acidities were also calculated at the CCSD(T)/6-311 + G(2df,2p) level. To make more meaningful comparisons, the same quantities for previously studied systems (Y: H, CH=CH2, CH=O, CN, NO2) were recalculated at the levels used in the present work. The geometric parameters as well as the group charges indicate that the transition states for all the reactions are imbalanced, although there is no correlation between the degree of imbalance and the pi-acceptor strength of the Y group. Based on multi-parameter correlations with the field (sigma F), resonance (sigma R), and polarizability effect (sigma alpha) substituent constants, the contributions of each of these effects to the acidities and barriers were evaluated. For the Y groups whose sigma F, sigma R, and sigma alpha are unknown (CH=NH, CH=S, C identical to CH), a method for estimating these substituent constants is proposed. The barriers for the CH3Y/CH2=Y- systems are all lower than for the CH4/CH3- system; this contrasts with the situation in solution where the Y groups lead to an increase in the barrier. The reasons for this reversal are analyzed. We also make an attempt to clarify the issue as to why the transition states of these reactions are imbalanced, a question which continues to draw attention in the literature.
Collapse
Affiliation(s)
- C F Bernasconi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
7
|
Mathieu M, Modis Y, Zeelen JP, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau WH, Wierenga RK. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J Mol Biol 1997; 273:714-28. [PMID: 9402066 DOI: 10.1006/jmbi.1997.1331] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dimeric, peroxisomal 3-ketoacyl-CoA thiolase catalyses the conversion of 3-ketoacyl-CoA into acyl-CoA, which is shorter by two carbon atoms. This reaction is the last step of the beta-oxidation pathway. The crystal structure of unliganded peroxisomal thiolase of the yeast Saccharomyces cerevisiae has been refined at 1.8 A resolution. An unusual feature of this structure is the presence of two helices, completely buried in the dimer and sandwiched between two beta-sheets. The analysis of the structure shows that the sequences of these helices are not hydrophobic, but generate two amphipathic helices. The helix in the N-terminal domain exposes the polar side-chains to a cavity at the dimer interface, filled with structured water molecules. The central helix in the C-terminal domain exposes its polar residues to an interior polar pocket. The refined structure has also been used to predict the mode of binding of the substrate molecule acetoacetyl-CoA, as well as the reaction mechanism. From previous studies it is known that Cys125, His375 and Cys403 are important catalytic residues. In the proposed model the acetoacetyl group fits near the two catalytic cysteine residues, such that the oxygen atoms point towards the protein interior. The distance between SG(Cys125) and C3(acetoacetyl-CoA) is 3.7 A. The O2 atom of the docked acetoacetyl group makes a hydrogen bond to N(Gly405), which would favour the formation of the covalent bond between SG(Cys125) and C3(acetoacetyl-CoA) of the intermediate complex of the two-step reaction. The CoA moiety is proposed to bind in a groove on the surface of the protein molecule. Most of the interactions of the CoA molecule are with atoms of the loop domain. The three phosphate groups of the CoA moiety are predicted to interact with side-chains of lysine and arginine residues, which are conserved in the dimeric thiolases.
Collapse
Affiliation(s)
- M Mathieu
- EMBL, Meyerhofstrasse 1, Heidelberg, D69126, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Djordjevic S, Dong Y, Paschke R, Frerman FE, Strauss AW, Kim JJ. Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Biochemistry 1994; 33:4258-64. [PMID: 8155643 DOI: 10.1021/bi00180a021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used molecular modeling and site-directed mutagenesis to identify the catalytic residues of human long chain acyl-CoA dehydrogenase. Among the acyl-CoA dehydrogenases, a family of flavoenzymes involved in beta-oxidation of fatty acids, only the three-dimensional structure of the medium chain fatty acid specific enzyme from pig liver has been determined (Kim, J.-J.P., Wang, M., & Paschke, R. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7523-7527). Despite the overall sequence homology, the catalytic residue (E376) of medium chain acyl-CoA dehydrogenase is not conserved in isovaleryl- and long chain acyl-CoA dehydrogenases. A molecular model of human long chain acyl-CoA dehydrogenase was derived using atomic coordinates determined by X-ray diffraction studies of the pig medium chain specific enzyme, interactive graphics, and molecular mechanics calculations. The model suggests that E261 functions as the catalytic base in the long-chain dehydrogenase. An altered dehydrogenase in which E261 was replaced by a glutamine was constructed, expressed, purified, and characterized. The mutant enzyme exhibited less than 0.02% of the wild-type activity. These data strongly suggest that E261 is the base that abstracts the alpha-proton of the acyl-CoA substrate in the catalytic pathway of this dehydrogenase.
Collapse
Affiliation(s)
- S Djordjevic
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | | | | | |
Collapse
|
9
|
Tanner ME, Gallo KA, Knowles JR. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry 1993; 32:3998-4006. [PMID: 8097110 DOI: 10.1021/bi00066a021] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Primary kinetic isotope effects on Vmax were observed in both reaction directions upon racemizing samples of [2-2H]glutamate with the cofactor-independent glutamate racemase from Lactobacillus. This supports a deprotonation/protonation mechanism for racemization in which the breaking of the carbon-hydrogen bond at C-2 is partially rate-determining. Substantial "overshoots" were observed when the time course of racemization of either enantiomer of glutamate was monitored using circular dichroism spectroscopy. This is consistent with a "two-base" mechanism accompanied by a kinetic isotope effect. "Competitive deuterium washout" experiments were used to measure kinetic isotope effects on Vmax/Km of 2.5 for (S)-glutamate and 3.4 for (R)-glutamate. The ratio of the notably different isotope effects was confirmed by "double competitive deuterium washout" experiments. Site-directed mutagenesis was used to generate the mutant C73A and C184A enzymes. In each case the mutant enzymes were inactive as racemases. The two mutant enzymes are, however, capable of catalyzing the elimination of HCl from opposite enantiomers of threo-3-chloroglutamic acid, a process that presumably requires only one enzymic base. This finding indicates that the active sites of the mutant enzymes are intact and that the two cysteines flank the bound substrate molecule. It appears that cysteine-73 is responsible for the abstraction of the C-2 hydrogen from (R)-glutamate and cysteine-184 abstracts the proton from (S)-glutamate in the racemization reaction of the wild-type enzyme.
Collapse
Affiliation(s)
- M E Tanner
- Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
10
|
Biosynthetic thiolase from Zoogloea ramigera. Mutagenesis of the putative active-site base Cys-378 to Ser-378 changes the partitioning of the acetyl S-enzyme intermediate. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41961-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
The Principle of Non-perfect Synchronization. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0065-3160(08)60065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
12
|
Biosynthetic thiolase from Zoogloea ramigera. Evidence for a mechanism involving Cys-378 as the active site base. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92985-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)86963-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Izbicka E, Gilbert HF. Examination of the role of thiolimidate formation in the cleavage of acetoacetyl-CoA catalyzed by thiolase I from porcine heart. Arch Biochem Biophys 1989; 272:476-80. [PMID: 2568819 DOI: 10.1016/0003-9861(89)90242-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potential contribution of thiolimidate formation to the increased kinetic acidity of the alpha-proton of acetyl-CoA in the carbon-carbon bond forming reaction catalyzed by 3-ketoacyl-CoA thiolase (thiolase I) from porcine heart was assessed by chemical modification and isotope exchange experiments. Thiolase is only partially inactivated after the chemical modification of lysine residues by reductive methylation, pyridoxal phosphate, or o-phthaldehyde (specific for vicinal lysine and cysteine). The thiolase-catalyzed formation of acetyl-CoA from acetoacetyl-CoA and CoASH in 18OH2 is not accompanied by the appearance of 18O in the acetyl-CoA product. These experiments effectively rule out participation of thiolimidate formation in the thiolase reaction. Other mechanisms must be employed to facilitate the abstraction of the alpha-proton of acetyl-CoA by thiolase I.
Collapse
Affiliation(s)
- E Izbicka
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
15
|
Powell PJ, Thorpe C. 2-octynoyl coenzyme A is a mechanism-based inhibitor of pig kidney medium-chain acyl coenzyme A dehydrogenase: isolation of the target peptide. Biochemistry 1988; 27:8022-8. [PMID: 3233192 DOI: 10.1021/bi00421a008] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pig kidney medium-chain acyl-CoA dehydrogenase (EC 1.3.99.3) is irreversibly and stoichiometrically inactivated by [1-14C]-2-octynoyl coenzyme A. The linkage is stable at pH 2-6, but labile under basic conditions. The inhibitor labels a unique tryptic peptide, Ile-Tyr-Gln-Ile-Tyr-Glu-Gly-Thr-Ala-Gln-Ile-Gln-Arg, close to the C-terminus of the protein. The peptide is labeled at Glu-401 with the acyl moiety of the inhibitor but does not contain detectable coenzyme A. Both the inactivation of the dehydrogenase and the appearance of an absorption band at 800 nm show large primary deuterium isotope effects using 4,4'-dideuterio-2-octynoyl-CoA (7.3 and 6.3, respectively). Thus, 2-octynoyl-CoA is a mechanism-based inactivator of the dehydrogenase and is activated by rate-limiting gamma-proton abstraction. Glutamate-401 may be the base that abstracts the pro-R alpha-proton during the dehydrogenation of normal substrates.
Collapse
Affiliation(s)
- P J Powell
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716
| | | |
Collapse
|
16
|
Biosynthetic thiolase from zoogloea ramigera. I. Preliminary characterization and analysis of proton transfer reaction. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75891-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Freund K, Mizzer J, Dick W, Thorpe C. Inactivation of general acyl-CoA dehydrogenase from pig kidney by 2-alkynoyl coenzyme A derivatives: initial aspects. Biochemistry 1985; 24:5996-6002. [PMID: 4084503 DOI: 10.1021/bi00342a046] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pig kidney general acyl-CoA dehydrogenase is rapidly, stoichiometrically, and irreversibly inactivated by the acetylenic thio ester 2-octynoyl coenzyme A (2-octynoyl-CoA). The inhibitor binds initially to the dehydrogenase with a 10-nm red shift and increased resolution of the flavin chromophore, followed by the generation of a charge-transfer complex between some form of the bound inhibitor and oxidized flavin (lambda max 800 nm; epsilon app = 4.5 mM-1 cm-1; k1 = 1.07 min-1, at pH 7.6, 25 degrees C). The rate of formation of the long wavelength band is increased markedly with increasing pH (pKapp = 7.9). This intermediate then decays with release of about 0.6 mol of CoASH at pH 7.6, yielding a final form with a spectrum typical of bound oxidized flavin. Both irreversible inactivation and covalent modification of the protein occur prior to the decay of the long wavelength species. The modified dehydrogenase is not reduced on prolonged anaerobic incubation with the substrate octanoyl-CoA. The inactive enzyme is unusually resistant to dithionite reduction but may be readily photoreduced via the blue semiquinone to the dihydroflavin form. This reduced enzyme is rapidly reoxidized by electron-transferring flavoprotein, the physiological electron acceptor of the dehydrogenase. General acyl-CoA dehydrogenase is also inactivated by 2-pentynoyl- and 2-pentadecynoyl-CoA with formation of an 800-nm band of lower intensity and by propiolyl-CoA, phenylpropiolyl-CoA, and 2-octynoylpantetheine without the appearance of detectable intermediate species. These data are compared with the behavior of acyl-CoA dehydrogenases toward mechanism-based inactivators carrying an acetylene function at C-3, e.g., 3-butynoyl-CoA.
Collapse
|
18
|
Urban P, Lederer F. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39155-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Fuller JQ, Leadlay PF. Proton transfer in methylmalonyl-CoA epimerase from Propionibacterium shermanii. The reaction of (2R)-methylmalonyl-CoA in tritiated water. Biochem J 1983; 213:643-50. [PMID: 6311170 PMCID: PMC1152179 DOI: 10.1042/bj2130643] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction catalysed by methylmalonyl-CoA epimerase from Propionibacterium shermanii was studied in tritiated water, in the direction with (2R)-methylmalonyl-CoA as substrate, under 'irreversible' conditions. After partial reaction, even when most of the substrate had been converted into product (isolated as propionyl-CoA) essentially no solvent tritium appeared in residual (2R)-methylmalonyl-CoA. The product, however, did contain tritium, and the specific radioactivity of the (2S)-epimer was deduced to be 0.33 times that of the solvent. These results provide further support for the mechanism proposed for the epimerase-catalysed reaction in the accompanying paper [Leadlay & Fuller (1983) Biochem. J. 213, 635-642], in which two enzyme bases act respectively as proton donor and acceptor. The observed low discrimination against solvent tritium entering the product can be accounted for by a mechanism in which the release of product is slow, and the re-protonation step on the enzyme is reversible, without leading to isotopic exchange with the solvent.
Collapse
|