1
|
Rabinovich AL, Lyubartsev AP, Zhurkin DV. Unperturbed hydrocarbon chains and liquid phase bilayer lipid chains: a computer simulation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:109-130. [PMID: 28698919 PMCID: PMC5834621 DOI: 10.1007/s00249-017-1231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
In this work, the properties of saturated and unsaturated fatty acid acyl chains 16:0, 18:0, 18:1(n-9)cis, 18:2(n-6)cis, 18:3(n-3)cis, 18:4(n-3)cis, 18:5(n-3)cis, 20:4(n-6)cis, 20:5(n-3)cis and 22:6(n-3)cis in a bilayer liquid crystalline state and similar hydrocarbon chains (with CH[Formula: see text] terminal groups instead of C=O groups) in the unperturbed state characterised by a lack of long-range interaction were investigated. The unperturbed hydrocarbon chains were modelled by Monte Carlo simulations at temperature [Formula: see text] K; sixteen fully hydrated homogeneous liquid crystalline phosphatidylcholine bilayers containing these chains were studied by molecular dynamics simulations at the same temperature. To eliminate effects of the simulation parameters, the molecular dynamics and Monte Carlo simulations were carried out using the same structural data and force field coefficients. From these computer simulations, the average distances between terminal carbon atoms of the chains (end-to-end distances) were calculated and compared. The trends in the end-to-end distances obtained for the unperturbed chains were found to be qualitatively similar to those obtained for the same lipid chains in the bilayers. So, for understanding of a number of processes in biological membranes (e.g., changes in fatty acid composition caused by environmental changes such as temperature and pressure), it is possible to use, at least as a first approximation, the relationships between the structure and properties for unperturbed or isolated hydrocarbon chains.
Collapse
Affiliation(s)
- Alexander L Rabinovich
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Pushkinskaya 11, Petrozavodsk, 185910, Russian Federation
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden.
| | - Dmitrii V Zhurkin
- Physics and Technology Department, Petrozavodsk State University, Universitetskaya 10, Petrozavodsk, 185910, Russian Federation
| |
Collapse
|
2
|
Achilles A, Bärenwald R, Lechner BD, Werner S, Ebert H, Tschierske C, Blume A, Bacia K, Saalwächter K. Self-Assembly of X-Shaped Bolapolyphiles in Lipid Membranes: Solid-State NMR Investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:673-682. [PMID: 26735449 DOI: 10.1021/acs.langmuir.5b03712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel class of rigid-rod bolapolyphilic molecules with three philicities (rigid aromatic core, mobile aliphatic side chains, polar end groups) has recently been demonstrated to incorporate into and span lipid membranes, and to exhibit a rich variety of self-organization modes, including macroscopically ordered snowflake structures with 6-fold symmetry. In order to support a structural model and to better understand the self-organization on a molecular scale, we here report on proton and carbon-13 high-resolution magic-angle spinning solid-state NMR investigations of two different bolapolyphiles (BPs) in model membranes of two different phospholipids (DPPC, DOPC). We elucidate the changes in molecular dynamics associated with three new phase transitions detected by calorimetry in composite membranes of different composition, namely, a change in π-π-packing, the melting of lipid tails associated with the superstructure, and the dissolution and onset of free rotation of the BPs. We derive dynamic order parameters associated with different H-H and C-H bond directions of the BPs, demonstrating that the aromatic cores are well packed below the final phase transition, showing only 180° flips of the phenyl ring, and that they perform free rotations with additional oscillations of the long axis when dissolved in the fluid membrane. Our data suggests that BPs not only form ordered superstructures, but also rather homogeneously dispersed π-packed filaments within the lipid gel phase, thus reducing the corrugation of large vesicles.
Collapse
Affiliation(s)
- Anja Achilles
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Ruth Bärenwald
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Bob-Dan Lechner
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Stefan Werner
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Helgard Ebert
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Carsten Tschierske
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Alfred Blume
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Kirsten Bacia
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR, ‡Institut für Chemie - Physikalische Chemie, §ZIK HALOmem, and ∥Institut für Chemie - Organische Chemie, Martin-Luther-Universität Halle-Wittenberg , D-06120 Halle, Germany
| |
Collapse
|
3
|
Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:818-39. [PMID: 21134351 PMCID: PMC5176272 DOI: 10.1016/j.bbamem.2010.11.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
4
|
Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S. Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain. Ann N Y Acad Sci 2010; 1189:77-85. [PMID: 20233371 DOI: 10.1111/j.1749-6632.2009.05203.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bilayer phase transitions of mixed-chain lipids with monounsaturated acyl chain in the sn-2 position, 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and with a polyunsaturated acyl chain in the sn-2 position, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC), and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC), were observed by differential scanning calorimetry (DSC) under ambient pressure and by light-transmittance measurements under high pressure. The DSC thermogram for each lipid bilayer showed only one transition between the lamellar gel and liquid crystalline phases. The introduction of one or two cis double bonds into the sn-2 acyl chain caused the significant depression of the main-transition temperature and an obvious decrease of enthalpy and volume changes associated with the transition. These features are attributable to loose packing of saturated and unsaturated acyl chains in the bilayer gel phase. The existence of four or six double bonds in the sn-2 chain produced no further decrease in the transition temperature, and in fact six double bonds caused a slight increase in the transition temperature. Thermodynamic properties associated with the bilayer phase transition were discussed.
Collapse
Affiliation(s)
- Kaori Tada
- Department of Biological Science and Technology, The University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
5
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
Kubo K, Sekine S, Saito M. Primary aminophospholipids in the external layer of liposomes protect their component polyunsaturated fatty acids from 2,2'-azobis(2-amidinopropane)- dihydrochloride-mediated lipid peroxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:750-758. [PMID: 15686430 DOI: 10.1021/jf048867u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We showed in our previous study that docosahexaenoic acid-rich phosphatidylethanolamine in the external layer of small-size liposomes, as a model for biomembranes, protected its docosahexaenoic acid from 2,2'-azobis(2-amidinopropane)dihydrochloride- (AAPH-) mediated lipid peroxidation in vitro. Besides phosphatidylethanolamine, both phosphatidylserine and an alkenyl-acyl analogue of phosphatidylethanolamine, phosphatidylethanolamine plasmalogen, are reported to possess characteristic antioxidant activities. However, there are few reports about the relationship between the protective activity of phosphatidylethanolamine plasmalogen and/or phosphatidylserine against lipid peroxidation and their distribution in a phospholipid bilayer. Furthermore, it is unclear whether phosphatidylethanolamine plasmalogen and/or phosphatidylserine protect their component polyunsaturated fatty acids (PUFAs) from lipid peroxidation. In the present study, we examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen, and phosphatidylserine, and the oxidative stability of their component PUFAs. The transbilayer distribution of these aminophospholipids in liposomes was modulated by coexisting phosphatidylcholine bearing two types of acyl chain: dipalmitoyl or dioleoyl. The amounts of these primary aminophospholipids in the external layer became significantly higher in liposomes containing dioleoylphosphatidylcholine than in those containing dipalmitoylphosphatidylcholine. Phosphatidylethanolamine rich in arachidonic acid, phosphatidylethanolamine plasmalogen or phosphatidylserine in the external layer of liposomes, as well as external docosahexaenoic acid-rich phosphatidylethanolamine, were able to protect their component PUFAs from AAPH-mediated lipid peroxidation.
Collapse
Affiliation(s)
- Kazuhiro Kubo
- Division of Food Science, Incorporated Administrative Agency, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.
| | | | | |
Collapse
|
13
|
Rajamoorthi K, Petrache HI, McIntosh TJ, Brown MF. Packing and Viscoelasticity of Polyunsaturated ω-3 and ω-6 Lipid Bilayers as Seen by2H NMR and X-ray Diffraction. J Am Chem Soc 2005; 127:1576-88. [PMID: 15686391 DOI: 10.1021/ja046453b] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyunsaturated phospholipids of the omega-3 and omega-6 classes play key roles in cellular functions, yet their mechanisms of biological action are still a matter of debate. Using deuterium ((2)H) NMR spectroscopy and small-angle X-ray diffraction, we show how membrane properties are modified by docosahexaenoic (DHA; 22:6) and arachidonic (AA; 20:4) acyl chains of the omega-3 and the omega-6 families, respectively. Structural and dynamical differences due to polyunsaturation are evident in both the ordered and disordered phases of mixed-chain (16:0)(22:6)PC and (16:0)(20:4)PC bilayers. Due to the lower chain melting temperature, the omega-6 AA bilayer is more disordered in the fluid (L(alpha)) state than the omega-3 DHA bilayer; it is thinner with a larger area per lipid. The thermal hysteresis observed for the DHA bilayer may represent the influences of angle-iron conformers in the gel state and back-bended, hairpinlike conformers in the fluid state, consistent with molecular dynamics studies. Interpretation of the (2)H NMR order profiles of (16:0-d(31))(22:6)PC and (16:0-d(31))(20:4)PC together with X-ray electron density profiles reveals an uneven distribution of mass; i.e., the sn-1 saturated chain is displaced toward the membrane center, whereas the sn-2 polyunsaturated chain is shifted toward the bilayer aqueous interface. Moreover, the (2)H NMR relaxation rates are increased by the presence of omega-6 AA chains compared to omega-3 DHA chains. When evaluated at the same amplitude of motion, relaxation parameters give a naturally calibrated scale for comparison of fluid lipid bilayers. Within this framework, polyunsaturated bilayers are relatively soft to bending and area fluctuations on the mesoscale approaching molecular dimensions. Significant differences are evident in the viscoelastic properties of the omega-3 and omega-6 bilayers, a possibly biologically relevant feature that distinguishes between the two phospholipid classes.
Collapse
|
14
|
Antollini SS, Aveldaño MI. Thermal behavior of liposomes containing PCs with long and very long chain PUFAs isolated from retinal rod outer segment membranes. J Lipid Res 2002; 43:1440-9. [PMID: 12235175 DOI: 10.1194/jlr.m200057-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About one-fourth the phosphatidylcholines (PC) from retina photoreceptor rod outer segment (ROS) membranes contain docosahexaenoic acid (22:6n-3) at sn-2 and a very long chain polyunsaturated fatty acid (VLCPUFA) (C24 to C36) at the sn-1 position of the glycerol backbone. In order to study the thermotropic behavior of these PCs, subfractions and molecular species of PC (16:0/22:6, 18:0/22:6, 22:6/22:6, 32:5/22:6, 32:6/22:6, 34:5/22:6), were isolated from bovine ROS, and liposomes containing different proportions of these PCs and dimyristoyl-PC (DMPC) or dipalmitoyl PC (DPPC) were compared using the fluorescence probes Laurdan and 1,6-diphenyl-1,3,5-hexatriene (DPH). With both probes, the 22:6n-3 containing PCs from ROS, in all proportions tested, decreased the transition temperature (Tt) of both DMPC and DPPC. Below the transition temperature, coexistence of phases was evidenced in all cases. Liposomes formed with 100% of any of these PCs did not show phase transitions in the temperature range studied (8 degrees C to 50 degrees C). At physiological temperatures, as it is likely to be the case in ROS membranes, all of these PC species were in the liquid-crystalline state. With Laurdan, all dipolyunsaturated PCs seemed to behave similarly: despite the large number of double bonds per molecule, all of them decreased the Tt of DPPC less than did the hexaenoic PCs. With DPH, an ample difference was detected between the dipolyunsaturates, 22:6/22:6-PC and VLCPUFA/22:6-PCs, and between the latter and hexaenoic PCs throughout the temperature range studied. This difference is consistent with the interpretation that the largest "disorder" produced by PCs containing a VLCPUFA like 32:6n-3 at the sn-1 position occurs toward the center of the membrane.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| | | |
Collapse
|
15
|
Huschilt JC, Hodges RS, Davis JH. Phase equilibria in an amphiphilic peptide-phospholipid model membrane by deuterium nuclear magnetic resonance difference spectroscopy. Biochemistry 2002. [DOI: 10.1021/bi00327a015] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
SanGiovanni JP, Berkey CS, Dwyer JT, Colditz GA. Dietary essential fatty acids, long-chain polyunsaturated fatty acids, and visual resolution acuity in healthy fullterm infants: a systematic review. Early Hum Dev 2000; 57:165-88. [PMID: 10742608 DOI: 10.1016/s0378-3782(00)00050-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Biologically active neural tissue is rich in docosahexaenoic acid (DHA), an omega-3 long-chain polyunsaturated fatty acid (LCPUFA). We conducted a systematic review to examine the nature of discordant results from studies designed to test the hypothesis that dietary DHA leads to better performance on visually-based tasks in healthy, fullterm infants. We also conducted a meta-analysis to derive combined estimates of behavioral- and electrophysiologic-based visual resolution acuity differences and sample sizes that would be useful in planning future research. STUDY DESIGN AND METHODS Twelve empirical studies on LCPUFA intake during infancy and visual resolution acuity were identified through bibliographic searches, examination of monograph and review article reference lists, and written requests to researchers in the field. Works were reviewed for quality and completeness of information. Study design and conduct information was extracted with a standardized protocol. Acuity differences between groups consuming a source of DHA and groups consuming DHA-free diets were calculated as a common outcome from individual studies; this difference score was evaluated against a null value of zero and then used, with the method of DerSimonian and Laird (Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-188), to derive combined estimates of visual resolution acuity differences within seven age categories. RESULTS OF RANDOMIZED COMPARISONS: The combined visual resolution acuity difference measured with behaviorally based methods between DHA-supplemented formula fed groups and DHA-free formula fed groups is 0.32+/-0.09 octaves (combined difference+/-S.E.M., P=0.0003) at 2 months of age. The direction of this value indicates higher acuity in DHA-fed groups. RESULTS OF NON-RANDOMIZED STUDY DESIGNS: The combined visual resolution acuity difference measured with behaviorally based methods between human milk fed groups and DHA-free formula fed groups is 0.49+/-0.09 octaves (P< or =0.000001) at 2 months of age and 0.18+/-0.08 octaves (P=0.04) at 4 months of age. Acuity differences for electrophysiologic-based measures are also greater than zero at 4 months (0.37+/-0.16 octaves, P=0.02). CONCLUSION Some aspect of dietary n-3 intake is associated with performance on visual resolution acuity tasks at 2, and possibly, 4 months of age in healthy fullterm infants. Whether n-3 intake confers lasting advantage in the development of visually based processes is still in question.
Collapse
Affiliation(s)
- J P SanGiovanni
- Department of Maternal and Child Health, Harvard School of Public Health, Boston, MA 02114-0500, USA.
| | | | | | | |
Collapse
|
17
|
Effect of unsaturated acyl chains on the thermotropic and barotropic phase transitions of phospholipid bilayer membranes. Chem Phys Lipids 1999. [DOI: 10.1016/s0009-3084(99)00050-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Bouchard M, Le Guernevé C, Auger M. Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: a solid-state 13C NMR study. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:181-92. [PMID: 9858726 DOI: 10.1016/s0005-2736(98)00193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the effect of gramicidin A on the dynamics of two model membranes: dimyristoylphosphatidylcholine (DMPC) in the lamellar phase at a lipid-to-peptide molar ratio of 10:1 and dioleoylphosphatidylcholine (DOPC) in the hexagonal HII phase at a lipid-to-peptide molar ratio of 5:1. Natural abundance 13C nuclear magnetic resonance (NMR) spectroscopy was used in combination with magic angle spinning to increase the spectral resolution, therefore allowing the different regions of the lipid bilayers to be investigated from the same spectra. 31P NMR was also used to detect and confirm the formation of the DOPC HII phase in the presence of gramicidin A. In order to examine the effect of gramicidin A on both the fast and slow motions of DMPC and DOPC, the 1H spin-lattice relaxation times in the laboratory frame (HT1) as well as the 1H spin-lattice relaxation times in the rotating frame (HT1rho) were calculated for each resolved protonated lipid resonance in the 13C spectra. For both DMPC and DOPC, we found that the presence of gramicidin A does not significantly affect the fast motions of the lipid acyl chains but increases slightly the fast motions of the polar head group. However, the HT1rho are significantly decreased, this effect being more pronounced for DOPC most likely due to a decrease in the rate of the lipid lateral diffusion.
Collapse
Affiliation(s)
- M Bouchard
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec G1K 7P4, Canada
| | | | | |
Collapse
|
19
|
Watanabe K, Ishikawa C, Ohtsuka I, Kamata M, Tomita M, Yazawa K, Muramatsu H. Lipid and fatty acid compositions of a novel docosahexaenoic acid-producing marine bacterium. Lipids 1997; 32:975-8. [PMID: 9307940 DOI: 10.1007/s11745-997-0127-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An unidentified bacterial strain, SCRC-21406, isolated from the intestine of a marine fish, Glossanodon semifasciatus, produced docosahexaenoic acid at 23% (mol/mol) [= 28% (w/w)] of total fatty acids in a medium containing 0.5% (wt/vol) peptone and 0.1% (wt/vol) yeast extract at 12 degrees C under atmospheric pressure. The cell yield was 0.43 g/L. The major lipids of the strain were phosphatidylethanolamine and phophatidylglycerol. Docosahexaenoic acid was localized at the sn-2 positions of both phospholipids. The amounts of polyunsaturated fatty acids other than docosahexaenoic acid were extremely small [< 3% (mol/mol)]. Monounsaturated fatty acids of the cis-7, cis-9 and cis-11 types were detected.
Collapse
Affiliation(s)
- K Watanabe
- Sagami Chemical Research Center, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Infante JP, Huszagh VA. On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol Cell Biochem 1997; 168:101-15. [PMID: 9062899 DOI: 10.1023/a:1006895209833] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alterations in the metabolism of arachidonic (20:4n-6), docosapentaenoic (22:5n-6), and docosahexaenoic (22:6n-3) acids and other polyunsaturated fatty acids in Zellweger syndrome and other peroxisomal disorders are reviewed. Previous proposals that peroxisomes are necessary for the synthesis of 22:6n-3 and 22:5n-6 are critically examined. The data suggest that 22:6n-3 is biosynthesized in mitochondria via a channelled carnitine-dependent pathway involving an n-3-specific delta-4 desaturase, while 20:4n-6, 20:5n-3 and 22:5n-6 are synthesized by both mitochondrial and microsomal systems; these pathways are postulated to be interregulated as compensatory-redundant systems. Present evidence suggests that 22:6n-3-containing phospholipids may be required for the biochemical events involved in successful neuronal migration and developmental morphogenesis, and as structural cofactors for the functional assembly and integration of a variety of membrane enzymes, receptors, and other proteins in peroxisomes and other subcellular organelles. A defect in the mitochondrial desaturation pathway is proposed to be a primary etiologic factor in the clinicopathology of Zellweger syndrome and other related disorders. Several implications of this proposal are examined relating to effects of pharmacological agents which appear to inhibit steps in this pathway, such as some hypolipidemics (fibrates), neuroleptics (phenothiazines and phenytoin) and prenatal alcohol exposure.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, New York 14852-4512, USA
| | | |
Collapse
|
21
|
Weisinger HS, Vingrys AJ, Sinclair AJ. The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids 1996; 31:65-70. [PMID: 8649236 DOI: 10.1007/bf02522413] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, is found in consistently high concentrations in the retinae of mammals, yet its role in vision remains unclear. In this study, a mammalian model of variable retinal DHA concentration has been developed, such that the retinal phospholipids of guinea pigs contained between 2.5 and 30.8% DHA. Visual function was assessed using full-field flash electroretinography, over a range of exposure levels spanning six log units. Trend analysis indicated that retinal function was altered by the tissue DHA level, and was described by a second-order polynomial "inverted U-shaped" function. The results suggested that although some amount of DHA is essential for normal retinal function, increases in the DHA level past an optimal amount, found to be 19%, provided diminishing returns. In this study, manipulation of the retinal DHA level accounted for 21-35% of the electroretinographic variability.
Collapse
Affiliation(s)
- H S Weisinger
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
22
|
Abstract
AbstractRecoverin is a Ca2+-binding protein found primarily in vertebrate photoreceptors. The proposed physiological function of recoverin is based on the finding that recoverin inhibits light-stimulated phosphorylation of rhodopsin. Recoverin interacts with rod outer segment membranes in a Ca2+-dependent manner. This interaction requires N-terminal acylation of recoverin. Four types of fatty acids have been detected on the N-terminus of recoverin, but the functional significance of this heterogeneous acylation is not yet clear.
Collapse
|
23
|
Future directions for rhodopsin structure and function studies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNMR (nuclear magnetic resonance) may be useful for determining the structure of retinal and its environment in rhodopsin, but not for determining the complete protein structure. Aggregation and low yield of fragments of rhodopsin may make them difficult to study by NMR. A long-term multidisciplinary attack on rhodopsin structure is required.
Collapse
|
24
|
More answers about cGMP-gated channels pose more questions. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractOur understanding of the molecular properties and cellular role of cGMP-gated channels in outer segments of vertebrate photo-receptors has come from over a decade of studies which have continuously altered and refined ideas about these channels. Further examination of this current view may lead to future surprises and further refine the understanding of cGMP-gated channels.
Collapse
|
25
|
Cyclic nucleotides as regulators of light-adaptation in photoreceptors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCyclic nucleotides can regulate the sensitivity of retinal rods to light through phosducin. The phosphorylation state of phosducin determines the amount of G available for activation by Rho*. Phosducin phosphorylation is regulated by cyclic nucleotides through their activation of cAMP-dependent protein kinase. The regulation of phosphodiesterase activity by the noncatalytic cGMP binding sites as well as Ca2+/calmodulin dependent regulation of cGMP binding to the cation channel are also discussed.
Collapse
|
26
|
Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe type I CaM-sensitive adenylyl cyclase is in a position to integrate signals from multiple inputs, consistent with the requirements for mediating long term potentiation (LTP). Biochemical and genetic evidence supports the idea that this enzyme plays an important role inc LTP. However, more work is needed before we will be certain of the role that CaM-sensitive adenylyl cyclases play in LTP.
Collapse
|
27
|
Modulation of the cGMP-gated channel by calcium. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCalcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels?
Collapse
|
28
|
How many light adaptation mechanisms are there? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe generally positive response to our target article indicates that most of the commentators accept our contention that light adaptation consists of multiple and possibly redundant mechanisms. The commentaries fall into three general categories. The first deals with putative mechanisms that we chose not to emphasize. The second is a more extended discussion of the role of calcium in adaptation. Finally, additional aspects of cGMP involvement in adaptation are considered. We discuss each of these points in turn.
Collapse
|
29
|
Gene therapy, regulatory mechanisms, and protein function in vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractHereditary retinal degeneration due to mutations in visual genes may be amenable to therapeutic interventions that modulate, either positively or negatively, the amount of protein product. Some of the proteins involved in phototransduction are rapidly moved by a lightdependent mechanism between the inner segment and the outer segment in rod photoreceptor cells, and this phenomenon is important in phototransduction.
Collapse
|
30
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
31
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
32
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
33
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
34
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|
35
|
Abstract
AbstractRecent findings emphasize the complexity, both genetic and functional, of the manifold genes and mutations causing inherited retinal degeneration in humans. Knowledge of the genetic bases of these diseases can contribute to design of rational therapy, as well as elucidating the function of each gene product in normal visual processes.
Collapse
|
36
|
Channel structure and divalent cation regulation of phototransduction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe identification of additional subunits of the cGMP-gated cation channel suggests exciting questions about their regulatory roles and about structure/functional relationships. How do the different subunits interact? How is the complex assembled into the plasma membrane? Divalent cations have been implicated in the regulation of adaptation. One often overlooked cation is magnesium. Could this ion play a role in phototransduction?
Collapse
|
37
|
Structure of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003939x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe subunit structure of the cGMP-gated cation channel of rod photoreceptors is rapidly being defined, and in the process the mode of regulation by Ca2+-calmodulin unraveled. Intriguingly, early results suggest that additional subunits of unknown function are associated with the channel and remain to be identified.
Collapse
|
38
|
Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough undoubtedly it will be incomplete by the time it is published, the target article by Daiger et al. organizes mutations in genes that produce retinal degenerations in humans into categories of clinically relevant phenotypes. Such classifications should help us understand the link between altered photoreceptor cell proteins and subsequent cell death, and they may yield insight into methods for preventing consequent blindness.
Collapse
|
39
|
Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003925x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractLarge scale DNA-mutation screening in patients with hereditary retinal diseases greatly enhances our knowledge about retinal function and diseases. Scientists, clinicians, patients, and families involved with retinal disorders may directly benefit from these developments. However, certain aspects of this expanding knowledge, such as the correlation between genotype and phenotype, may be much more complicated than we expect at present.
Collapse
|
40
|
The determination of rhodopsin structure may require alternative approaches. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe structure of rhodopsin is a subject of intense interest. Solving the structure by traditional methods has proved exceedingly challenging. It may therefore be useful to confront the problem by a combination of alternate techniques. These include FTIR (Fourier transform infrared spectroscopy) and AFM (atomic force microscopy) on the intact protein. Furthermore, additional insights may be gained through structural investigations of discrete rhodopsin domains.
Collapse
|
41
|
Na-Ca + K exchanger and Ca 2+ homeostasis in retinal rod outer segments: Inactivation of the Ca 2+ efflux mode and possible involvement of intracellular Ca 2+ stores in Ca 2+ homeostasis. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractInactivation of the Ca2+ extrusion mode of the retinal rod Na- Ca + K exchanger is suggested to be the mechanism that prevents lowering of cytosolic free Ca2+ to < 1 nM when rod cells are saturated for a prolonged time under bright light conditions. Under these conditions, Ca2+ fluxes across disk membranes can contribute significantly to Ca2+ homeostasis in rods.
Collapse
|
42
|
Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMagic angle spinning (MAS) NMR methods provide a means of obtaining high resolution structural data on rhodopsin and its photoin termediates. Current work has focused on the structure of the retinal chromophore and its interactions with surrounding protein charges. The recent development of MAS NMR methods for measuring internuclear distances with a resolution of ∼0.2 will complement diffraction methods for addressing key mechanistic questions.
Collapse
|
43
|
Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGenetic abnormalities of three factors related to the photoreceptor mechanism have been reported in both animal models and humans. Apoptotic mechanism has also been suggested as a final common pathway of photoreceptor cell death. Our findings of increased level of glutamate in photoreceptor cells in rds mice suggest that amino acid might mediate between these two pathological mechanisms.
Collapse
|
44
|
Unique lipids and unique properties of retinal proteins. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmino-terminal heteroacylation has been identified in retinal proteins including recoverin and α subunit of G-protein, transducin. The tissue-specific modification seems to mediate not only a proteinmembrane interaction but also a specific protein-protein interaction. The mechanism generating the heterogeneity and its physiological role are still unclear, but an interesting idea for the latter postulates a fine regulation of the signal transduction pathway by distinct N-acyl groups.
Collapse
|
45
|
Further insight into the structural and regulatory properties of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent studies from several different laboratories have provided further insight into structure-function relationships of cyclic nucleotide-gated channel and in particular the cCMPgated channel of rod photoreceptors. Site-directed mutagenesis and rod-olfactory chimeria constructs have defined important amino acids and peptide segments of the channel that are important in ion blockage, ligand specificity, and gating properties. Molecular cloning studies have indicated that cyclic nucleotide-gated channels consist of two subunits that are required to reproduce the properties of the native channels. Biochemical analysis of the cGMP-gated channel of rodcells have indicated that the 240 kDa protein that co-purifies with the 63 kDa channel subunit contains both the previously cloned second subunit of the channel and a glutamic acid-rich protein. The regulatory properties of the cGMP-gated channel from rod cells has also been studied in more detail. Studies indicate that the beta subunit of the cGMP-gated channel of rod cells contains the binding site for calmodulin. Interaction of calmodulin with the channel alters the apparent affinity of the channel for cGMP in all in vitro systems that have been studied. The significance of these recent studies are discussed in relation to the commentaries on the target article.
Collapse
|
46
|
Unsolved issues in S-modulin/recoverin study. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractS-Modulin is a frog homolog of recoverin. The function and the underlying mechanism of the action of these proteins are now understood in general. However, there remain some unsolved issues including; two distinct effects of S-modulin; Ca2+-dependent binding of S-modulin to membranes and a possible target protein; S-modulin-like proteins in other neurons. These issues are considered in this commentary.
Collapse
|
47
|
Mechanisms of photoreceptor degenerations. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe candidate gene approach has identified many causes of photoreceptor rod cell death in retinitis pigmentosa. Some mutations lead to increased cyclicGMP concentrations in rods. Rod photoreceptors are also particularly susceptible to some mutations in housekeeping genes. Although many more cases of macular degeneration than retinitis pigmentosa occur each year, there is much less known about both genetic and sporadic forms of this disease.
Collapse
|
48
|
Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight adaptation is modulated almost exclusively by changes in intracellular Ca2+ concentration, and other Ca2+-independent mechanisms are likely to play only a minor role. Changes in Ca2+i may be not only necessary for light adaptation to take place but sufficient to cause it.
Collapse
|
49
|
The genetic kaleidoscope of vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSite-specific phenotypic effects of the 73 known alleles in the rhodopsin gene that cause retinal degeneration are difficult to interpret because most alleles are documented in only one case or one family, which means variation in effects could actually arise from interactions with other loci. However, sample sizes necessary to detect epistatic interaction may place an answer to this question beyond our grasp.
Collapse
|
50
|
Evidence that the type I adenylyl cyclase may be important for neuroplasticity: Mutant mice deficient in the gene for type I adenylyl cyclase show altered behavior and LTP. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003956x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulatory properties of the neurospecific, type I adenylyl cyclase and its distribution within brain have suggested that this enzyme may be important for neuroplasticity. To address this issue, the murine, Ca2+ -stimulated adenylyl cyclase (type I), was inactivated by targeted mutagenesis. Ca2+ -stimulated adenylyl cyclase activity was reduced 40% to 60% in the hippocampus, neocortex, and cerebellum. Long term potentiation in the CA1 region of the hippocampus from mutants was perturbed relative to controls. Both the initial slope and maxim um extent of changes in synaptic response were reduced. Although mutant mice learned to find a hidden platform normally in the Morris water task, they did not display a preference for the region where the platform had been when it was removed. The behavioral phenotype of these mice is very similar to that exhibited by mice which have been surgically lesioned in the hippocampus. These results indicate that disruption of the gene for the type I adenylyl cyclase produces changes in spatial memory and indicate that the cAMP signal transduction pathway may play an important role for synaptic plasticity.
Collapse
|