1
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
2
|
Rodgers ML, Sun Y, Woodson SA. Ribosomal Protein S12 Hastens Nucleation of Co-Transcriptional Ribosome Assembly. Biomolecules 2023; 13:951. [PMID: 37371531 DOI: 10.3390/biom13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Ribosomal subunits begin assembly during transcription of the ribosomal RNA (rRNA), when the rRNA begins to fold and associate with ribosomal proteins (RPs). In bacteria, the first steps of ribosome assembly depend upon recognition of the properly folded rRNA by primary assembly proteins such as S4, which nucleates assembly of the 16S 5' domain. Recent evidence, however, suggests that initial recognition by S4 is delayed due to variable folding of the rRNA during transcription. Here, using single-molecule colocalization co-transcriptional assembly (smCoCoA), we show that the late-binding RP S12 specifically promotes the association of S4 with the pre-16S rRNA during transcription, thereby accelerating nucleation of 30S ribosome assembly. Order of addition experiments suggest that S12 helps chaperone the rRNA during transcription, particularly near the S4 binding site. S12 interacts transiently with the rRNA during transcription and, consequently, a high concentration is required for its chaperone activity. These results support a model in which late-binding RPs moonlight as RNA chaperones during transcription in order to facilitate rapid assembly.
Collapse
Affiliation(s)
- Margaret L Rodgers
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Yunsheng Sun
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Oborská-Oplová M, Gerhardy S, Panse VG. Orchestrating ribosomal RNA folding during ribosome assembly. Bioessays 2022; 44:e2200066. [PMID: 35751450 DOI: 10.1002/bies.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.
Collapse
Affiliation(s)
| | - Stefan Gerhardy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Nikulin AD. Characteristic Features of Protein Interaction with Single- and Double-Stranded RNA. BIOCHEMISTRY (MOSCOW) 2021; 86:1025-1040. [PMID: 34488578 DOI: 10.1134/s0006297921080125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses differences between the specific protein interactions with single- and double-stranded RNA molecules using the data on the structure of RNA-protein complexes. Proteins interacting with the single-stranded RNAs form contacts with RNA bases, which ensures recognition of specific nucleotide sequences. Formation of such contacts with the double-stranded RNAs is hindered, so that the proteins recognize unique conformations of the RNA spatial structure and interact mainly with the RNA sugar-phosphate backbone.
Collapse
Affiliation(s)
- Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Datta M, Pillai M, Modak MJ, Liiv A, Khaja FT, Hussain T, Remme J, Varshney U. A mutation in the ribosomal protein uS12 reveals novel functions of its universally conserved PNSA loop. Mol Microbiol 2021; 115:1292-1308. [PMID: 33368752 DOI: 10.1111/mmi.14675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
The ribosomal protein uS12 is conserved across all domains of life. Recently, a heterozygous spontaneous mutation in human uS12 (corresponding to R49K mutation immediately downstream of the universally conserved 44 PNSA47 loop in Escherichia coli uS12) was identified for causing ribosomopathy, highlighting the importance of the PNSA loop. To investigate the effects of a similar mutation in the absence of any wild-type alleles, we mutated the rpsL gene (encoding uS12) in E. coli. Consistent with its pathology (in humans), we were unable to generate the R49K mutation in E. coli in the absence of a support plasmid. However, we were able to generate the L48K mutation in its immediate vicinity. The L48K mutation resulted in a cold sensitive phenotype and ribosome biogenesis defect in the strain. We show that the L48K mutation impacts the steps of initiation and elongation. Furthermore, the genetic interactions of the L48K mutation with RRF and Pth suggest a novel role of the PNSA loop in ribosome recycling. Our studies reveal new functions of the PNSA loop in uS12, which has so far been studied in the context of translation elongation.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Maalavika Pillai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mamata Jayant Modak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aivar Liiv
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Faisal Tarique Khaja
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
6
|
Knöppel A, Andersson DI, Näsvall J. Synonymous Mutations in rpsT Lead to Ribosomal Assembly Defects That Can Be Compensated by Mutations in fis and rpoA. Front Microbiol 2020; 11:340. [PMID: 32210939 PMCID: PMC7069363 DOI: 10.3389/fmicb.2020.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We previously described how four deleterious synonymous mutations in the Salmonella enterica rpsT gene (encoding ribosomal protein S20) result in low S20 levels that can be compensated by mutations that restore [S20]. Here, we have further studied the cause for the deleterious effects of S20 deficiency and found that the S20 mutants were also deficient in four other 30S proteins (S1, S2, S12, and S21), which is likely due to an assembly defect of the S20 deficient 30S subunits. We examined the compensatory effect by six additional mutations affecting the global regulator Fis and the C-terminal domain of the α subunit of RNA polymerase (encoded by rpoA). The fis and rpoA mutations restored the S20 levels, concomitantly restoring the assembly defect and the levels of S1, S2, S12, and S21. These results illustrate the complexity of compensatory evolution and how the negative effects of deleterious mutations can be suppressed by a multitude of mechanisms. Additionally, we found that the mutations in fis and rpoA caused reduced expression of other ribosomal components. Notably, some of the fis mutations and the rpoA mutation corrected the fitness of the rpsT mutants to wild-type levels, although expression of other ribosomal components was reduced compared to wild-type. This finding raises new questions regarding the relation between translation capacity and growth rate.
Collapse
|
7
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
An evolutionarily conserved element in initiator tRNAs prompts ultimate steps in ribosome maturation. Proc Natl Acad Sci U S A 2016; 113:E6126-E6134. [PMID: 27698115 DOI: 10.1073/pnas.1609550113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribosome biogenesis, a complex multistep process, results in correct folding of rRNAs, incorporation of >50 ribosomal proteins, and their maturation. Deficiencies in ribosome biogenesis may result in varied faults in translation of mRNAs causing cellular toxicities and ribosomopathies in higher organisms. How cells ensure quality control in ribosome biogenesis for the fidelity of its complex function remains unclear. Using Escherichia coli, we show that initiator tRNA (i-tRNA), specifically the evolutionarily conserved three consecutive GC base pairs in its anticodon stem, play a crucial role in ribosome maturation. Deficiencies in cellular contents of i-tRNA confer cold sensitivity and result in accumulation of ribosomes with immature 3' and 5' ends of the 16S rRNA. Overexpression of i-tRNA in various strains rescues biogenesis defects. Participation of i-tRNA in the first round of initiation complex formation licenses the final steps of ribosome maturation by signaling RNases to trim the terminal extensions of immature 16S rRNA.
Collapse
|
9
|
Abstract
Protein synthesis involves nearly a third of the total molecules in a typical bacterial cell. Within the cell, protein synthesis is performed by the ribosomes, and research over several decades has investigated ribosomal formation, structure, and function. This review provides an overview of the current understanding of the assembly of the Escherichia coli 30S ribosomal subunit. The E. coli 30S subunit contains one rRNA molecule (16S) and 21 ribosomal proteins (r-proteins; S1 to S21). The formation of functional subunits can occur as a self-assembly process in vitro; i.e., all the information required for the formation of active ribosomes resides in the primary sequences of the r-proteins and rRNAs. In vitro reconstitution of functional 30S subunits is carried out by using a mixture of TP30, individually purified natural or recombinant r-proteins, and natural 16S rRNA. Chemical probing and primer extension analysis have been used extensively to monitor changes in the reactivities of nucleotides in 16S rRNA during the in vitro reconstitution of 30S subunits. The potential roles for r-proteins in 30S subunit assembly were determined by omitting single proteins in reconstitution experiments. The RNPs resulting from single protein omissions were examined in terms of their composition and function to determine the roles of the absent proteins. Recent developments in understanding the structure of the 30S subunit have led to speculation about roles for some of the r-proteins in assembly. The crystal structures of the 30S subunit (1, 2) and the 70S ribosome (3) reveal details of the r-protein and rRNA interactions.
Collapse
|
10
|
Napper N, Culver GM. Analysis of r-protein and RNA conformation of 30S subunit intermediates in bacteria. RNA (NEW YORK, N.Y.) 2015; 21:1323-34. [PMID: 25999315 PMCID: PMC4478351 DOI: 10.1261/rna.048918.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/10/2015] [Indexed: 05/15/2023]
Abstract
The ribosome is a large macromolecular complex that must be assembled efficiently and accurately for the viability of all organisms. In bacteria, this process must be robust and tunable to support life in diverse conditions from the ice of arctic glaciers to thermal hot springs. Assembly of the Small ribosomal SUbunit (SSU) of Escherichia coli has been extensively studied and is highly temperature-dependent. However, a lack of data on SSU assembly for other bacteria is problematic given the importance of the ribosome in bacterial physiology. To broaden the understanding of how optimal growth temperature may affect SSU assembly, in vitro SSU assembly of two thermophilic bacteria, Geobacillus kaustophilus and Thermus thermophilus, was compared with that of E. coli. Using these phylogenetically, morphologically, and environmentally diverse bacteria, we show that SSU assembly is highly temperature-dependent and efficient SSU assembly occurs at different temperatures for each organism. Surprisingly, the assembly landscape is characterized by at least two distinct intermediate populations in the organisms tested. This novel, second intermediate, is formed in the presence of the full complement of r-proteins, unlike the previously observed RI* particle formed in the absence of late-binding r-proteins in E. coli. This work reveals multiple distinct intermediate populations are present during SSU assembly in vitro for several bacteria, yielding insights into RNP formation and possible antimicrobial development toward this common SSU target.
Collapse
Affiliation(s)
- Nathan Napper
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York 14627, USA Center for RNA Biology: from Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| |
Collapse
|
11
|
Sergeeva OV, Sergiev PV, Bogdanov AA, Dontsova OA. Ribosome: Lessons of a molecular factory construction. Mol Biol 2014. [DOI: 10.1134/s0026893314040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ivanov AV, Malygin AA, Karpova GG. Mg2+ ions affect structure of central domain of 18S rRNA near ribosomal protein S13 binding site. Mol Biol 2013. [DOI: 10.1134/s0026893312060088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. BIOCHEMISTRY (MOSCOW) 2012; 77:562-74. [PMID: 22817455 DOI: 10.1134/s0006297912060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50-80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.
Collapse
Affiliation(s)
- A V Korobeinikova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
14
|
Ridgeway WK, Millar DP, Williamson JR. Quantitation of ten 30S ribosomal assembly intermediates using fluorescence triple correlation spectroscopy. Proc Natl Acad Sci U S A 2012; 109:13614-9. [PMID: 22869699 PMCID: PMC3427059 DOI: 10.1073/pnas.1204620109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The self-assembly of bacterial 30S ribosomes involves a large number of RNA folding and RNA-protein binding steps. The sequence of steps determines the overall assembly mechanism and the structure of the mechanism has ramifications for the robustness of biogenesis and resilience against kinetic traps. Thermodynamic interdependencies of protein binding inferred from omission-reconstitution experiments are thought to preclude certain assembly pathways and thus enforce ordered assembly, but this concept is at odds with kinetic data suggesting a more parallel assembly landscape. A major challenge is deconvolution of the statistical distribution of intermediates that are populated during assembly at high concentrations approaching in vivo assembly conditions. To specifically resolve the intermediates formed by binding of three ribosomal proteins to the full length 16S rRNA, we introduce Fluorescence Triple-Correlation Spectroscopy (F3CS). F3CS identifies specific ternary complexes by detecting coincident fluctuations in three-color fluorescence data. Triple correlation integrals quantify concentrations and diffusion kinetics of triply labeled species, and F3CS data can be fit alongside auto-correlation and cross-correlation data to quantify the populations of 10 specific ribosome assembly intermediates. The distribution of intermediates generated by binding three ribosomal proteins to the entire native 16S rRNA included significant populations of species that were not previously thought to be thermodynamically accessible, questioning the current interpretation of the classic omission-reconstitution experiments. F3CS is a general approach for analyzing assembly and function of macromolecular complexes, especially those too large for traditional biophysical methods.
Collapse
Affiliation(s)
- William K. Ridgeway
- Departments of Molecular Biology and
- Chemistry, and
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - James R. Williamson
- Departments of Molecular Biology and
- Chemistry, and
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Ivanov AV, Malygin AA, Karpova GG. Binding of the human ribosomal protein S13 to the central domain of 18S rRNA. Mol Biol 2011. [DOI: 10.1134/s0026893311050074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Abstract
The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.
Collapse
Affiliation(s)
- Zahra Shajani
- Departments of Molecular Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
17
|
Goto S, Kato S, Kimura T, Muto A, Himeno H. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 2010; 30:104-14. [PMID: 21102555 DOI: 10.1038/emboj.2010.291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022] Open
Abstract
RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | | | | | | | | |
Collapse
|
18
|
Trylska J. Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:453101. [PMID: 21339588 DOI: 10.1088/0953-8984/22/45/453101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biopolymers are of dynamic nature and undergo functional motions spanning a large spectrum of timescales. To study the internal dynamics of nano-sized molecular complexes that exceed hundred thousands of atoms with atomic detail is computationally inefficient. Therefore, to achieve both the spatial and temporal scales of biological interest coarse-grained models of macromolecules are often used. By uniting groups of atoms into single interacting centers one decreases the resolution of the system and gets rid of the irrelevant degrees of freedom. This simplification, even though it requires parameterization, makes the studies of biomolecular dynamics computationally tractable and allows us to reach beyond the microsecond time frame. Here, I review the coarse-grained models of macromolecules composed of proteins and nucleic acids. I give examples of one-bead models that were developed to investigate the internal dynamics and focus on their applications to the ribosome--the nanoscale protein synthesis machine.
Collapse
Affiliation(s)
- Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, Warsaw 02-106, Poland.
| |
Collapse
|
19
|
Xu Z, Culver GM. Differential assembly of 16S rRNA domains during 30S subunit formation. RNA (NEW YORK, N.Y.) 2010; 16:1990-2001. [PMID: 20736336 PMCID: PMC2941107 DOI: 10.1261/rna.2246710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Zhili Xu
- Department of Biology, University of Rochester, Rochester, New York 14624, USA
| | | |
Collapse
|
20
|
Sykes MT, Shajani Z, Sperling E, Beck AH, Williamson JR. Quantitative proteomic analysis of ribosome assembly and turnover in vivo. J Mol Biol 2010; 403:331-45. [PMID: 20709079 DOI: 10.1016/j.jmb.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/26/2010] [Accepted: 08/02/2010] [Indexed: 12/18/2022]
Abstract
Although high-resolution structures of the ribosome have been solved in a series of functional states, relatively little is known about how the ribosome assembles, particularly in vivo. Here, a general method is presented for studying the dynamics of ribosome assembly and ribosomal assembly intermediates. Since significant quantities of assembly intermediates are not present under normal growth conditions, the antibiotic neomycin is used to perturb wild-type Escherichia coli. Treatment of E. coli with the antibiotic neomycin results in the accumulation of a continuum of assembly intermediates for both the 30S and 50S subunits. The protein composition and the protein stoichiometry of these intermediates were determined by quantitative mass spectrometry using purified unlabeled and (15)N-labeled wild-type ribosomes as external standards. The intermediates throughout the continuum are heterogeneous and are largely depleted of late-binding proteins. Pulse-labeling with (15)N-labeled medium time-stamps the ribosomal proteins based on their time of synthesis. The assembly intermediates contain both newly synthesized proteins and proteins that originated in previously synthesized intact subunits. This observation requires either a significant amount of ribosome degradation or the exchange or reuse of ribosomal proteins. These specific methods can be applied to any system where ribosomal assembly intermediates accumulate, including strains with deletions or mutations of assembly factors. This general approach can be applied to study the dynamics of assembly and turnover of other macromolecular complexes that can be isolated from cells.
Collapse
Affiliation(s)
- Michael T Sykes
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB-33, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
As RNAs fold to functional structures, they traverse complex energy landscapes that include many partially folded and misfolded intermediates. For structured RNAs that possess catalytic activity, this activity can provide a powerful means of monitoring folding that is complementary to biophysical approaches. RNA catalysis can be used to track accumulation of the native RNA specifically and quantitatively, readily distinguishing the native structure from intermediates that resemble it and may not be differentiated by other approaches. Here, we outline how to design and interpret experiments using catalytic activity to monitor RNA folding, and we summarize adaptations of the method that have been used to probe aspects of folding well beyond determination of the folding rates.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texasat Austin, Austin, Texas, USA
| | | | | |
Collapse
|
22
|
Yanshina DD, Malygin AA, Karpova GG. The mutual effect of human ribosomal proteins S5 and S16 on their binding with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2009. [DOI: 10.1134/s0026893309040177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Woolstenhulme CJ, Hill WE. The genesis of ribosome structure: how a protein generates RNA structure in real time. J Mol Biol 2009; 392:645-56. [PMID: 19563812 DOI: 10.1016/j.jmb.2009.06.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/25/2022]
Abstract
Ribosomal subunit assembly is initiated by the binding of several primary binding proteins. Results from chemical modification studies show that 16S ribosomal RNA undergoes striking structural rearrangements when protein S17 is bound. For the first time, we are able to distinguish and order these structural rearrangements by using time-dependent chemical probing. Initially, protein S17 binds to a portion of helix 11, inducing a kink-turn in that helix that bends helix 7 toward the S17-helix 11 complex in a hairpin-like manner, allowing helix 7 to bind to protein S17. This structural change is rapidly stabilized by interactions at the distal and proximal ends of both RNA helices. Identifying the dynamic nature of interactions between RNA and proteins is not only essential in unraveling ribosome assembly, but also has more general application to all protein-RNA interactions.
Collapse
|
24
|
Bunner AE, Williamson JR. Stable isotope pulse-chase monitored by quantitative mass spectrometry applied to E. coli 30S ribosome assembly kinetics. Methods 2009; 49:136-41. [PMID: 19559090 DOI: 10.1016/j.ymeth.2009.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/05/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022] Open
Abstract
Stable isotope mass spectrometry has become a widespread tool in quantitative biology. Pulse-chase monitored by quantitative mass spectrometry (PC/QMS) is a recently developed stable isotope approach that provides a powerful means of studying the in vitro self-assembly kinetics of macromolecular complexes. This method has been applied to the Escherichia coli 30S ribosomal subunit, but could be applied to any stable self-assembling complex that can be reconstituted from its component parts and purified from a mixture of components and complex. The binding rates of 18 out of the 20 ribosomal proteins have been measured at several temperatures using PC/QMS. Here, PC/QMS experiments on 30S ribosomal subunit assembly are described, and the potential application of the method to other complexes is discussed. A variation on the PC/QMS experiment is introduced that enables measurement of kinetic cooperativity between proteins. In addition, several related approaches to stable isotope labeling and quantitative mass spectrometry data analysis are compared and contrasted.
Collapse
Affiliation(s)
- Anne E Bunner
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Abstract
The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.
Collapse
|
26
|
Connolly K, Culver G. Deconstructing ribosome construction. Trends Biochem Sci 2009; 34:256-63. [PMID: 19376708 DOI: 10.1016/j.tibs.2009.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/30/2022]
Abstract
The ribosome is an essential ribonucleoprotein enzyme, and its biogenesis is a fundamental process in all living cells. Recent X-ray crystal structures of the bacterial ribosome and new technologies have allowed a greater interrogation of in vitro ribosome assembly; however, substantially less is known about ribosome biogenesis in vivo. Ongoing investigations are focused on elucidating the cellular processes that facilitate biogenesis of the ribosomal subunits, and many extraribosomal factors, including modification enzymes, remodeling enzymes and GTPases, are being uncovered. Moreover, specific roles for ribosome biogenesis factors in subunit maturation are now being elaborated. Ultimately, such studies will reveal a more complete understanding of processes at work in in vivo ribosome biogenesis.
Collapse
Affiliation(s)
- Keith Connolly
- Departments of Biology and of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
27
|
Ramaswamy P, Woodson SA. S16 throws a conformational switch during assembly of 30S 5' domain. Nat Struct Mol Biol 2009; 16:438-45. [PMID: 19343072 PMCID: PMC2720800 DOI: 10.1038/nsmb.1585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/09/2009] [Indexed: 11/09/2022]
Abstract
Rapid and accurate assembly of new ribosomal subunits is essential for cell growth. Here, we show that the ribosomal proteins make assembly more cooperative by discriminating against non-native conformations of the E. coli 16S rRNA. We used hydroxyl radical footprinting to measure how much the proteins stabilize individual rRNA tertiary interactions, revealing the free energy landscape for assembly of the 16S 5′ domain. When ribosomal proteins S4, S17, and S20 bind the 5′ domain RNA, a native and a non-native assembly intermediate are equally populated. The secondary assembly protein S16 suppresses the non-native intermediate, smoothing the path to the native complex. In the final step of 5′ domain assembly, S16 drives a conformational switch at helix 3 that stabilizes pseudoknots in the 30S decoding center. Long-range communication between the S16 binding site and the decoding center helps explain the critical role of S16 in 30S assembly.
Collapse
Affiliation(s)
- Priya Ramaswamy
- Program in Cell, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
28
|
Woodson SA. RNA folding and ribosome assembly. Curr Opin Chem Biol 2008; 12:667-73. [PMID: 18935976 DOI: 10.1016/j.cbpa.2008.09.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/20/2008] [Indexed: 01/29/2023]
Abstract
Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.
Collapse
Affiliation(s)
- Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
29
|
Abstract
RNA folds to a myriad of three-dimensional structures and performs an equally diverse set of functions. The ability of RNA to fold and function in vivo is all the more remarkable because, in vitro, RNA has been shown to have a strong propensity to adopt misfolded, non-functional conformations. A principal factor underlying the dominance of RNA misfolding is that local RNA structure can be quite stable even in the absence of enforcing global tertiary structure. This property allows non-native structure to persist, and it also allows native structure to form and stabilize non-native contacts or non-native topology. In recent years it has become clear that one of the central reasons for the apparent disconnect between the capabilities of RNA in vivo and its in vitro folding properties is the presence of RNA chaperones, which facilitate conformational transitions of RNA and therefore mitigate the deleterious effects of RNA misfolding. Over the past two decades, it has been demonstrated that several classes of non-specific RNA binding proteins possess profound RNA chaperone activity in vitro and when overexpressed in vivo, and at least some of these proteins appear to function as chaperones in vivo. More recently, it has been shown that certain DExD/H-box proteins function as general chaperones to facilitate folding of group I and group II introns. These proteins are RNA-dependent ATPases and have RNA helicase activity, and are proposed to function by using energy from ATP binding and hydrolysis to disrupt RNA structure and/or to displace proteins from RNA-protein complexes. This review outlines experimental studies that have led to our current understanding of the range of misfolded RNA structures, the physical origins of RNA misfolding, and the functions and mechanisms of putative RNA chaperone proteins.
Collapse
Affiliation(s)
- Rick Russell
- Department of Chemistry and Biochemistry, The Institute For Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Perić M, Schedewig P, Bauche A, Kruppa A, Kruppa J. Ribosomal proteins of Thermus thermophilus fused to beta-galactosidase are imported into the nucleus of eukaryotic cells. Eur J Cell Biol 2007; 87:47-55. [PMID: 17881085 DOI: 10.1016/j.ejcb.2007.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/19/2007] [Accepted: 07/29/2007] [Indexed: 11/28/2022] Open
Abstract
Archaea, Bacteria, and Eukarya have 34 homologous ribosomal protein (RP) families in common. Comparisons of published amino acid sequences prompted us to question whether RPs of the prokaryote Thermus thermophilus contain nuclear localization signals (NLSs), which are recognized by the nuclear import machinery of eukaryotic cells and are thereby translocated into the nucleoplasm ultimately accumulating in the nucleolus. Several RPs of T. thermophilus - specifically S12, S17, and L2 - were selected for this study since their three-dimensional structures as well as rRNA interaction patterns are precisely known at the molecular level. Fusion proteins of these RPs were constructed and subsequently expressed in COS cells. N-terminally tagged fusions with dimeric EGFP and C-terminally tagged hybrids with beta-galactosidase of prokaryotic RP S17 (S17p) were targeted to the nucleoplasm where they were visualized by direct fluorescence and by indirect immune staining, respectively. A region containing the classical monopartite NLS KRKR, which is known to physically interact with karyopherin alpha2, was delineated by tagging specific S17p fragments with beta-galactosidase. Unexpectedly, S12p and L2p hybrids accumulated in the nucleolus. Due to their size, RPs tagged with beta-galactosidase can only be imported into the nucleus when NLS-recognition is mediated by karyopherins since they are otherwise excluded from entry into the nucleoplasm of eukaryotic cells. Our results indicate that after the formation of the nuclear compartment during evolution, the newly established eukaryotic cell relied on the pre-existing basic amino acid clusters of the prokaryotic RPs for use as NLSs.
Collapse
Affiliation(s)
- Mark Perić
- Center of Experimental Medicine, Institute of Molecular Cell Biology, Hamburg University, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Dutcă LM, Jagannathan I, Grondek JF, Culver GM. Temperature-dependent RNP conformational rearrangements: analysis of binary complexes of primary binding proteins with 16 S rRNA. J Mol Biol 2007; 368:853-69. [PMID: 17376481 PMCID: PMC2265208 DOI: 10.1016/j.jmb.2007.02.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/31/2007] [Accepted: 02/17/2007] [Indexed: 11/27/2022]
Abstract
Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.
Collapse
Affiliation(s)
- Laura-M. Dutcă
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Indu Jagannathan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Joel F. Grondek
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Gloria M. Culver
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
32
|
Desai PM, Rife JP. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch Biochem Biophys 2006; 449:57-63. [PMID: 16620761 DOI: 10.1016/j.abb.2006.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/20/2006] [Accepted: 02/23/2006] [Indexed: 11/17/2022]
Abstract
The methyltransferase KsgA modifies two adjacent adenosines in 16S rRNA by adding two methyl groups to the N(6) position of each nucleotide. Unlike nearly all other rRNA modifications, these modifications and the responsible enzyme are highly conserved phylogenetically, suggesting that the modification system has an important role in ribosome biogenesis. It has been known for some time that KsgA recognizes a complex pre-30S substrate in vitro, but there is disagreement in the literature as to what that substrate can be. That disagreement is resolved in this report; KsgA is unable to methylate 30S subunits in the translationally active conformation, but rather can modify 30S when in an experimentally well established translationally inactive conformation. Recent 30S crystal structures provide some basis for explaining why it is impossible for KsgA to methylate 30S in the translationally active conformation. Previous work identified one set of ribosomal proteins important for efficient methylation by KsgA and another set refractory methylation. With the exception of S21 the recent crystal structures of 30S also instructs that the proteins important for KsgA activity all exert their influence indirectly. Unfortunately, S21, which is inhibitory to KsgA activity, has not had its position determined by X-ray crystallography. A reevaluation of published biophysical data on the location also suggests that the refractory nature of S21 is also indirect. Therefore, it appears that KsgA solely senses the conformation 16S rRNA when carrying out its enzymatic activity.
Collapse
Affiliation(s)
- Pooja M Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0133, USA
| | | |
Collapse
|
33
|
Talkington MWT, Siuzdak G, Williamson JR. An assembly landscape for the 30S ribosomal subunit. Nature 2005; 438:628-32. [PMID: 16319883 PMCID: PMC1444899 DOI: 10.1038/nature04261] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
Self-assembling macromolecular machines drive fundamental cellular processes, including transcription, messenger RNA processing, translation, DNA replication and cellular transport. The ribosome, which carries out protein synthesis, is one such machine, and the 30S subunit of the bacterial ribosome is the preeminent model system for biophysical analysis of large RNA-protein complexes. Our understanding of 30S assembly is incomplete, owing to the challenges of monitoring the association of many components simultaneously. Here we have developed a method involving pulse-chase monitored by quantitative mass spectrometry (PC/QMS) to follow the assembly of the 20 ribosomal proteins with 16S ribosomal RNA during formation of the functional particle. These data represent a detailed and quantitative kinetic characterization of the assembly of a large multicomponent macromolecular complex. By measuring the protein binding rates at a range of temperatures, we find that local transformations throughout the assembling subunit have similar but distinct activation energies. Thus, the prevailing view of 30S assembly as a pathway proceeding through a global rate-limiting conformational change must give way to one in which the assembly of the complex traverses a landscape dotted with various local conformational transitions.
Collapse
Affiliation(s)
- Megan W T Talkington
- Department of Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
34
|
Maki JA, Culver GM. Recent developments in factor-facilitated ribosome assembly. Methods 2005; 36:313-20. [PMID: 16076458 DOI: 10.1016/j.ymeth.2005.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli ribosomal subunits can be reconstituted in vitro under highly optimized conditions. These reconstitution systems have proven invaluable for the study of ribosomal subunit assembly. While E. coli ribosomal subunits can self-assemble in vitro there has been much speculation regarding the existence of extra-ribosomal assembly factors that act in functional subunit formation in vivo. Recently, a biochemical assay has been implemented to identify factors that facilitate a single, critical step in 30S subunit assembly in vitro. These studies have revealed that the DnaK (heat shock protein 70) chaperone system can facilitate 30S subunit assembly in vitro. The 30S subunits, formed in the presence of the chaperones under otherwise non-permissive conditions, are highly similar to 30S subunits formed under standard reconstitution conditions. It has become evident that the manner in which the "factor-assembled" 30S subunits are purified is critical for monitoring formation of functional ribosomal particles. Given that methodologies for in vitro reconstitution and functional analysis of ribosomal subunits have been described in detail previously, this manuscript will focus on isolation of functional 30S subunits that have been assembled in the presence of exogenous factors in vitro. Also, recent efforts toward understanding the roles of exogenous factors in 50S subunit and eukaryotic ribosome assembly will be briefly discussed.
Collapse
Affiliation(s)
- Jennifer A Maki
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
35
|
Holmes KL, Culver GM. Analysis of Conformational Changes in 16S rRNA During the Course of 30S Subunit Assembly. J Mol Biol 2005; 354:340-57. [PMID: 16246364 DOI: 10.1016/j.jmb.2005.09.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/19/2022]
Abstract
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.
Collapse
Affiliation(s)
- Kristi L Holmes
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
36
|
Wadley LM, Pyle AM. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Res 2004; 32:6650-9. [PMID: 15608296 PMCID: PMC545444 DOI: 10.1093/nar/gkh1002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recurring RNA structural motifs are important sites of tertiary interaction and as such, are integral to RNA macromolecular structure. Although numerous RNA motifs have been classified and characterized, the identification of new motifs is of great interest. In this study, we discovered four new conformationally recurring motifs: the pi-turn, the Omega-turn, the alpha-loop and the C2'-endo mediated flipped adenosine motif. Not only do they have complex and interesting structures, but they participate in contacts of high biological significance. In a first for the RNA field, new motifs were discovered by a fully automated algorithm. This algorithm, COMPADRES, utilized a reduced representation of the RNA backbone and was highly successful at discerning unique structural relationships. This study also shows that recurring RNA substructures are not necessarily accompanied by consistent primary or secondary structure.
Collapse
Affiliation(s)
- Leven M Wadley
- Department of Physics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
37
|
Holmes KL, Culver GM. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nat Struct Mol Biol 2004; 11:179-86. [PMID: 14730351 DOI: 10.1038/nsmb719] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 11/24/2003] [Indexed: 11/09/2022]
Abstract
Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein-dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.
Collapse
Affiliation(s)
- Kristi L Holmes
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
38
|
Maki JA, Southworth DR, Culver GM. Demonstration of the role of the DnaK chaperone system in assembly of 30S ribosomal subunits using a purified in vitro system. RNA (NEW YORK, N.Y.) 2003; 9:1418-1421. [PMID: 14623997 PMCID: PMC1370495 DOI: 10.1261/rna.5139703] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 09/02/2003] [Indexed: 05/24/2023]
Abstract
Recently, there has been controversy regarding the ability of the DnaK chaperone system to facilitate Escherichia coli 30S subunit assembly at otherwise nonpermissive conditions. Here, we present additional data indicating that purified DnaK chaperone assembled 30S subunits are functional. Additionally, explanations for reported differences are discussed.
Collapse
Affiliation(s)
- Jennifer A Maki
- Iowa State University, Department of Biochemistry, Biophysics, and Molecular Biology, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
39
|
Recht MI, Williamson JR. Thermodynamics and kinetics of central domain assembly. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:591-8. [PMID: 12762060 DOI: 10.1101/sqb.2001.66.591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M I Recht
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
40
|
Abstract
Ribosomes are large macromolecular complexes responsible for cellular protein synthesis. The smallest known cytoplasmic ribosome is found in prokaryotic cells; these ribosomes are about 2.5 MDa and contain more than 4000 nucleotides of RNA and greater than 50 proteins. These components are distributed into two asymmetric subunits. Recent advances in structural studies of ribosomes and ribosomal subunits have revealed intimate details of the interactions within fully assembled particles. In contrast, many details of how these massive ribonucleoprotein complexes assemble remain elusive. The goal of this review is to discuss some crucial aspects of 30S ribosomal subunit assembly.
Collapse
Affiliation(s)
- Gloria M Culver
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames, IA 50011, USA.
| |
Collapse
|
41
|
Abstract
Functional Escherichia coli 30S ribosomal subunits can be reconstituted in vitro. However, slow kinetics and sharp temperature dependence suggest additional assembly factors are present in vivo. Extract activation of in vitro assembly results in association of DnaK/hsp70 chaperone components with pre-30S particles. Purified DnaK, its cochaperones DnaJ and GrpE, and ATP can facilitate reconstitution of functional 30S subunits under otherwise nonpermissive conditions. A link has been observed between DnaK, 30S subunit components, and ribosome biogenesis in vivo as well as in vitro. These studies reveal a novel role for the DnaK/hsp70 chaperone system, in addition to its well-documented role in protein folding, and suggest that 30S subunit assembly can be facilitated.
Collapse
Affiliation(s)
- Jennifer A Maki
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
42
|
Recht MI, Williamson JR. Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to an S15-RNA complex. J Mol Biol 2001; 313:35-48. [PMID: 11601845 DOI: 10.1006/jmbi.2001.5018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 30 S ribosomal subunit assembles in vitro through the hierarchical binding of 21 ribosomal proteins to 16 S rRNA. The central domain of 16 S rRNA becomes the platform of the 30 S subunit upon binding of ribosomal proteins S6, S8, S11, S15, S18 and S21. The assembly of the platform is nucleated by binding of S15 to 16 S rRNA, followed by the cooperative binding of S6 and S18. The prior binding of S6 and S18 is required for binding of S11 and S21. We have studied the mechanism of the cooperative binding of S6 and S18 to the S15-rRNA complex by isothermal titration calorimetry and gel mobility shift assays with rRNA and proteins from the hyperthermophilic bacterium Aquifex aeolicus. S6 and S18 form a stable heterodimer in solution with an apparent dissociation constant of 8.7 nM at 40 degrees C. The S6:S18 heterodimer binds to the S15-rRNA complex with an equilibrium dissociation constant of 2.7 nM at 40 degrees C. Consistent with previous studies using rRNA and proteins from Escherichia coli, we observed no binding of S6 or S18 in the absence of the other protein or S15. The presence of S15 increases the affinity of S6:S18 for the RNA by at least four orders of magnitude. The kinetics of S6:S18 binding to the S15-rRNA complex are slow, with an apparent bimolecular rate constant of 8.0 x 10(4) M(-1) s(-1) and an apparent unimolecular dissociation rate of 1.6 x 10(-4) s(-1). These results, which are consistent with a model in which S6 and S18 bind as a heterodimer to the S15-rRNA complex, provide a mechanistic framework to describe the previously observed S15-mediated cooperative binding of S6 and S18 in the ordered assembly of a multi-protein ribonucleoprotein complex.
Collapse
Affiliation(s)
- M I Recht
- Department of Molecular Biology, MB33 and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Abstract
How do large RNA molecules find their active conformations among a universe of possible structures? Two recent studies reveal that RNA folding is a rapid and ordered process, with surprising similarities to protein folding mechanisms.
Collapse
|
44
|
Abstract
CBP2 is an RNA tertiary structure binding protein required for efficient splicing of a yeast mitochondrial group I intron. CBP2 must wait for folding of the two RNA domains that make up the catalytic core before it can bind. In a subsequent step, association of the 5' domain of the RNA is stabilized by additional interactions with the protein. Thus, CBP2 functions primarily to capture otherwise transient RNA tertiary structures. This simple one-RNA, one-protein system has revealed how the kinetic pathway of RNA folding can direct the assembly of a specific ribonucleoprotein complex. There are parallels to steps in the formation of a much more complex ribonucleoprotein, the 30S ribosomal subunit.
Collapse
Affiliation(s)
- K M Weeks
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
45
|
Abstract
The targets of in vivo studies of the ribosomal assembly process are mainly the events of rRNA processing, whereas in vitro studies (total reconstitution) focus on principles of the assembly process such as assembly-initiation proteins, rate-limiting steps and a detailed sequence of assembly reactions (assembly map). The success of in vitro analyses is particularly remarkable in view of ionic and temperature requirements of the total reconstitution which differ significantly from the in vivo conditions. Features of the in vivo assembly are surveyed, however, the focal point is a description of experimental strategies and results concerning the in vitro assembly of ribosomes.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Abt Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
46
|
Cachia C, Flamion PJ, Schreiber JP. Fast preparative separation of 'native' core E coli 30S ribosomal proteins. Biochimie 1991; 73:607-10. [PMID: 1764505 DOI: 10.1016/0300-9084(91)90029-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed an ion-exchange high performance liquid chromatographic method for preparative separation of 'core' proteins from E coli 30S ribosomal subunits, extracted with salt under non-denaturing conditions. This method yields individual proteins in pure and native form at high concentrations, (5 to 25 mg/ml) suitable for direct use in 1D-, 2D- or 3D-NMR studies.
Collapse
Affiliation(s)
- C Cachia
- Laboratoire de Biophysique, UFR des Sciences Pharmaceutiques et Biologiques, Dijon, France
| | | | | |
Collapse
|
47
|
Bourgaize DB, Fournier MJ. Initiation of translation is impaired in E. coli cells deficient in 4.5S RNA. Nature 1987; 325:281-4. [PMID: 2433587 DOI: 10.1038/325281a0] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 4.5S RNA of Escherichia coli is a small, stable RNA that is essential for cell growth but its function is not yet known. Its biosynthesis is stringently controlled, and it is processed by RNase P, a transfer RNA processing enzyme. To identify the biological role of the 4.5S species, we have characterized the physiological changes that occur when the bacterial cell is depleted of this RNA. We used a strain of E. coli in which synthesis of the 4.5S RNA can be turned off by removing an inducer of the Iac operon, resulting in cell death. We report here that an early consequence of depriving the cell of 4.5S RNA is the accumulation of translationally-defective ribosomes, which maintain their ability to elongate polypeptide chains, but can no longer participate in the initiation of protein synthesis.
Collapse
|
48
|
Datta D, Changchien LM, Craven GR. Studies on the kinetic sequence of in vitro ribosome assembly using cibacron blue F3GA as a general assembly inhibitor. Nucleic Acids Res 1986; 14:4095-111. [PMID: 3520481 PMCID: PMC339848 DOI: 10.1093/nar/14.10.4095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have found that all E. coli ribosomal proteins strongly bind to an agarose affinity column derivatized with the dye Cibacron Blue F3GA. We have also shown that the capacity to bind the dye is lost when the proteins are organized within the structure of the ribosome or are members of pre-formed protein-RNA complexes. We conclude that the binding of ribosomal proteins to this dye involves specific protein-RNA recognition sites. These observations led us to discover that Cibacron Blue can be used to inhibit in vitro ribosome assembly at any stage of the assembly process. This has allowed us to determine a kinetic order of ribosome assembly.
Collapse
|
49
|
Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 1986; 187:399-416. [PMID: 2422386 DOI: 10.1016/0022-2836(86)90441-9] [Citation(s) in RCA: 423] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have investigated in detail the higher-order structure of 16 S ribosomal RNA, both in its naked form and in 30 S ribosomal subunits. Each base in the 16 S rRNA chain has been probed using kethoxal (which reacts with guanine at N1 and N2), dimethylsulfate (which reacts with adenine at N1 and cytosine at N3) and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (which reacts with uracil at N3 and guanine at N1). The sites of reaction were identified by primer extension with reverse transcriptase using synthetic oligodeoxynucleotide primers. These results provide a detailed and rigorous experimental test of a model for 16 S rRNA secondary structure, which was derived mainly from comparative sequence analysis. Our data also provide information relevant to tertiary and quaternary structure of 16 S rRNA. Data obtained with naked 16 S rRNA show reasonably close agreement with the proposed model, and data obtained with 30 S subunits show nearly complete agreement. Apart from an apparent overall "tightening" of the structure (in which many weakly reactive bases become unreactive), assembly of the proteins with 16 S rRNA to form 30 S subunits brings about numerous local structural rearrangements, resulting in specific enhancements as well as protections. In many instances, the ribosomal proteins appear to "tune" the 16 S rRNA structure to bring it into accordance with the phylogenetically predicted model, even though the RNA on its own often seems to prefer a different structure in certain regions of the molecule. Extensive protection of conserved, unpaired adenines upon formation of 30 S subunits suggests that they play a special role in the assembly process, possibly providing signals for protein recognition.
Collapse
|
50
|
Serdyuk IN, Agalarov SC, Sedelnikova SE, Spirin AS, May RP. Shape and compactness of the isolated ribosomal 16 S RNA and its complexes with ribosomal proteins. J Mol Biol 1983; 169:409-25. [PMID: 6620384 DOI: 10.1016/s0022-2836(83)80058-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
X-ray scattering, neutron scattering and velocity sedimentation techniques were used for studies of ribosomal 16 S RNA in the isolated state and in different complexes with ribosomal proteins. The neutron scattering curve of the ribosomal 30 S subparticle in 42% 2H2O where the protein component is contrast-matched, was taken as a standard of comparison characterizing the dimensions and shape of the 16 S RNA in situ. The following deductions result from the comparisons. The shape of the isolated 16 S RNA at a sufficient Mg2+ concentration (e.g., in the reconstruction buffer) is similar to that of the 16 S RNA in situ, i.e. in the 30 S particle, but it is somewhat less compact. The 16 S RNA in the complex with protein S4 has a shape and compactness similar to those of the isolated 16 S RNA. The 16 S RNA in the complex with four core proteins, namely S4, S7, S8 and S15, has a shape and compactness similar to those of the isolated 16 S RNA. The six ribosomal proteins S4, S7, S8, S15, S16 and S17 are necessary and sufficient for the 16 S RNA to acquire a compactness similar to that within the 30 S particle. The general conclusion is that the overall specific folding of the 16 S RNA is governed and maintained by its own intramolecular interactions, but the additional folding-up (about one-fourth of the linear size of the whole molecule) or the stabilization of the final compactness requires some ribosomal proteins.
Collapse
|