Walter R. Partial purification and characterization of post-proline cleaving enzyme: enzymatic inactivation of neurohypophyseal hormones by kidney preparations of various species.
BIOCHIMICA ET BIOPHYSICA ACTA 1976;
422:138-58. [PMID:
2300 DOI:
10.1016/0005-2744(76)90015-2]
[Citation(s) in RCA: 63] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inactivation of the neurohypophyseal hormones arginine vasopressin and oxytocin, both 14C-labelled in the C-terminal glycine residue, by enzymes present in kidney homogenates of various species has been investigated, and some of the enzymes responsible have been partially purified and characterized. The Leu-Gly peptide bond of oxytocin is generally most effectively cleaved by kidney homogenates, although with certain species enzymic activity hydrolyzing the Pro-Leu bond is significant. Degradation of arginine vasopressin is slower than oxytocin in all species studied, and appears to occur by a different overall mechanism since cleavage of the Pro-Arg bond is more significant than hydrolysis of the Arg-Gly bond. The enzyme releasing glycinamide from oxytocin and the "Post-Proline Cleaving Enzyme", which releases C-terminal dipeptide from oxytocin and arginine vasopressin, were partially purified from lamb kidney by ammonium sulfate fractionation and column chromatography. The two enzymes are shown to be separate entities with different pH profiles. The prolyl peptidase activity released the C-terminal dipeptides from oxytocin and arginine vasopressin at similar rates and was inhibited by p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, L-1-tosylamido-2-phenylethylchloromethyl ketone, Co2+, Ca2+, and Zn2+, but significantly enhanced by dithiothreitol. The prolyl peptidase preparation cleaves proline-containing peptide substrates at the Pro-X bond. The rate of cleavage is dependent on the nature of residue X and with the conditions used there is no cleavage when X equals Pro; however, cleavage occurs when X is a D isomer: [Mpr1, D-Arg8] vasopressin is inactivated at a rate similar to [Mpr1, Arg8]- and [Mpr1, Lys8] vasopressin, suggesting that the known prolonged biological action of [Mpr1, D-Arg8] vasopressin is not due to resistance to the prolyl peptidase. In all characteristics tested the lamb kidney prolyl peptidase was identical to the post-proline cleaving enzyme isolated earlier from human uterus. In vivo experiments in the cat suggested that both the glycinamide-releasing enzyme and post-proline cleaving enzyme are present and effective in inactivating neurohypophyseal hormones in the intact animal.
Collapse