Macdonald IA, Meier EC, Mahony DE, Costain GA. 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenase activities from Clostridium perfringens.
BIOCHIMICA ET BIOPHYSICA ACTA 1976;
450:142-53. [PMID:
10985 DOI:
10.1016/0005-2760(76)90086-2]
[Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
25 strains of Clostridium perfringens were screened for hydroxysteroid dehydrogenase activity; 19 contained NADP-dependent 3alpha-hydroxysteroid dehydrogenase and eight contained NAD-dependent 12alpha-hydroxysteroid dehydrogenase active against conjugated and unconjugated bile salts. All strains containing 12alpha-hydroxysteroid dehydrogenase also contained 3alpha-hydroxysteroid dehydrogenase although 12alpha-hydroxysteroid dehydrogenase was invariably in lesser quantity than the 3alpha-hydroxysteroid dehydrogenase. In addition, 7alpha-hydroxysteroid dehydrogenase activity was evident only when 3alpha, 7alpha, 12alpha-trihydroxy-5beta-cholanoate was substrate but notably absent when 3alpha, 7alpha-dihydroxy-5beta-cholanoate was substrate. The oxidation product 12alpha-hydroxy-3, 7-diketo-5beta-cholanoate is rapidly further degraded to an unknown compound devoid of either 3alpha- or 7alpha-OH groups. Group specificity of these enzymes was confirmed by thin-layer chromatography studies of the oxidation products. These enzyme systems appear to be constitutive rather than inducible. In contrast to C. perfringens. Clostridium paraputrificum (five strains tested) contained no measurable hydroxysteroid dehydrogenase activity. pH studies of the C. perfringens enzymes revealed a sharp pH optimum at pH 11.3 and 10.5 for the 3alpha-OH- and 12alpha-OH-oriented activities, respectively. Kinetic studies gave Km estimates of approx. 5 X 10(-5) and 8 X 10(-4) M with 3alpha, 7a-dihydroxy-5beta-cholanoate and 3alpha, 12alpha-dihydroxy-5beta-cholanoate as substrates for two respective enzymes. 3alpha-hydroxysteroid dehydrogenase was active against 3alpha-OH-containing steroids such as androsterone regardless of the sterochemistry of the 5H (Both A/B cis and A/B trans steroides were substrates). There was no activity against 3beta-OH-containing steroids. The 3alpha- and 12alpha-hydroxysteroid dehydrogenase activities, although differing in cofactor requirements cannot be distinguished by their appearance in the growth curve, their mobility on disc gel electrophoresis, elution volume on passage through Sephadex G-200 or heat inactivation studies.
Collapse