1
|
Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular Chlamydia trachomatis isolates. Proc Natl Acad Sci U S A 2019; 116:12468-12477. [PMID: 31097582 DOI: 10.1073/pnas.1821652116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A striking difference between genital and ocular clinical isolates of Chlamydia trachomatis is that only the former express a functional tryptophan synthase and therefore can synthesize tryptophan by indole salvage. Ocular isolates uniformly cannot use indole due to inactivating mutations within tryptophan synthase, indicating a selection against maintaining this enzyme in the ocular environment. Here, we demonstrate that this selection occurs in two steps. First, specific indole derivatives, produced by the human gut microbiome and present in serum, rapidly induce expression of C. trachomatis tryptophan synthase, even under conditions of tryptophan sufficiency. We demonstrate that these indole derivatives function by acting as de-repressors of C. trachomatis TrpR. Second, trp operon de-repression is profoundly deleterious when infected cells are in an indole-deficient environment, because in the absence of indole, tryptophan synthase deaminates serine to pyruvate and ammonia. We have used biochemical and genetic approaches to demonstrate that expression of wild-type tryptophan synthase is required for the bactericidal production of ammonia. Pertinently, although these indole derivatives de-repress the trpRBA operon of C. trachomatis strains with trpA or trpB mutations, no ammonia is produced, and no deleterious effects are observed. Our studies demonstrate that tryptophan synthase can catalyze the ammonia-generating β-elimination reaction within any live bacterium. Our results also likely explain previous observations demonstrating that the same indole derivatives inhibit the growth of other pathogenic bacterial species, and why high serum levels of these indole derivatives are favorable for the prognosis of diseased conditions associated with bacterial dysbiosis.
Collapse
|
2
|
Catalytic roles of βLys87 in tryptophan synthase: (15)N solid state NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1194-9. [PMID: 25688830 DOI: 10.1016/j.bbapap.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
The proposed mechanism for tryptophan synthase shows βLys87 playing multiple catalytic roles: it bonds to the PLP cofactor, activates C4' for nucleophilic attack via a protonated Schiff base nitrogen, and abstracts and returns protons to PLP-bound substrates (i.e. acid-base catalysis). ε-¹⁵N-lysine TS was prepared to access the protonation state of βLys87 using ¹⁵N solid-state nuclear magnetic resonance (SSNMR) spectroscopy for three quasi-stable intermediates along the reaction pathway. These experiments establish that the protonation state of the ε-amino group switches between protonated and neutral states as the β-site undergoes conversion from one intermediate to the next during catalysis, corresponding to mechanistic steps where this lysine residue has been anticipated to play alternating acid and base catalytic roles that help steer reaction specificity in tryptophan synthase catalysis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. Guest Editors: Andrea Mozzarelli and Loredano Pollegioni.
Collapse
|
3
|
Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica. J Bacteriol 2014; 196:3335-42. [PMID: 25002544 DOI: 10.1128/jb.01960-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes.
Collapse
|
4
|
Miles EW. The tryptophan synthase α2β2 complex: a model for substrate channeling, allosteric communication, and pyridoxal phosphate catalysis. J Biol Chem 2013; 288:10084-10091. [PMID: 23426371 DOI: 10.1074/jbc.x113.463331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
I reflect on my research on pyridoxal phosphate (PLP) enzymes over fifty-five years and on how I combined research with marriage and family. My Ph.D. research with Esmond E. Snell established one aspect of PLP enzyme mechanism. My postdoctoral work first with Hans L. Kornberg and then with Alton Meister characterized the structure and function of another PLP enzyme, l-aspartate β-decarboxylase. My independent research at the National Institutes of Health (NIH) since 1966 has focused on the bacterial tryptophan synthase α2β2 complex. The β subunit catalyzes a number of PLP-dependent reactions. We have characterized these reactions and the allosteric effects of the α subunit. We also used chemical modification to probe enzyme structure and function. Our crystallization of the tryptophan synthase α2β2 complex from Salmonella typhimurium led to the determination of the three-dimensional structure with Craig Hyde and David Davies at NIH in 1988. This landmark structure was the first structure of a multienzyme complex and the first structure revealing an intramolecular tunnel. The structure has provided a basis for exploring mechanisms of catalysis, channeling, and allosteric communication in the tryptophan synthase α2β2 complex. The structure serves as a model for many other multiprotein complexes that are important for biological processes in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Edith Wilson Miles
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
5
|
Miles EW. Structural basis for catalysis by tryptophan synthase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:93-172. [PMID: 2053470 DOI: 10.1002/9780470123102.ch3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E W Miles
- Laboratory of Biochemistry and Pharmacology, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Miles EW. Tryptophan synthase: structure, function, and subunit interaction. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 49:127-86. [PMID: 400853 DOI: 10.1002/9780470122945.ch4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Dunathan HC. Stereochemical aspects of pyridoxal phosphate catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 35:79-134. [PMID: 4950474 DOI: 10.1002/9780470122808.ch3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
LANE AN, KIRSCHNER K. The Quarternary Structure of Tryptophan Synthase from Escherichia coli. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1432-1033.1983.tb07102.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Adams B, Lowpetch K, Thorndycroft F, Whyte SM, Young DW. Stereochemistry of reactions of the inhibitor/substrates l- and d-β-chloroalanine with β-mercaptoethanol catalysed by l-aspartate aminotransferase and d-amino acid aminotransferase respectively. Org Biomol Chem 2005; 3:3357-64. [PMID: 16132097 DOI: 10.1039/b508199h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two members of the alpha-family of PLP-dependent enzymes, L-aspartate aminotransferase and D-amino acid aminotransferase, have been shown to catalyse beta-substitution of L- and D-beta-chloroalanine respectively with beta-mercaptoethanol, reactions typical of the beta-family of PLP-dependent enzymes. The reaction catalysed by L-aspartate aminotransferase has been shown to occur with retention of stereochemistry, a typical outcome for reactions catalysed by beta-family enzymes. There are also indications that the reaction catalysed by D-amino acid aminotransferase may involve retention of stereochemistry. Both enzymes have been shown to catalyse exchange at C-3 when the appropriate enantiomer of beta-chloroalanine is the substrate.
Collapse
Affiliation(s)
- Benjamin Adams
- Department of Chemistry, University of Sussex, Falmer, Brighton, UK BN1 9QJ
| | | | | | | | | |
Collapse
|
10
|
Abstract
Tryptophan synthase is a classic enzyme that channels a metabolic intermediate, indole. The crystal structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium revealed for the first time the architecture of a multienzyme complex and the presence of an intramolecular tunnel. This remarkable hydrophobic tunnel provides a likely passageway for indole from the active site of the alpha subunit, where it is produced, to the active site of the beta subunit, where it reacts with L-serine to form L-tryptophan in a pyridoxal phosphate-dependent reaction. Rapid kinetic studies of the wild type enzyme and of channel-impaired mutant enzymes provide strong evidence for the proposed channeling mechanism. Structures of a series of enzyme-substrate intermediates at the alpha and beta active sites are elucidating enzyme mechanisms and dynamics. These structural results are providing a fascinating picture of loops opening and closing, of domain movements, and of conformational changes in the indole tunnel. Solution studies provide further evidence for ligand-induced conformational changes that send signals between the alpha and beta subunits. The combined results show that the switching of the enzyme between open and closed conformations couples the catalytic reactions at the alpha and beta active sites and prevents the escape of indole.
Collapse
Affiliation(s)
- E W Miles
- Section on Enzyme Structure and Function, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892-0830, USA.
| |
Collapse
|
11
|
Mozzarelli A, Peracchi A, Rovegno B, Dalè G, Rossi GL, Dunn MF. Effect of pH and monovalent cations on the formation of quinonoid intermediates of the tryptophan synthase alpha(2)beta(2) complex in solution and in the crystal. J Biol Chem 2000; 275:6956-62. [PMID: 10702257 DOI: 10.1074/jbc.275.10.6956] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinonoid intermediates play a key role in the catalytic mechanism of pyridoxal 5'-phosphate-dependent enzymes. Whereas the structures of other pyridoxal 5'-phosphate-bound intermediates have been determined, the structure of a quinonoid species has not yet been reported. Here, we investigate factors controlling the accumulation and stability of quinonoids formed at the beta-active site of tryptophan synthase both in solution and the crystal. The quinonoids were obtained by reacting the alpha-aminoacrylate Schiff base with different nucleophiles, focusing mainly on the substrate analogs indoline and beta-mercaptoethanol. In solution, both monovalent cations (Cs(+) or Na(+)) and alkaline pH increase the apparent affinity of indoline and favor accumulation of the indoline quinonoid. A similar pH dependence is observed when beta-mercaptoethanol is used. As indoline and beta-mercaptoethanol exhibit very distinct ionization properties, this finding suggests that nucleophile binding and quinonoid stability are controlled by some ionizable protein residue(s). In the crystal, alkaline pH favors formation of the indoline quinonoid as in solution, but the effect of cations is markedly different. In the absence of monovalent metal ions the quinonoid species accumulates substantially, whereas in the presence of sodium ions the accumulation is modest, unless alpha-subunit ligands are also present. Alpha-subunit ligands not only favor the formation of the intermediate, but also reduce significantly its decay rate. These findings define experimental conditions suitable for the stabilization of the quinonoid species in the crystal, a critical prerequisite for the determination of the three-dimensional structure of this intermediate.
Collapse
Affiliation(s)
- A Mozzarelli
- Institute of Biochemical Sciences, University of Parma, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Ahmed SA, McPhie P, Miles EW. Mechanism of activation of the tryptophan synthase alpha2beta2 complex. Solvent effects of the co-substrate beta-mercaptoethanol. J Biol Chem 1996; 271:29100-6. [PMID: 8910565 DOI: 10.1074/jbc.271.46.29100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To characterize the conformational transitions that lead to activation of catalysis by the tryptophan synthase alpha2beta2 complex, we have determined the solvent effects of a co-substrate, beta-mercaptoethanol, and of a model nonsubstrate, ethanol, on the catalytic and spectroscopic properties of the enzyme. Our results show that ethanol and beta-mercaptoethanol both alter the equilibrium distribution of pyridoxal 5'-phosphate intermediates formed in the reactions of L-serine at the beta site in the alpha2beta2 complex. Addition of increasing concentrations of ethanol increases the proportion of the external aldimine of L-serine and decreases the proportion of the external aldimine of aminoacrylate. Low concentrations of the co-substrate beta-mercaptoethanol (Kd = approximately 13 mM) decrease the proportion of the external aldimine of aminoacrylate and induce formation of the quinonoid of S-hydroxyethyl-L-cysteine. Higher concentrations of beta-mercaptoethanol decrease the concentration of the quinonoid intermediate and increase the proportion of the external aldimine of L-serine. Data analysis shows that beta-mercaptoethanol and ethanol both interact or bind preferentially with the conformer of the enzyme that predominates when the aldimine of L-serine is formed and shift the equilibrium in favor of this conformer. We propose that a nonpolar region of the beta subunit, possibly the hydrophobic indole tunnel, becomes less exposed to solvent in the conformational transition that activates the alpha2beta2 complex.
Collapse
Affiliation(s)
- S A Ahmed
- Laboratory of Biochemical Pharmacology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
13
|
Contestabile R, John RA. The mechanism of high-yielding chiral syntheses catalysed by wild-type and mutant forms of aspartate aminotransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:150-5. [PMID: 8797848 DOI: 10.1111/j.1432-1033.1996.0150h.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of aspartate aminotransferase to catalyse beta-elimination of alpha-amino acids that have a good leaving group at C beta has been exploited in the synthesis of novel amino acids by the inclusion of appropriate nucleophiles as co-substrates. Two compounds, L-serine O-sulphate and 3-chloro-L-alanine, were used as beta-elimination substrates. Nucleophiles used successfully as co-substrates were thiosulphate, 2-mercaptoethanol, mercaptoacetate and aminoethylthiopseudourea. The synthesis achieved using serine O-sulphate and thiosulphate was found to produce sulphocysteine with a yield of 70%. Circular dichroism demonstrated that the compound was a single enantiomer and, therefore, that nucleophilic addition had taken place on the enzyme. The initial rate of synthesis was 10% of the rate at which the enzyme catalyses its normal transamination reaction. The synthetic reaction was accompanied by minor side reactions that led to small amounts of additional amino acid and oxo acid products through partitions of the main reaction at two stages in the mechanism. By mutating Arg292, which is the residue that binds the distal carboxyl group of natural substrates, the wild-type enzyme was converted to a form that could discriminate completely between serine O-sulphate and chloroalanine as beta-eliminating substrate. Similar alterations in nucleophile cosubstrate specificity were also observed. Whereas, for example, the wild-type enzyme catalysed syntheses between 3-chloroalanine and either mercaptoethanol or mercaptoacetate with equal facility, the Arg292Asp enzyme showed complete preference for mercaptoethanol. The system should be of general use in the synthesis of novel amino acids as single enantiomers with potentially interesting biological activities.
Collapse
Affiliation(s)
- R Contestabile
- School of Molecular and Medical Biosciences, University of Wales, UK
| | | |
Collapse
|
14
|
Aliphatic alcohols stabilize an alternative conformation of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34032-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Zhao G, Somerville R. A single amino acid switch within the “hinge” region of the tryptophan synthase beta subunit of Escherichia coli that leads to diminished association with alpha subunit and arrested conversion of ESII to product. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
|
17
|
Mechanism of mutual activation of the tryptophan synthase alpha and beta subunits. Analysis of the reaction specificity and substrate-induced inactivation of active site and tunnel mutants of the beta subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54673-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Kayastha AM, Sawa Y, Nagata S, Miles EW. Site-directed mutagenesis of the beta subunit of tryptophan synthase from Salmonella typhimurium. Role of active site glutamic acid 350. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89492-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Kayastha AM, Miles EW. A colorimetric assay for a pyridoxal phosphate-dependent beta-replacement reaction with L-cysteine: application to studies of wild-type and mutant tryptophan synthase alpha 2 beta 2 complexes. Anal Biochem 1991; 193:200-3. [PMID: 1872468 DOI: 10.1016/0003-2697(91)90009-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present an improved and simple direct assay for formation of inorganic sulfide from L-cysteine in a beta-replacement reaction catalyzed by tryptophan synthase. This method provides a useful enzymatic assay for pyridoxal phosphate-dependent beta-replacement reactions in which the amino acid substrate is L-cysteine and the cosubstrate is 2-mercaptoethanol. The assay should be applicable to similar reactions with L-cysteine and other cosubstrates. The method has several advantages over other methods which have been used to assay similar beta-replacement reactions. The assay is highly reproducible and sensitive and is conveniently carried out in disposable 1.5-ml centrifuge tubes. The color remains stable for several hours. The thiol compounds L-cysteine and 2-mercaptoethanol do not interfere at the concentrations used. The method has useful applications to studies of the rates and reaction specificities of several other pyridoxal phosphate enzymes which catalyze beta-replacement reactions. We demonstrate the use of the method to study the effects of site-directed mutagenesis on the reaction specificity and mechanism of the tryptophan synthase alpha 2 beta 2 complex.
Collapse
Affiliation(s)
- A M Kayastha
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
20
|
Murry-Brelier A, Goldberg ME. Mechanism of inactivation of the beta 2 subunit of Escherichia coli tryptophan synthase by monoclonal antibodies. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Affiliation(s)
- A Meister
- Department of Biochemistry, Cornell University Medical College, New York, N.Y. 10021
| |
Collapse
|
22
|
Microspectrophotometric Studies on Single Crystals of the Tryptophan Synthase α2β2 Complex Demonstrate Formation of Enzyme-Substrate Intermediates. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71544-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Drewe WF, Koerber SC, Dunn MF. Application of rapid-scanning, stopped-flow spectroscopy to the characterization of intermediates formed in the reactions of L- and D-tryptophan and beta-mercaptoethanol with Escherichia coli tryptophan synthase. Biochimie 1989; 71:509-19. [PMID: 2503056 DOI: 10.1016/0300-9084(89)90182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reactions of the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase with D- and L-Trp and the presteady-state reaction of L-Ser and beta-mercaptoethanol under different premixing conditions have been investigated by rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy. The reaction of alpha 2 beta 2 with L-Ser and beta-mercaptoethanol occurs in 3 detectable relaxations with rates similar to the 3 relaxations seen in the partial reaction with L-Ser and in the reaction with L-Ser and indole. The presteady-state phase of the reaction of beta-mercaptoethanol with the alpha-aminoacrylate intermediate is characterized by 2 relaxations. The RSSF spectra for this reaction show that the spectral changes that take place in these 2 phases are essentially identical. The L-Trp reaction is biphasic, and the spectral changes occurring in each phase of the reaction also are identical. The 2 new spectral bands formed (lambda max congruent to 420 nm and congruent to 476 nm) are assigned as the L-Trp external aldimine (Schiff's base) and L-Trp quinonoid intermediates, respectively. The reaction of D-Trp also is biphasic. Analysis of first and second derivatives of the RSSF spectral changes give evidence for the formation of spectral bands with lambda max of approximately 423 nm, approximately 450 nm, and approximately 478 nm. The positions and shapes of these bands suggest a D-Trp external aldimine structure (423 nm) and a quinonoidal species (450 and 478 nm). However, product studies do not support this latter assignment. The behavior of the D- and L-Trp reactions and the reaction of beta-mercaptoethanol with the alpha-aminoacrylate strongly indicate the pre-existence of 2 slowly equilibrating forms of the internal aldimine and of the alpha-aminoacrylate.
Collapse
Affiliation(s)
- W F Drewe
- Department of Biochemistry, University of California, Riverside 92521-0129
| | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Levy S, Danchin A. Phylogeny of metabolic pathways: O-acetylserine sulphydrylase A is homologous to the tryptophan synthase beta subunit. Mol Microbiol 1988; 2:777-83. [PMID: 3062311 DOI: 10.1111/j.1365-2958.1988.tb00089.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cysK gene of Escherichia coli K-12 encoding O-acetylserine sulphydrylase A, was cloned and its nucleotide sequence, together with that of the flanking regions, was determined. The deduced amino acid sequence of the carboxy-terminal moiety of O-acetylserine sulphydrylase A shows significant similarity to the amino acid sequence of tryptophan synthase beta chain from several organisms. This sequence similarity is likely to reflect the structural homologies of substrates shared by both enzymes. This may indicate that these proteins, although catalysing different reactions in different metabolic pathways, have evolved from a common ancestral gene.
Collapse
Affiliation(s)
- S Levy
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | |
Collapse
|
27
|
Demidkina TV, Myagkikh IV, Azhayev AV. Transamination catalysed by tyrosine phenol-lyase from Citrobacter intermedius. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 170:311-6. [PMID: 3691524 DOI: 10.1111/j.1432-1033.1987.tb13701.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interactions of tyrosine phenol-lyase with its substrates: L-tyrosine and L-serine, and the competitive inhibitors: L-alanine, L-phenylalanine, L-m-tyrosine, were studied. It was demonstrated that the enzyme catalyzed a half-transamination reaction between substrates or inhibitors and the protein-bound pyridoxal phosphate. The products of this side-reaction, pyridoxamine phosphate and the respective keto acids, were identified. The kinetic parameters were determined for beta-elimination of L-tyrosine and of L-serine, and for the transamination of L-serine and the inhibitors used. The transfer of the amino group to the coenzyme takes place in the direction from amino acid to pyridoxal phosphate, but not in the opposite direction, i.e. the transamination is irreversible.
Collapse
Affiliation(s)
- T V Demidkina
- Institute of Molecular Biology, USSR Academy of Sciences, Moscow
| | | | | |
Collapse
|
28
|
Miles EW, Bauerle R, Ahmed SA. Tryptophan synthase from Escherichia coli and Salmonella typhimurium. Methods Enzymol 1987; 142:398-414. [PMID: 3298982 DOI: 10.1016/s0076-6879(87)42051-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Srivastava DK, Bernhard SA. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. CURRENT TOPICS IN CELLULAR REGULATION 1986; 28:1-68. [PMID: 3539532 DOI: 10.1016/b978-0-12-152828-7.50003-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Phillips RS, Miles EW, Cohen LA. Differential inhibition of tryptophan synthase and of tryptophanase by the two diastereoisomers of 2,3-dihydro-L-tryptophan. Implications for the stereochemistry of the reaction intermediates. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38622-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Lane AN, Kirschner K. The catalytic mechanism of tryptophan synthase from Escherichia coli. Kinetics of the reaction of indole with the enzyme--L-serine complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 129:571-82. [PMID: 6402362 DOI: 10.1111/j.1432-1033.1983.tb07087.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanism by which indole condenses with L-serine in the active site of tryptophan synthase was studied by the stopped-flow technique. The single turnover occurs by rapid binding of indole to the pre-formed enzyme--L-serine complex, followed by C--C bond formation, reprotonation of the alpha carbon carbanion of L-tryptophan, and its final release. The effects of isotopic substitution at C-3 of indole, of pH, and of the presence of indolepropanol phosphate on these processes were also studied. The mechanism of binding of indole complements the known mechanisms of binding of L-serine and L-tryptophan to give a detailed picture of the mechanism of catalysis. It invokes two competent species of enzyme--L-serine complexes, leading to a branched pathway for the central condensation process. The rates of dehydration of L-serine and reprotonation of the carbanion of L-tryptophan are probably limited by rearrangements at the active site. Analysis of absorption, fluorescence and circular dichroic spectra, as well as of published data on the stereoisomers obtained by reduction with borohydride, suggests that the rearrangement includes a reorientation of the pyridoxal phosphate C-4' atom. The mechanism provides a detailed framework for explaining all available information, including the activating effect of the alpha subunit on the reaction catalyzed by the beta 2 subunit.
Collapse
|
32
|
|
33
|
Chaffotte AF, Zakin MM, Goldberg ME. Immunochemical studies on the evolution of tryptophanase and the two subunits of tryptophan synthetase of Escherichia coli K 12. Biochem Biophys Res Commun 1980; 92:381-8. [PMID: 6986866 DOI: 10.1016/0006-291x(80)90344-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Soper TS, Manning JM. beta-elimination of beta-halo substrates by D-amino acid transaminase associated with inactivation of the enzyme. Trapping of a key intermediate in the reaction. Biochemistry 1978; 17:3377-84. [PMID: 687590 DOI: 10.1021/bi00609a031] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Tsai M, Schleicher E, Potts R, Skye G, Floss H. Stereochemistry and mechanism of reactions catalyzed by tryptophan synthetase and its beta2 subunit. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)30376-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
36
|
Heilmann HD. On the mechanism of action of Escherichia coli tryptophan synthase. Steady-state investigations. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 522:614-24. [PMID: 341987 DOI: 10.1016/0005-2744(78)90092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole), EC 4.2.1.20) synthesizes L-trypotophan from indoleglycerol phosphate and L-serine, releasing glyceraldehyde 3-phosphate, or from indole and L-serine. The latter reaction (B reaction), catalyzed either by the beta2 species or by the (alpha2 beta2) complex, has been studied by steady-state methods. A sequential mechanism is indicated. Inhibition experiments with the substrate analogue benzimidazole were carried out in order to distinguish between random and ordered mechanisms. The results are compatible with a random sequential mechanism. The dissociation constants of the enzyme-substrate complexes are evaluated. When catalyzed by the tetrameric complex (alpha2 beta2) the B reaction is inhibited by higher concentrations of the substrate indole. This inhibition does not follow the usual substrate inhibition pattern. The question whether the binding of indole to the alpha-subunit exerts an inhibitory effect on the beta2 species, possibly by reversing the activation by the alpha subunit of the beta2 species, is discussed.
Collapse
|
37
|
Tryptophan synthase of Escherichia coli. Removal of pyridoxal 5'-phosphate and separation of the alpha and beta2 subunits. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)39889-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Hodo HG, Murphy J, Hardman JK, Myers R. Substrate interactions with the alpha-subunit of the Escherichia coli tryptophan synthase. A kinetic study of the wild-type alpha-subunit. Arch Biochem Biophys 1977; 181:419-27. [PMID: 332076 DOI: 10.1016/0003-9861(77)90247-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Reiber H. Vitamin B-6-catalyzed beta-elimination of serine and O-phosphoserine. Qualitative and quantitative aspects of catalytic influences at the rate-limiting step, a comparison with the rate of enzymatic beta-elimination. Biochim Biophys Acta Gen Subj 1976; 444:734-55. [PMID: 10973 DOI: 10.1016/0304-4165(76)90321-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The overall reaction rates for the beta-elimination of serine and O-phosphoserine, catalyzed by various vitamin B-6 analogs (pyridoxal 5'-phosphate, 5'-deoxypyridoxal and N-methylpyridoxal 5'-phosphate) in the presence or absence of Cu2+ ions, are determined. The comparison of the pH-dependence of the molar activities of the three vitamin B-6 aldehydes in beta-elimination of serine enables the characterization of the different active Schiff base species and the single catalytic events. The Schiff base which has a positive charge on the pyridine ring nitrogen and a fully ionized phosphate group shows the highest molar activity. The phosphate group acts as an intramolecular general base catalyst, most probably at the alpha-carbon proton of the amino acid. Furthermore general acid catalysis by buffer species occurs at the beta-hydroxy group serine. These facts together provide a kinetically unambiguous description of the mechanism of the reaction: the removal of the proton at the alpha-carbon atom of serine is the rate-limiting step and is followed by the more rapid elimination of the b-hydroxy group of serine. The forward rate constant of the rate-limiting step is calculated for each of the reactions mentioned. The rate constants are compared with respect to the effectiveness of the individual catalytic components in the vitamin B-6-dependent beta-elimination. For optimal conditions the reaction of O-phosphoserine is faster by a factor of 10(4) in the velocity of the beta-elimination than the corresponding acid-catalyzed beta-elimination of serine. For the eliminations at the alpha- and beta-carbon atoms of O-phosphoserine in vitamin B-6-catalysed reactions a common transition state is discussed. From a comparison of the fastest vitamin beta-6-dependent model reaction with the rate of an enzymatic beta-elimination it is suggested that for those beta-elininating enzymes where the rate-limiting step is the same as in the model, the catalytic components mentioned could suffice to explain the velocity of the rate-limiting step.
Collapse
|
40
|
Cook PF, Wedding RT. A reaction mechanism from steady state kinetic studies for O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33649-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Berger FG, Herrmann KM. Tryptophan synthetase alpha(5.7-S): novel molecular species formed within Escherichia coli. J Bacteriol 1975; 124:800-9. [PMID: 1102532 PMCID: PMC235970 DOI: 10.1128/jb.124.2.800-809.1975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel molecular species contributes about 5% of the total tryptophan synthetase of Escherichia coli derepressed for the trp operon enzymes. The new species is identified under conditions in which the dissociation of the two nonidentical subunits of the tryptophan synthetase complex is favored. The new species sediments at 5.7S, catalyzes the conversion of indole-3-glycerol phosphate to indole, and has been designated alpha(5.7-S). Although alpha(5.7-S) is not observed in extracts of trpA or trpB mutant strains deficient in the ability to form tryptophan synthetase alpha or beta2 subunits, respectively, a mixture of the two extracts allows the formation of alpha(5.7-S). Similar results are obtained when a homogeneous alpha protein is mixed with an extract of a trpA mutant strain, suggesting that the interaction of alpha and beta2 proteins is obligatory for alpha(5.7-S) formation. One can obtain a beta2 protein preparation that when mixed with a pure alpha protein gives no alpha(5.7-S). Therefore, the interaction of alpha and beta2 proteins alone is not sufficient for the formation of alpha(5.7-S). When a mixture of alpha and beta2 proteins devoid of alpha(5.7-S) is added to extracts of trp deletion mutants, the novel species can be reconstituted in vitro only when deletions are used that carry at least the operator-proximal part of the trpB gene. Therefore, it is concluded that the alpha(5.7-S) species of tryptophan synthetase results from the interaction of the alpha protein, the beta2 protein, and a third component, beta', specified by the deoxyribonucleic acid defined by the end points of two trp deletion mutants.
Collapse
|
42
|
Miles EW. A new type of pyridoxal-P enzyme catalyzed reaction: the conversion of beta, gamma-unsaturated amino acids to saturated alpha-keto acids by tryptophan synthase. Biochem Biophys Res Commun 1975; 66:94-102. [PMID: 1164442 DOI: 10.1016/s0006-291x(75)80299-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Dunathan HC, Voet JG. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc Natl Acad Sci U S A 1974; 71:3888-91. [PMID: 4530268 PMCID: PMC434290 DOI: 10.1073/pnas.71.10.3888] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several pyridoxal-phosphate-dependent enzymes can convert the bound cofactor to pyridoxamine phosphate. This conversion may be an obligatory part of the normal catalytic sequence, as with transaminases, or may be an abnormal path, inactivating the enzyme. This conversion requires protonation of the C(4)' carbon of the cofactor, which has now been shown to proceed stereospecifically and with the same absolute stereochemistry in seven quite different pyridoxal-phosphate enzymes. We report on one of these, tryptophan synthase B protein. This regularity in protonation stereochemistry suggests a remarkable regularity in the geometry of cofactor binding to the apoenzyme. This regularity is interpreted as evidence for the evolution of this entire family of enzymes from a common progenitor which, through the course of evolution, could not invert its original, arbitrary binding stereochemistry without passing through catalytically inactive conformations.
Collapse
|
44
|
A Rapid Method for Preparing Crystalline b2 Subunit of Tryptophan Synthetase of Escherichia coli in High Yield. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(20)79746-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Kida S, Crawford IP. Complementation in vitro between mutationally altered beta2 subunits of Escherichia coli tryptophan synthetase. J Bacteriol 1974; 118:551-9. [PMID: 4597448 PMCID: PMC246788 DOI: 10.1128/jb.118.2.551-559.1974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cross-reacting beta(2) subunits (CRMs) were purified from eight trpB missense mutants to test for complementation in vitro after urea dissociation and reaggregation. One CRM (B290, demonstrating "repairability," i.e., the appearance of enzymatic activity on combination with alpha subunits) was clearly positive with four others, all "non-repairable" CRMs resulting from mutations at three different but neighboring sites. One complementing pair, B290-B248, was studied in more detail and found, upon mixing purified proteins, to give complementation in the absence of denaturants. Complementation activity was low in each case. To study the mechanism of the modest increases in activity, we used a reduced beta(2) subunit as an artificial CRM to form hybrids where both the amount of activity due to complementation and the amount of hybrid could be measured. (In a reduced beta(2) subunit, the two pyridoxal phosphate cofactors have been chemically reduced by sodium borohydride and are covalently attached to lysine residues. This abolishes activity in the tryptophan synthetic reaction and causes the protein to migrate much faster than normal in acrylamide gel electrophoresis.) Reduced beta(2) subunit formed hybrid dimers with the non-repairable CRMs B244 and B248 at pH 6.0, but no enzymatic activity appeared. On the other hand, when reduced beta(2) subunit was mixed with B290 CRM at pH 6.0 to 6.6, an activity increase was seen that was proportional to the amount of hybrid. We conclude that hybrid formation is essential for complementation and that the mechanism of complementation in this system is the correction of a repairable active site on the B290 beta chain by a conformational change occuring when hybrid dimer is formed. This type of complementation must be restricted to a small class of CRMs having a conformationally deformed active site. From the amount of hybrid present and the increase in activity, a specific activity of 50 U/mg was calculated for the hybrid containing reduced and B290 beta chains. This value is slightly less than but close to the activity of the hybrid formed between reduced and normal beta chains, shown earlier to have half the specific activity of the normal dimer.
Collapse
|
46
|
Miles EW, McPhie P. Evidence for a Rate-determining Proton Abstraction in the Serine Deaminase Reaction of the β2 Subunit of Tryptophan Synthetase. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42708-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Miles EW, Kumagai H. Modification of Essential Histidyl Residues of the β2 Subunit of Tryptophan Synthetase by Photo-oxidation in the Presence of Pyridoxal 5′-Phosphate and l-Serine and by Diethylpyrocarbonate. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42707-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Tsai H, Suskind SR. Enzymic properties of a mutant tryptophan synthase from Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA 1972; 284:324-40. [PMID: 4262962 DOI: 10.1016/0005-2744(72)90070-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
|
50
|
|