1
|
Zivkovic I, Ivkovic K, Cvetesic N, Marsavelski A, Gruic-Sovulj I. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Nucleic Acids Res 2022; 50:4029-4041. [PMID: 35357484 PMCID: PMC9023258 DOI: 10.1093/nar/gkac207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.
Collapse
Affiliation(s)
- Igor Zivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Kate Ivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Nevena Cvetesic
- Institute for Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, SW7 2AZ, UK
| | - Aleksandra Marsavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020; 287:1284-1305. [PMID: 31891445 DOI: 10.1111/febs.15199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge tRNA with their cognate amino acids. Many other enzymes use amino acids as substrates, yet discrimination against noncognate amino acids that threaten the accuracy of protein translation is a hallmark of AARSs. Comparing AARSs to these other enzymes allowed us to recognize patterns in molecular recognition and strategies used by evolution for exercising selectivity. Overall, AARSs are 2-3 orders of magnitude more selective than most other amino acid utilizing enzymes. AARSs also reveal the physicochemical limits of molecular discrimination. For example, amino acids smaller by a single methyl moiety present a discrimination ceiling of ~200, while larger ones can be discriminated by up to 105 -fold. In contrast, substrates larger by a hydroxyl group challenge AARS selectivity, due to promiscuous H-bonding with polar active site groups. This 'hydroxyl paradox' is resolved by editing. Indeed, when the physicochemical discrimination limits are reached, post-transfer editing - hydrolysis of tRNAs charged with noncognate amino acids, evolved. The editing site often selectively recognizes the edited noncognate substrate using the very same feature that the synthetic site could not efficiently discriminate against. Finally, the comparison to other enzymes also reveals that the selectivity of AARSs is an explicitly evolved trait, showing some clear examples of how selection acted not only to optimize catalytic efficiency with the target substrate, but also to abolish activity with noncognate threat substrates ('negative selection').
Collapse
Affiliation(s)
- Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
3
|
Wei W, Gauld JW, Monard G. Pretransfer Editing in Threonyl-tRNA Synthetase: Roles of Differential Solvent Accessibility and Intermediate Stabilization. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wanlei Wei
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Gerald Monard
- Université de Lorraine, UMR 7565 SRSMC, Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
4
|
A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P. Cell Rep 2014; 9:476-83. [PMID: 25310979 DOI: 10.1016/j.celrep.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022] Open
Abstract
Bacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P) to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely a proline triplet in ValS, the tRNA synthetase, that charges tRNA(Val) with valine. Here, we show that expression of ValS in vivo and in vitro requires EF-P and demonstrate that the proline triplet located in the active site of ValS is important for efficient charging of tRNA(Val) with valine and preventing formation of mischarged Thr-tRNA(Val) as well as efficient growth of E. coli in vivo. We suggest that the critical role of the proline triplet for ValS activity may explain why bacterial cells coevolved the EF-P rescue system.
Collapse
|
5
|
Huang Q, Yao P, Eriani G, Wang ED. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain. Nucleic Acids Res 2012; 40:10463-77. [PMID: 22917587 PMCID: PMC3488233 DOI: 10.1093/nar/gks783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNALeu to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisiae tRNALeu knockout strains carrying deletions of the genes for tRNALeu(GAG) and tRNALeu(UAG). Disrupting the single gene encoding tRNALeu(GAG) had no phenotypic consequence when compared to the wild-type strain. While disrupting the three genes for tRNALeu(UAG) had a lethal effect on the yeast strain, indicating that tRNALeu(UAG) decoding capacity could not be compensated by another tRNALeu isoacceptor. Using the triple tRNA knockout strain and a randomly mutated library of tRNALeu(UAG), a selection to identify critical tRNALeu elements was performed. In this way, mutations inducing in vivo decreases of tRNA levels or aminoacylation or editing ability by leucyl-tRNA synthetase were identified. Overall, the data showed that the triple tRNA knockout strain is a suitable tool for in vivo studies and identification of essential nucleotides of the tRNA.
Collapse
Affiliation(s)
- Qian Huang
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
6
|
Yadavalli SS, Ibba M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:1-43. [PMID: 22243580 DOI: 10.1016/b978-0-12-386497-0.00001-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
7
|
Jakubowski H. Quality control in tRNA charging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:295-310. [PMID: 22095844 DOI: 10.1002/wrna.122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Faithful translation of the genetic code during protein synthesis is fundamental to the growth, development, and function of living organisms. Aminoacyl-tRNA synthetases (AARSs), which define the genetic code by correctly pairing amino acids with their cognate tRNAs, are responsible for 'quality control' in the flow of information from a gene to a protein. When differences in binding energies of amino acids to an AARS are inadequate, editing is used to achieve high selectivity. Editing occurs at the synthetic active site by hydrolysis of noncognate aminoacyl-adenylates (pretransfer editing) and at a dedicated editing site located in a separate domain by deacylation of mischarged aminoacyl-tRNA (posttransfer editing). Access of nonprotein amino acids, such as homocysteine or ornithine, to the genetic code is prevented by the editing function of AARSs, which functionally partitions amino acids present in living cells into protein and nonprotein amino acids. Continuous editing is part of the tRNA aminoacylation process in living organisms from bacteria to human beings. Preventing mistranslation by the clearance of misactivated amino acids is crucial to cellular homeostasis and has a role in etiology of disease. Although there is a strong selective pressure to minimize mistranslation, some organisms possess error-prone AARSs that cause mistranslation. Elevated levels of mistranslation and the synthesis of statistical proteins can be beneficial for pathogens by increasing phenotypic variation essential for the evasion of host defenses.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.
| |
Collapse
|
8
|
Minajigi A, Deng B, Francklyn CS. Fidelity escape by the unnatural amino acid β-hydroxynorvaline: an efficient substrate for Escherichia coli threonyl-tRNA synthetase with toxic effects on growth. Biochemistry 2011; 50:1101-9. [PMID: 21222438 DOI: 10.1021/bi101360a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In all living systems, the fidelity of translation is maintained in part by the editing mechanisms of aminoacyl-tRNA synthetases (ARSs). Some nonproteogenic amino acids, including β-hydroxynorvaline (HNV) are nevertheless efficiently aminoacylated and become incorporated into proteins. To investigate the basis of HNV's ability to function in protein synthesis, the utilization of HNV by Escherichia coli threonyl-tRNA synthetase (ThrRS) was investigated through both in vitro functional experiments and bacterial growth studies. The measured specificity constant (k(cat)/K(M)) for HNV was found to be only 20-30-fold less than that of cognate threonine. The rate of aminoacyl transfer (10.4 s(-1)) was 10-fold higher than the multiple turnover k(cat) value (1 s(-1)), indicating that, as for cognate threonine, amino acid activation is likely to be the rate-limiting step. Like noncognate serine, HNV enhances the ATPase function of the synthetic site, at a rate not increased by nonaminoacylatable (3'-dA76) tRNA. ThrRS also failed to exhibit posttransfer editing activity against HNV. In growing bacteria, the addition of HNV dramatically suppressed growth rates, which indicates either negative phenotypic consequences associated with its incorporation into protein or inhibition of an unidentified metabolic reaction. The inability of wild ThrRS to prevent utilization of HNV as a substrate illustrates that, for at least one ARS, the naturally occurring enzyme lacks the capability to effectively discriminate against nonproteogenic amino acids that are not encountered under normal physiological conditions. Other examples of "fidelity escape" in the ARSs may serve as useful starting points in the design of ARSs with specificity for unnatural amino acids.
Collapse
Affiliation(s)
- Anand Minajigi
- Cell and Molecular Biology Program, College of Medicine, Health Sciences Complex, University of Vermont, Burlington, Vermont 05405-0068, United States
| | | | | |
Collapse
|
9
|
Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, Silvestrini F, Pizzi E, Sharma A. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genomics 2009; 10:644. [PMID: 20042123 PMCID: PMC2813244 DOI: 10.1186/1471-2164-10-644] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/31/2009] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria.
Collapse
Affiliation(s)
- Tarun Kumar Bhatt
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. PROTEIN ENGINEERING 2009. [DOI: 10.1007/978-3-540-70941-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Proc Natl Acad Sci U S A 2008; 105:19223-8. [PMID: 19020078 DOI: 10.1073/pnas.0809336105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mistranslation is toxic to bacterial and mammalian cells and can lead to neurodegeneration in the mouse. Mistranslation is caused by the attachment of the wrong amino acid to a specific tRNA. Many aminoacyl-tRNA synthetases have an editing activity that deacylates the mischarged amino acid before capture by the elongation factor and transport to the ribosome. For class I tRNA synthetases, the editing activity is encoded by the CP1 domain, which is distinct from the active site for aminoacylation. What is not clear is whether the enzymes also have an editing activity that is separable from CP1. A point mutation in CP1 of class I leucyl-tRNA synthetase inactivates deacylase activity and produces misacylated tRNA. In contrast, although deletion of the entire CP1 domain also disabled the deacylase activity, the deletion-bearing enzyme produced no mischarged tRNA. Further investigation showed that a second tRNA-dependent activity prevented misacylation and is intrinsic to the active site for aminoacylation.
Collapse
|
12
|
Splan KE, Musier-Forsyth K, Boniecki MT, Martinis SA. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. Methods 2008; 44:119-28. [PMID: 18241793 PMCID: PMC2270698 DOI: 10.1016/j.ymeth.2007.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, St. Paul, MN 55105, USA
| | | | | | | |
Collapse
|
13
|
Ambrogelly A, Kamtekar S, Stathopoulos C, Kennedy D, Söll D. Asymmetric behavior of archaeal prolyl-tRNA synthetase. FEBS Lett 2005; 579:6017-22. [PMID: 16226256 DOI: 10.1016/j.febslet.2005.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 09/15/2005] [Accepted: 09/20/2005] [Indexed: 11/26/2022]
Abstract
Archaeal prolyl-tRNA synthetases differ from their bacterial counterparts: they contain an additional domain (about 70 amino acids) appended to the carboxy-terminus and lack an editing domain inserted into the class II catalytic core. Biochemical and structural approaches have generated a wealth of information on amino acid and tRNA specificities for both types of ProRSs, but have left a number of aspects unexplored. We report here that the carboxy-terminal domain of Methanocaldococcus jannaschii ProRS is not involved in tRNA binding since its deletion only mildly affects the kinetic parameters for the enzyme. We also demonstrate that M. jannaschii ProRS is a homodimeric enzyme that is functionally asymmetric; only one of the two active sites at a time is able to form prolyl-adenylate, and only one tRNA molecule binds per dimer. Together with previous reports our results show that asymmetry might be a general feature of the aminoacylation reaction catalyzed by dimeric aminoacyl-tRNA synthetases from both classes.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics, Yale University, P.O. Box 208114, New Haven, CT 06520-8114, USA.
| | | | | | | | | |
Collapse
|
14
|
Shitivelband S, Hou YM. Breaking the stereo barrier of amino acid attachment to tRNA by a single nucleotide. J Mol Biol 2005; 348:513-21. [PMID: 15826650 DOI: 10.1016/j.jmb.2005.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
Aminoacyl-tRNA synthetases are responsible for attaching amino acid residues to the tRNA 3'-end. The two classes of synthetases approach tRNA as mirror images, with opposite but symmetrical stereochemistries that allow the class I enzymes to attach amino acid residues to the 2'-hydroxyl group of the terminal ribose, whereas, the class II enzymes attach amino acid residues to the 3'-hydroxyl group. However, we show here that the attachment of cysteine to tRNA(Cys) by the class I cysteinyl-tRNA synthetase (CysRS) is flexible; the enzyme is capable of using either the 2' or 3'-hydroxyl group as the attachment site. The molecular basis for this flexibility was investigated. Introduction of the nucleotide U73 of tRNA(Cys) into tRNA(Val) was found to confer the flexibility. While valylation of the wild-type tRNA(Val) by the class I ValRS was strictly dependent on the terminal 2'-hydroxyl group, that of the U73 mutant of tRNA(Val) occurred at either the 2' or 3'-hydroxyl group. Thus, the single nucleotide U73 of tRNA has the ability to break the stereo barrier of amino acid attachment to tRNA, by mobilizing the 2' and 3'-hydroxyl groups of A76 in flexible geometry with respect to the tRNA acceptor stem.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/metabolism
- Amino Acyl-tRNA Synthetases/metabolism
- Animals
- Base Sequence
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Molecular Structure
- Nucleic Acid Conformation
- Nucleotides/chemistry
- Nucleotides/metabolism
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- RNA, Transfer, Cys/metabolism
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Svetlana Shitivelband
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
15
|
Zhao MW, Zhu B, Hao R, Xu MG, Eriani G, Wang ED. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J 2005; 24:1430-9. [PMID: 15775966 PMCID: PMC1142543 DOI: 10.1038/sj.emboj.7600618] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 02/15/2005] [Indexed: 11/10/2022] Open
Abstract
The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplanted into the inactive Escherichia coli LeuRS editing domain. Likewise, fusion of the beta-subunit of alphabeta-LeuRS to the E. coli editing domain activates its editing function. These results suggest that alphabeta-LeuRS still carries the basic features from a primitive synthetase molecule. It has a remarkable capacity to transfer autonomous active modules, which is consistent with the idea that modern synthetases arose after exchange of small idiosyncratic domains. It also has a unique alphabeta-heterodimeric structure with separated catalytic and tRNA-binding sites. Such an organization supports the tRNA/synthetase coevolution theory that predicts sequential addition of tRNA and synthetase domains.
Collapse
Affiliation(s)
- Ming-Wei Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | - Bin Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | - Rui Hao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | - Min-Gang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | - Gilbert Eriani
- UPR9002, IBMC du CNRS and Université Louis Pasteur, Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, 320 Yeu Yang Road, Shanghai 200031, China. Tel.: +86 21 549 21241; Fax: +86 21 549 21011; E-mail:
| |
Collapse
|
16
|
Tardif KD, Horowitz J. Functional group recognition at the aminoacylation and editing sites of E. coli valyl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2004; 10:493-503. [PMID: 14970394 PMCID: PMC1370944 DOI: 10.1261/rna.5166704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/07/2003] [Indexed: 05/24/2023]
Abstract
To correct misactivation and misacylation errors, Escherichia coli valyl-tRNA synthetase (ValRS) catalyzes a tRNA(Val)-dependent editing reaction at a site distinct from its aminoacylation site. Here we examined the effects of replacing the conserved 3'-adenosine of tRNA(Val) with nucleoside analogs, to identify structural elements of the 3'-terminal nucleoside necessary for tRNA function at the aminoacylation and editing sites of ValRS. The results show that the exocyclic amino group (N6) is not essential: purine riboside-substituted tRNA(Val) is active in aminoacylation and in stimulating editing. Presence of an O6 substituent (guanosine, inosine, xanthosine) interferes with aminoacylation as well as posttransfer and total editing (pre- plus posttransfer editing). Because ValRS does not recognize substituents at the 6-position, these results suggest that an unprotonated N1, capable of acting as an H-bond acceptor, is an essential determinant for both the aminoacylation and editing reactions. Substituents at the 2-position of the purine ring, either a 2-amino group (2-aminopurine, 2,6-diaminopurine, guanosine, and 7-deazaguanosine) or a 2-keto group (xanthosine, isoguanosine), strongly inhibit both aminoacylation and editing. Although aminoacylation by ValRS is at the 2'-OH, substitution of the 3'-terminal adenosine of tRNA(Val) with 3'-deoxyadenosine reduces the efficiency of valine acceptance and of posttransfer editing, demonstrating that the 3'-terminal hydroxyl group contributes to tRNA recognition at both the aminoacylation and editing sites. Our results show a strong correlation between the amino acid accepting activity of tRNA and its ability to stimulate editing, suggesting misacylated tRNA is a transient intermediate in the editing reaction, and editing by ValRS requires a posttransfer step.
Collapse
Affiliation(s)
- Keith D Tardif
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
17
|
Xu MG, Chen JF, Martin F, Zhao MW, Eriani G, Wang ED. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J Biol Chem 2002; 277:41590-6. [PMID: 12196521 DOI: 10.1074/jbc.m205126200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a hyperthermophilic bacterium, Aquifex aeolicus, leucyl-tRNA synthetase (LeuRS) consists of two non-identical polypeptide subunits (alpha and beta), different from the canonical LeuRS, which has a single polypeptide chain. By PCR, using genome DNA of A. aeolicus as a template, genes encoding the alpha and beta subunits were amplified and cloned in Escherichia coli. The alpha subunit could not be expressed stably in vivo, whereas the beta subunit was overproduced and purified by a simple procedure. The beta subunit was inactive in catalysis but was able to bind tRNA(Leu). Interestingly, the heterodimer alphabeta-LeuRS could be overproduced in E. coli cells containing both genes and was purified to 95% homogeneity as a hybrid dimer. The kinetics of A. aeolicus LeuRS in pre-steady and steady states and cross-recognition of LeuRS and tRNA(Leu) from A. aeolicus and E. coli were studied. Magnesium concentration, pH value, and temperature aminoacylation optima were determined to be 12 mm, 7.8, and 70 degrees C, respectively. Under optimal conditions, A. aeolicus alphabeta-LeuRS is stable up to 65 degrees C.
Collapse
Affiliation(s)
- Min-Gang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
18
|
Tardif KD, Horowitz J. Transfer RNA determinants for translational editing by Escherichia coli valyl-tRNA synthetase. Nucleic Acids Res 2002; 30:2538-45. [PMID: 12034843 PMCID: PMC117182 DOI: 10.1093/nar/30.11.2538] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Valyl-tRNA synthetase (ValRS) has difficulty differentiating valine from structurally similar non-cognate amino acids, most prominently threonine. To minimize errors in aminoacylation and translation the enzyme catalyzes a proofreading (editing) reaction that is dependent on the presence of cognate tRNA(Val). Editing occurs at a site functionally distinct from the aminoacylation site of ValRS and previous results have shown that the 3'-terminus of tRNA(Val) is recognized differently at the two sites. Here, we extend these studies by comparing the contribution of aminoacylation identity determinants to productive recognition of tRNA(Val) at the aminoacylation and editing sites, and by probing tRNA(Val) for editing determinants that are distinct from those required for aminoacylation. Mutational analysis of Escherichia coli tRNA(Val) and identity switch experiments with non-cognate tRNAs reveal a direct relationship between the ability of a tRNA to be aminoacylated and its ability to stimulate the editing activity of ValRS. This suggests that at least a majority of editing by the enzyme entails prior charging of tRNA and that misacylated tRNA is a transient intermediate in the editing reaction.
Collapse
Affiliation(s)
- Keith D Tardif
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
19
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|