1
|
GC K, To D, Jayalath K, Abeysirigunawardena S. Discovery of a novel small molecular peptide that disrupts helix 34 of bacterial ribosomal RNA. RSC Adv 2019; 9:40268-40276. [PMID: 35542650 PMCID: PMC9076165 DOI: 10.1039/c9ra07812f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the advances in modern medicine, antibiotic resistance is a persistent and growing threat to the world. Thus, the discovery and development of novel antibiotics have become crucial to combat multi-drug resistant pathogens. The goal of our research is to discover a small molecular peptide that can disrupt the synthesis of new ribosomes. Using the phage display technique, we have discovered a 7-mer peptide that binds to the second strand of 16S h34 RNA with a dissociation constant in the low micromolar range. Binding of the peptide alters RNA structure and inhibits the binding of the ribosomal RNA small subunit methyltransferase C (RsmC) enzyme that methylates the exocyclic amine of G1207. The addition of this peptide also increases the lag phase of bacterial growth. Introduction of chemical modifications to increase the binding affinity of the peptide to RNA, its uptake and stability can further improve the efficacy of the peptide as an antibiotic agent against pathogenic bacteria. Discovery of a novel heptapeptide that disrupts RNA–RNA and RNA–protein interactions in bacterial ribosome.![]()
Collapse
Affiliation(s)
- Keshav GC
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Davidnhan To
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Kumudie Jayalath
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | | |
Collapse
|
2
|
Sakamoto K, Otake K, Umemoto T. Discovery of peptidic miR-21 processing inhibitor by mirror image phage display: A novel method to generate RNA binding D-peptides. Bioorg Med Chem Lett 2017; 27:826-828. [DOI: 10.1016/j.bmcl.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
|
3
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Spears JL, Xiao X, Hall CK, Agris PF. Amino acid signature enables proteins to recognize modified tRNA. Biochemistry 2014; 53:1125-33. [PMID: 24483944 PMCID: PMC3985708 DOI: 10.1021/bi401174h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Human tRNALys3UUU is the primer for HIV replication.
The HIV-1 nucleocapsid protein, NCp7, facilitates htRNALys3UUU recruitment from the host cell by binding to and remodeling
the tRNA structure. Human tRNALys3UUU is post-transcriptionally
modified, but until recently, the importance of those modifications
in tRNA recognition by NCp7 was unknown. Modifications such as the
5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34
and 2-methylthio-N6-threonylcarbamoyladenosine,
adjacent to the anticodon at position-37, are important to the recognition
of htRNALys3UUU by NCp7. Several short peptides
selected from phage display libraries were found to also preferentially
recognize these modifications. Evolutionary algorithms (Monte Carlo
and self-consistent mean field) and assisted model building with energy
refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify
the in silico results and elucidate a 15-amino acid
signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic)
that recognized the tRNA’s fully modified anticodon stem and
loop domain, hASLLys3UUU. Peptides of this sequence
specifically recognized and bound modified htRNALys3UUU with an affinity 10-fold higher than that of the starting
sequence. Thus, this approach provides an effective means of predicting
sequences of RNA binding peptides that have better binding properties.
Such peptides can be used in cell and molecular biology as well as
biochemistry to explore RNA binding proteins and to inhibit those
protein functions.
Collapse
Affiliation(s)
- Jessica L Spears
- The RNA Institute, University at Albany-SUNY , Life Sciences Research Building, Albany, New York 12222, United States
| | | | | | | |
Collapse
|
5
|
Computational methods for prediction of protein-RNA interactions. J Struct Biol 2011; 179:261-8. [PMID: 22019768 DOI: 10.1016/j.jsb.2011.10.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022]
Abstract
Understanding the molecular mechanism of protein-RNA recognition and complex formation is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and difficult. Alternatively, protein-RNA interactions can be predicted by computational methods. Although less accurate than experimental observations, computational predictions can be sufficiently accurate to prompt functional hypotheses and guide experiments, e.g. to identify individual amino acid or nucleotide residues. In this article we review 10 methods for predicting protein-RNA interactions, seven of which predict RNA-binding sites from protein sequences and three from structures. We also developed a meta-predictor that uses the output of top three sequence-based primary predictors to calculate a consensus prediction, which outperforms all the primary predictors. In order to fully cover the software for predicting protein-RNA interactions, we also describe five methods for protein-RNA docking. The article highlights the strengths and shortcomings of existing methods for the prediction of protein-RNA interactions and provides suggestions for their further development.
Collapse
|
6
|
Tuszynska I, Bujnicki JM. DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. BMC Bioinformatics 2011; 12:348. [PMID: 21851628 PMCID: PMC3179970 DOI: 10.1186/1471-2105-12-348] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Protein-RNA interactions play fundamental roles in many biological processes. Understanding the molecular mechanism of protein-RNA recognition and formation of protein-RNA complexes is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes is tedious and difficult, both by X-ray crystallography and NMR. For many interacting proteins and RNAs the individual structures are available, enabling computational prediction of complex structures by computational docking. However, methods for protein-RNA docking remain scarce, in particular in comparison to the numerous methods for protein-protein docking. Results We developed two medium-resolution, knowledge-based potentials for scoring protein-RNA models obtained by docking: the quasi-chemical potential (QUASI-RNP) and the Decoys As the Reference State potential (DARS-RNP). Both potentials use a coarse-grained representation for both RNA and protein molecules and are capable of dealing with RNA structures with posttranscriptionally modified residues. We compared the discriminative power of DARS-RNP and QUASI-RNP for selecting rigid-body docking poses with the potentials previously developed by the Varani and Fernandez groups. Conclusions In both bound and unbound docking tests, DARS-RNP showed the highest ability to identify native-like structures. Python implementations of DARS-RNP and QUASI-RNP are freely available for download at http://iimcb.genesilico.pl/RNP/
Collapse
Affiliation(s)
- Irina Tuszynska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Ul, Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
7
|
Graham WD, Barley-Maloney L, Stark CJ, Kaur A, Stolyarchuk K, Sproat B, Leszczynska G, Malkiewicz A, Safwat N, Mucha P, Guenther R, Agris PF. Functional recognition of the modified human tRNALys3(UUU) anticodon domain by HIV's nucleocapsid protein and a peptide mimic. J Mol Biol 2011; 410:698-715. [PMID: 21762809 PMCID: PMC3662833 DOI: 10.1016/j.jmb.2011.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 11/27/2022]
Abstract
The HIV-1 nucleocapsid protein, NCp7, facilitates the use of human tRNA(Lys3)(UUU) as the primer for reverse transcription. NCp7 also remodels the htRNA's amino acid accepting stem and anticodon domains in preparation for their being annealed to the viral genome. To understand the possible influence of the htRNA's unique composition of post-transcriptional modifications on NCp7 recognition of htRNA(Lys3)(UUU), the protein's binding and functional remodeling of the human anticodon stem and loop domain (hASL(Lys3)) were studied. NCp7 bound the hASL(Lys3)(UUU) modified with 5-methoxycarbonylmethyl-2-thiouridine at position-34 (mcm(5)s(2)U(34)) and 2-methylthio-N(6)-threonylcarbamoyladenosine at position-37 (ms(2)t(6)A(37)) with a considerably higher affinity than the unmodified hASL(Lys3)(UUU) (K(d)=0.28±0.03 and 2.30±0.62 μM, respectively). NCp7 denatured the structure of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) more effectively than that of the unmodified hASL(Lys3)(UUU). Two 15 amino acid peptides selected from phage display libraries demonstrated a high affinity (average K(d)=0.55±0.10 μM) and specificity for the ASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37) comparable to that of NCp7. The peptides recognized a t(6)A(37)-modified ASL with an affinity (K(d)=0.60±0.09 μM) comparable to that for hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37), indicating a preference for the t(6)A(37) modification. Significantly, one of the peptides was capable of relaxing the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) structure in a manner similar to that of NCp7, and therefore could be used to further study protein recognition of RNA modifications. The post-transcriptional modifications of htRNA(Lys3)(UUU) have been found to be important determinants of NCp7's recognition prior to the tRNA(Lys3)(UUU) being annealed to the viral genome as the primer of reverse transcription.
Collapse
Affiliation(s)
- William D. Graham
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Lise Barley-Maloney
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Caren J. Stark
- Te RNA Institute, Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Amarpreet Kaur
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Khrystyna Stolyarchuk
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Brian Sproat
- Integrated DNA Technologies BVBA, Interleuvenlaan 12A, B-3001 Leuven, Belgium
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Technical University, Żeromskiego 116, 90-924, ŁódŸ, Poland
| | - Andrzej Malkiewicz
- Institute of Organic Chemistry, Technical University, Żeromskiego 116, 90-924, ŁódŸ, Poland
| | - Nedal Safwat
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Piotr Mucha
- Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland
| | - Richard Guenther
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695, USA
| | - Paul F. Agris
- Te RNA Institute, Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
8
|
Korennykh AV, Korostelev AA, Egea PF, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. Structural and functional basis for RNA cleavage by Ire1. BMC Biol 2011; 9:47. [PMID: 21729333 PMCID: PMC3149027 DOI: 10.1186/1741-7007-9-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/06/2011] [Indexed: 11/12/2022] Open
Abstract
Background The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL) of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.
Collapse
Affiliation(s)
- Alexei V Korennykh
- Howard Hughes Medical Institute, University Of California, San Francisco, Genentech Hall, 600-16th Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lamichhane TN, Abeydeera ND, Duc ACE, Cunningham PR, Chow CS. Selection of peptides targeting helix 31 of bacterial 16S ribosomal RNA by screening M13 phage-display libraries. Molecules 2011; 16:1211-39. [PMID: 21278676 PMCID: PMC6259748 DOI: 10.3390/molecules16021211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/13/2023] Open
Abstract
Ribosomal RNA is the catalytic portion of ribosomes, and undergoes a variety of conformational changes during translation. Structural changes in ribosomal RNA can be facilitated by the presence of modified nucleotides. Helix 31 of bacterial 16S ribosomal RNA harbors two modified nucleotides, m²G966 and m⁵C967, that are highly conserved among bacteria, though the degree and nature of the modifications in this region are different in eukaryotes. Contacts between helix 31 and the P-site tRNA, initiation factors, and ribosomal proteins highlight the importance of this region in translation. In this work, a heptapeptide M13 phage-display library was screened for ligands that target the wild-type, naturally modified bacterial helix 31. Several peptides, including TYLPWPA, CVRPFAL, TLWDLIP, FVRPFPL, ATPLWLK, and DIRTQRE, were found to be prevalent after several rounds of screening. Several of the peptides exhibited moderate affinity (in the high nM to low µM range) to modified helix 31 in biophysical assays, including surface plasmon resonance (SPR), and were also shown to bind 30S ribosomal subunits. These peptides also inhibited protein synthesis in cell-free translation assays.
Collapse
Affiliation(s)
- Tek N. Lamichhane
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | - Philip R. Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +1-313-577-2594; Fax: +1-313-577-8822
| |
Collapse
|
10
|
In vitro assay of the interaction between Rnc1 protein and Pmp1 mRNA by affinity capillary electrophoresis with a carboxylated capillary. J Pharm Biomed Anal 2010; 53:1332-7. [DOI: 10.1016/j.jpba.2010.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/05/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
|
11
|
Johnston JW, Benson EE, Harding K. Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:123-31. [PMID: 19056287 DOI: 10.1016/j.plaphy.2008.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/18/2008] [Indexed: 05/22/2023]
Abstract
The physiological and molecular mechanisms associated with acclimation and survival have been examined in four Ribes genotypes displaying differential cryotolerance. Changes in DNA methylation, nucleic acid and nucleoside composition were determined during acclimation and recovery of in vitro shoot-meristems from cryopreservation. DNA methylation was induced in the tolerant genotype, while demethylation was evident in sensitive genotypes. This response initially occurred during sucrose simulated acclimation, with progressive changes as shoots recovered from successive stages of the encapsulation-dehydration protocol. These methylation patterns existed in the initial vegetative cycle but regressed to control values following subculture, indicating the changes in DNA methylation to be a reversible epigenetic mechanism. RNA levels indicating transcriptional activity during the acclimation of nodal tissue are inversely linked to methylation changes, where activity appears to be up-regulated in the cryosensitive genotypes. Conversely, cryopreserved shoots show increased levels of both RNA and DNA methylation in the cryotolerant genotypes. Other nucleosides show post-transcriptional activity corresponds with tolerance during acclimation and cryopreservation. These observations connect physiological attributes to differential molecular changes in Ribes, the implications of which are discussed in relation to cryopreservation-induced apoptosis and genetic stability.
Collapse
Affiliation(s)
- Jason W Johnston
- Plant Conservation Group, School of Contemporary Science, University of Abertay Dundee, Kydd Building, Bell St, Dundee, DD1 1HG, UK.
| | | | | |
Collapse
|
12
|
Burns VA, Bobay BG, Basso A, Cavanagh J, Melander C. Targeting RNA with cysteine-constrained peptides. Bioorg Med Chem Lett 2007; 18:565-7. [PMID: 18065222 DOI: 10.1016/j.bmcl.2007.11.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/29/2022]
Abstract
A combined approach for targeting RNA with novel, biologically active ligands has been developed using a cyclic peptide library and in silico modeling. This approach has successfully identified novel cyclic peptide constructs that can target bTAR RNA. Subsequently, RNA/peptide interactions were effectively modeled using the HADDOCK docking program.
Collapse
Affiliation(s)
- Virginia A Burns
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
13
|
Eshete M, Marchbank MT, Deutscher SL, Sproat B, Leszczynska G, Malkiewicz A, Agris PF. Specificity of Phage Display Selected Peptides for Modified Anticodon Stem and Loop Domains of tRNA. Protein J 2007; 26:61-73. [PMID: 17237992 DOI: 10.1007/s10930-006-9046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein recognition of RNA has been studied using Peptide Phage Display Libraries, but in the absence of RNA modifications. Peptides from two libraries, selected for binding the modified anticodon stem and loop (ASL) of human tRNA(LyS3) having 2-thiouridine (s(2)U34) and pseudouridine (psi39), bound the modified human ASL(Lys3)(s(2)U34;psi39) preferentially and had significant homology with RNA binding proteins. Selected peptides were narrowed to a manageable number using a less sensitive, but inexpensive assay before conducting intensive characterization. The affinity and specificity of the best binding peptide (with an N-terminal fluorescein) were characterized by fluorescence spectrophotometry. The peptide exhibited the highest binding affinity for ASL(LYS3)(s(2)U34; psi39), followed by the hypermodified ASL(Lys3) (mcm(5)s(2) U34; ms(2)t(6)A37) and the unmodified ASL(Lys3), but bound poorly to singly modified ASL(Lys3) constructs (psi39, ms(2)t(6)A37, s(2)34), ASL(Lys1,2) (t(6)A37) and Escherichia coli ASL(Glu) (s(2)U34). Thus, RNA modifications are potentially important recognition elements for proteins and can be targets for selective recognition by peptides.
Collapse
Affiliation(s)
- Matthewos Eshete
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Campus Box 7622, Raleigh, NC, 27695-7622, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mucha P, Szyk A, Rekowski P, Agris PF. Sequence-altered peptide adopts optimum conformation for modification-dependent binding of the yeast tRNAPhe anticodon domain. Protein J 2004; 23:33-8. [PMID: 15115180 DOI: 10.1023/b:jopc.0000016256.20648.0f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amino acid contributions to protein recognition of naturally modified RNAs are not understood. Circular dichroism spectra and predictive software suggested that peptide tF2 (S1ISPW5GFSGL10 LRWSY15), selected from a phage display library to bind the modified anticodon domain of yeast tRNAPhe (ASL), adopted a beta-sheet structure. Ala residues incorporated at positions Pro4 and Gly6, both predicted to be involved in a turn, did not alter the peptide binding affinity for the ASLPhe, although major changes in the peptide's CD spectra were observed. Substitutions at three positions Pro4, Gly6, and Gly9, the latter not predicted to be in a turn, reduced the peptide's binding affinity to 4% of that of the unsubstituted tF2 and strongly influenced the peptide's secondary structure. The results suggest that peptides with different conformations, but similar affinities, adopt the optimal binding conformation, indicative of a structurally adaptive model of binding in which the modified RNA serves as a scaffold.
Collapse
Affiliation(s)
- Piotr Mucha
- Department of Chemistry, University of Gdansk, Sobieskiego 18, Gdansk 80-952, Poland.
| | | | | | | |
Collapse
|
15
|
Pustowka A, Dietz J, Ferner J, Baumann M, Landersz M, Königs C, Schwalbe H, Dietrich U. Identification of peptide ligands for target RNA structures derived from the HIV-1 packaging signal psi by screening phage-displayed peptide libraries. Chembiochem 2004; 4:1093-7. [PMID: 14523928 DOI: 10.1002/cbic.200300681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anette Pustowka
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Stuart JW, Koshlap KM, Guenther R, Agris PF. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). J Mol Biol 2004; 334:901-18. [PMID: 14643656 DOI: 10.1016/j.jmb.2003.09.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contribution of a position 37-modified nucleoside defines a specific structure or restricts conformational flexibility, structures of the yeast tRNA(Phe) anticodon stem and loop (ASL(Phe)) with naturally occurring modified nucleosides differing only at position 37, ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)), and ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)), were determined by NMR spectroscopy and restrained molecular dynamics. The ASL structures had similarly resolved stems (RMSD approximately 0.6A) of five canonical base-pairs in standard A-form RNA. The "NOE walk" was evident on the 5' and 3' sides of the stems of both RNAs, and extended to the adjacent loop nucleosides. The NOESY cross-peaks involving U(33) H2' and characteristic of tRNA's anticodon domain U-turn were present but weak, whereas those involving the U(33) H1' proton were absent from the spectra of both ASLs. However, ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) exhibited the downfield shifted 31P resonance of U(33)pGm(34) indicative of U-turns; ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) did not. An unusual "backwards" NOE between Gm(34) and A(35) (Gm(34)/H8 to A(35)/H1') was observed in both molecules. The RNAs exhibited a protonated A(+)(38) resulting in the final structures having C(32).A(+)(38) intra-loop base-pairs, with that of ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) being especially well defined. A single family of low-energy structures of ASL(Phe)-(Cm(32),Gm(34), m(1)G(37),m(5)C(40)) (loop RMSD 0.98A) exhibited a significantly restricted conformational space for the anticodon loop in comparison to that of ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) (loop RMSD 2.58A). In addition, the ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) average structure had a greater degree of similarity to that of the yeast tRNA(Phe) crystal structure. A comparison of the resulting structures indicates that modification of position 37 affects the accuracy of decoding and the maintenance of the mRNA reading frame by restricting anticodon loop conformational space.
Collapse
Affiliation(s)
- John W Stuart
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Studies of RNA-binding peptides, and recent combinatorial library experiments in particular, have demonstrated that diverse peptide sequences and structures can be used to recognize specific RNA sites. The identification of large numbers of sequences capable of binding to a particular site has provided extensive phylogenetic information used to deduce basic principles of recognition. The high frequency at which RNA-binding peptides are found in large sequence libraries suggests plausible routes to evolve sequence-specific binders, facilitating the design of new binding molecules and perhaps reflecting characteristics of natural evolution.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, 600 16th Street University of California, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2002; 19:651-8. [PMID: 11967835 DOI: 10.1002/yea.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Current awareness on yeast. Yeast 2002; 19:565-72. [PMID: 11921105 DOI: 10.1002/yea.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|