1
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
2
|
Takahashi T, Minami S, Tsuchiya Y, Tajima K, Sakai N, Suga K, Hisanaga SI, Ohbayashi N, Fukuda M, Kawahara H. Cytoplasmic control of Rab family small GTPases through BAG6. EMBO Rep 2019; 20:embr.201846794. [PMID: 30804014 PMCID: PMC6446207 DOI: 10.15252/embr.201846794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
Rab family small GTPases are master regulators of distinct steps of intracellular vesicle trafficking in eukaryotic cells. GDP‐bound cytoplasmic forms of Rab proteins are prone to aggregation due to the exposure of hydrophobic groups but the machinery that determines the fate of Rab species in the cytosol has not been elucidated in detail. In this study, we find that BAG6 (BAT3/Scythe) predominantly recognizes a cryptic portion of GDP‐associated Rab8a, while its major GTP‐bound active form is not recognized. The hydrophobic residues of the Switch I region of Rab8a are essential for its interaction with BAG6 and the degradation of GDP‐Rab8a via the ubiquitin‐proteasome system. BAG6 prevents the excess accumulation of inactive Rab8a, whose accumulation impairs intracellular membrane trafficking. BAG6 binds not only Rab8a but also a functionally distinct set of Rab family proteins, and is also required for the correct distribution of Golgi and endosomal markers. From these observations, we suggest that Rab proteins represent a novel set of substrates for BAG6, and the BAG6‐mediated pathway is associated with the regulation of membrane vesicle trafficking events in mammalian cells.
Collapse
Affiliation(s)
- Toshiki Takahashi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Setsuya Minami
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yugo Tsuchiya
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kazu Tajima
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Natsumi Sakai
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kei Suga
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Chemistry, Kyorin University School of Medicine, Mitaka, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
3
|
RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proc Natl Acad Sci U S A 2017; 114:E8224-E8233. [PMID: 28894007 DOI: 10.1073/pnas.1712176114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rab GTPases are switched from their GDP-bound inactive conformation to a GTP-bound active state by guanine nucleotide exchange factors (GEFs). The first putative GEFs isolated for Rabs are RABIF (Rab-interacting factor)/MSS4 (mammalian suppressor of Sec4) and its yeast homolog DSS4 (dominant suppressor of Sec4). However, the biological function and molecular mechanism of these molecules remained unclear. In a genome-wide CRISPR genetic screen, we isolated RABIF as a positive regulator of exocytosis. Knockout of RABIF severely impaired insulin-stimulated GLUT4 exocytosis in adipocytes. Unexpectedly, we discovered that RABIF does not function as a GEF, as previously assumed. Instead, RABIF promotes the stability of Rab10, a key Rab in GLUT4 exocytosis. In the absence of RABIF, Rab10 can be efficiently synthesized but is rapidly degraded by the proteasome, leading to exocytosis defects. Strikingly, restoration of Rab10 expression rescues exocytosis defects, bypassing the requirement for RABIF. These findings reveal a crucial role of RABIF in vesicle transport and establish RABIF as a Rab-stabilizing holdase chaperone, a previously unrecognized mode of Rab regulation independent of its GDP-releasing activity. Besides Rab10, RABIF also regulates the stability of two other Rab GTPases, Rab8 and Rab13, suggesting that the requirement of holdase chaperones is likely a general feature of Rab GTPases.
Collapse
|
4
|
Abstract
Mss4 (mammalian suppressor of Sec4) is an evolutionarily highly conserved protein and shows high sequence and structural similarity to nucleotide exchange factors. Although Mss4 tightly binds a series of exocytic Rab GTPases, it exercises only a low catalytic activity. Therefore Mss4 was proposed to work rather as a chaperone, protecting nucleotide free Rabs from degradation than as a nucleotide exchange factor. Here we provide further evidence for chaperone-like properties of Mss4. We show that expression levels of cellular Mss4 mRNA and protein are rapidly changed in response to a broad range of extracellular stress stimuli. The alterations are regulated mostly via the (c-jun NH2-terminal kinase) JNK stress MAPK signaling pathway and the mode of regulation resembles that of heat shock proteins. Similar to heat shock proteins, upregulation of Mss4 after stress stimulation functions protectively against the programmed cell death. Molecular analysis of the Mss4-mediated inhibition of apoptosis showed that interaction of Mss4 with eIF3f (eukaryotic translation initiation factor 3 subunit f), a member of the translation initiation complex and a protein with distinct pro-apoptotic properties, is the critical event in the anti-apoptotic action of Mss4.
Collapse
|
5
|
Itzen A, Pylypenko O, Goody RS, Alexandrov K, Rak A. Nucleotide exchange via local protein unfolding--structure of Rab8 in complex with MSS4. EMBO J 2006; 25:1445-55. [PMID: 16541104 PMCID: PMC1440319 DOI: 10.1038/sj.emboj.7601044] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 02/20/2006] [Indexed: 11/08/2022] Open
Abstract
Rab GTPases function as essential regulators of vesicle transport in eukaryotic cells. MSS4 was shown to stimulate nucleotide exchange on Rab proteins associated with the exocytic pathway and to have nucleotide-free-Rab chaperone activity. A detailed kinetic analysis of MSS4 interaction with Rab8 showed that MSS4 is a relatively slow exchange factor that forms a long-lived nucleotide-free complex with RabGTPase. In contrast to other characterized exchange factor-GTPase complexes, MSS4:Rab8 complex binds GTP faster than GDP, but still ca. 3 orders of magnitude more slowly than comparable complexes. The crystal structure of the nucleotide-free MSS4:Rab8 complex revealed that MSS4 binds to the Switch I and interswitch regions of Rab8, forming an intermolecular beta-sheet. Complex formation results in dramatic structural changes of the Rab8 molecule, leading to unfolding of the nucleotide-binding site and surrounding structural elements, facilitating nucleotide release and slowing its rebinding. Coupling of nucleotide exchange activity to a cycle of GTPase unfolding and refolding represents a novel nucleotide exchange mechanism.
Collapse
Affiliation(s)
- Aymelt Itzen
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Olena Pylypenko
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Roger S Goody
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | | | - Alexey Rak
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| |
Collapse
|
6
|
Itzen A, Bleimling N, Ignatev A, Pylypenko O, Rak A. Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian MSS4-Rab8 GTPase protein complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:113-6. [PMID: 16511278 PMCID: PMC2150963 DOI: 10.1107/s1744309105042995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 12/22/2005] [Indexed: 05/06/2023]
Abstract
Rab GTPases function as ubiquitous key regulators of membrane-vesicle transport in eukaryotic cells. MSS4 is an evolutionarily conserved protein that binds to exocytotic Rabs and facilitates nucleotide release. The MSS4 protein in complex with nucleotide-free Rab8 GTPase has been purified and crystallized in a form suitable for structure analysis. The crystals belonged to space group P1, with unit-cell parameters a = 40.92, b = 49.85, c = 83.48 A, alpha = 102.88, beta = 97.46, gamma = 90.12 degrees. A complete data set has been collected to 2 A resolution.
Collapse
Affiliation(s)
- Aymelt Itzen
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nathalie Bleimling
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Alexander Ignatev
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Olena Pylypenko
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Alexey Rak
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Correspondence e-mail:
| |
Collapse
|
7
|
Pasqualato S, Senic-Matuglia F, Renault L, Goud B, Salamero J, Cherfils J. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J Biol Chem 2003; 279:11480-8. [PMID: 14699104 DOI: 10.1074/jbc.m310558200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The small GTP-binding protein Rab11 is an essential regulator of the dynamics of recycling endosomes. Here we report the crystallographic analysis of the GDP/GTP cycle of human Rab11a, and a structure-based mutagenesis study that identifies a novel mutant phenotype. The crystal structures show that the nucleotide-sensitive switch 1 and 2 regions differ from those of other Rab proteins. In Rab11-GDP, they contribute to a close packed symmetrical dimer, which may associate to membranes in the cell and allow Rab11 to undergo GDP/GTP cycles without recycling to the cytosol. The structure of active Rab11 delineates a three-dimensional site that includes switch 1 and is separate from the site defined by the Rab3/Rabphilin interface. It is proposed to form a novel interface for a Rab11 partner compatible with the simultaneous binding of another partner at the Rabphilin interface. Mutation of Ser(29) to Phe in this epitope resulted in morphological modifications of the recycling compartment that are distinct from those induced by the classical dominant-negative and constitutively active Rab11 mutants. Recycling endosomes condensed in the perinuclear region where they retained recycling transferrin, and they clustered Rab11- and EEA1-positive membranes. Altogether, our study suggests that this mutation impairs a specific subset of Rab11 interactions, possibly those involved in cytoskeleton-based movements driving the slow recycling pathway.
Collapse
Affiliation(s)
- Sebastiano Pasqualato
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR 9063, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
8
|
Strick DJ, Francescutti DM, Zhao Y, Elferink LA. Mammalian suppressor of Sec4 modulates the inhibitory effect of Rab15 during early endocytosis. J Biol Chem 2002; 277:32722-9. [PMID: 12105226 DOI: 10.1074/jbc.m205101200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rab15 is a novel endocytic Rab that counters the stimulatory effect of Rab5-GTP on early endocytic trafficking. Rab15 may interfere with Rab5 function directly by sequestering Rab5 effectors or indirectly through novel sets of effector interactions. To distinguish between these possibilities, we examined the effector binding properties of Rab15. Rab15 does not interact directly with the Rab5 effectors rabex-5 and rabaptin-5 in a yeast two-hybrid binding assay. Rather mammalian suppressor of Sec4 (Mss4) was identified as a binding partner for Rab15. Mss4 preferentially binds GDP-bound (T22N) and nucleotide-free (N121I) Rab15, consistent with the proposed role of Mss4 as a chaperone that stabilizes target Rabs in their nucleotide-free form. Mutational analysis of Rab15 indicates that lysine at position 48 (K48Q) is important for the binding of Rab15-GDP to Mss4. Moreover, the mutation K48Q counters the inhibitory phenotype of wild type Rab15 on receptor-mediated endocytosis in HeLa cells and homotypic endosome fusion in vitro without altering the relative amount of cell surface-associated transferrin receptor. Together, these data indicate a novel role for Mss4 as an effector for Rab15 in early endocytic trafficking.
Collapse
Affiliation(s)
- David J Strick
- Department of Physiology and Biophysics, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | | | | | | |
Collapse
|