1
|
Burakova LP, Ivanisenko NV, Rukosueva NV, Ivanisenko VA, Vysotski ES. Design of Ctenophore Ca 2+-Regulated Photoprotein Berovin Capable of Being Converted into Active Protein Under Physiological Conditions: Computational and Experimental Approaches. Life (Basel) 2024; 14:1508. [PMID: 39598306 PMCID: PMC11595719 DOI: 10.3390/life14111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we describe (1) the AlphaFold-based structural modeling approach to identify amino acids of the photoprotein berovin that are crucial for coelenterazine binding, and (2) the production and characterization of berovin mutants with substitutions of the identified residues regarding their effects on the ability to form an active photoprotein under physiological conditions and stability to light irradiation. The combination of mutations K90M, N107S, and W103F is demonstrated to cause a shift of optimal conditions for the conversion of apo-berovin into active photoprotein towards near-neutral pH and low ionic strength, and to reduce the sensitivity of active berovin to light. According to the berovin spatial structure model, these residues are found in close proximity to the 6-(p-hydroxy)-phenyl group of the coelenterazine peroxyanion.
Collapse
Affiliation(s)
- Ludmila P. Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia;
| | - Nikita V. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.V.I.); (V.A.I.)
- Novosibirsk State University, Novosibirsk 630090, Russia
- AIRI, Moscow 123112, Russia
| | - Natalia V. Rukosueva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia;
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (N.V.I.); (V.A.I.)
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
| |
Collapse
|
2
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
3
|
Siniakova TS, Raikov AV, Kudryasheva NS. Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. Int J Mol Sci 2023; 24:ijms24076345. [PMID: 37047313 PMCID: PMC10094403 DOI: 10.3390/ijms24076345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The current paper considers the effects of a water-soluble polymer (polyethylene glycol (PEG)) on the bioluminescent reaction of the photoprotein obelin from the marine coelenterate Obelia longissima and the product of this bioluminescent reaction: a coelenteramide-containing fluorescent protein (CCFP). We varied PEG concentrations (0–1.44 mg/mL) and molecular weights (1000, 8000, and 35,000 a.u.). The presence of PEG significantly increased the bioluminescent intensity of obelin but decreased the photoluminescence intensity of CCFP; the effects did not depend on the PEG concentration or the molecular weight. The photoluminescence spectra of CCFP did not change, while the bioluminescence spectra changed in the course of the bioluminescent reaction. The changes can be explained by different rigidity of the media in the polymer solutions affecting the stability of the photoprotein complex and the efficiency of the proton transfer in the bioluminescent reaction. The results predict and explain the change in the luminescence intensity and color of the marine coelenterates in the presence of water-soluble polymers. The CCFP appeared to be a proper tool for the toxicity monitoring of water-soluble polymers (e.g., PEGs).
Collapse
Affiliation(s)
| | - Alexander V. Raikov
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Nadezhda S. Kudryasheva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, FRC KSC SB RAS, 660036 Krasnoyarsk, Russia
- Correspondence: n ; Tel.: +7-391-249-42-42
| |
Collapse
|
4
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Erdenee E, Ting AY. A Dual-Purpose Real-Time Indicator and Transcriptional Integrator for Calcium Detection in Living Cells. ACS Synth Biol 2022; 11:1086-1095. [PMID: 35254056 PMCID: PMC10395047 DOI: 10.1021/acssynbio.1c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium is a ubiquitous second messenger in eukaryotes, correlated with neuronal activity and T-cell activation among other processes. Real-time calcium indicators such as GCaMP have recently been complemented by newer calcium integrators that convert transient calcium activity into stable gene expression. Here we introduce LuCID, a dual-purpose real-time calcium indicator and transcriptional calcium integrator that combines the benefits of both calcium detection technologies. We show that the calcium-dependent split luciferase component of LuCID provides a real-time bioluminescence readout of calcium dynamics in cells, while the GI/FKF1 split GAL4 component of LuCID converts calcium-generated bioluminescence into stable gene expression. We also show that LuCID's modular design enables it to read out other cellular events such as protein-protein interactions. LuCID adds to the arsenal of tools for studying cells and cell populations that utilize calcium for signaling.
Collapse
Affiliation(s)
- Elbegduuren Erdenee
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Alice Y. Ting
- Department of Biology, Stanford University, Stanford, California 94305, United States
- Department of Genetics, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Bashmakova EE, Panamarev NS, Kudryavtsev AN, Frank LA. N-extended photoprotein obelin to competitively detect small protein tumor markers. Biochem Biophys Res Commun 2022; 598:69-73. [PMID: 35151206 DOI: 10.1016/j.bbrc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Two variants of Ca2+-regulated photoprotein obelin, extended from the N-terminus with small tumor markers - melanoma inhibitory activity protein (MIA) and survivin, one of the protein inhibitors of apoptosis, were designed, obtained and studied. Both domains in the obtained hybrid proteins exhibit the properties of the initial molecules: the main features of Ca2+-triggered bioluminescence are close to those of obelin, and the tumor markers' domains are recognized and bound by the corresponding antibodies. The obtained hybrids compete with the corresponding tumor markers for binding with antibodies, immobilized on the surface and their use has been shown to be promising as bioluminescent labels in a one-stage solid-phase competitive immunoassay.
Collapse
Affiliation(s)
- Eugenia E Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Nikita S Panamarev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Alexander N Kudryavtsev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia.
| |
Collapse
|
7
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|
8
|
Malikova NP, Eremeeva EV, Gulnov DV, Natashin PV, Nemtseva EV, Vysotski ES. Specific Activities of Hydromedusan Ca 2+ -Regulated Photoproteins. Photochem Photobiol 2021; 98:275-283. [PMID: 34727376 DOI: 10.1111/php.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Dmitry V Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| |
Collapse
|
9
|
Tomilin FN, Rogova AV, Burakova LP, Tchaikovskaya ON, Avramov PV, Fedorov DG, Vysotski ES. Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochem Photobiol Sci 2021; 20:10.1007/s43630-021-00039-5. [PMID: 33834429 DOI: 10.1007/s43630-021-00039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.
Collapse
Affiliation(s)
- Felix N Tomilin
- Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Anastasia V Rogova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
| | - Ludmila P Burakova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia
| | - Olga N Tchaikovskaya
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Pavel V Avramov
- Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
10
|
RedquorinXS Mutants with Enhanced Calcium Sensitivity and Bioluminescence Output Efficiently Report Cellular and Neuronal Network Activities. Int J Mol Sci 2020; 21:ijms21217846. [PMID: 33105848 PMCID: PMC7660078 DOI: 10.3390/ijms21217846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.
Collapse
|
11
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Eremeeva EV, Jiang T, Malikova NP, Li M, Vysotski ES. Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents. Int J Mol Sci 2020; 21:E5446. [PMID: 32751691 PMCID: PMC7432523 DOI: 10.3390/ijms21155446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.
Collapse
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Tianyu Jiang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Natalia P. Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| |
Collapse
|
13
|
Davydova A, Krasitskaya V, Vorobjev P, Timoshenko V, Tupikin A, Kabilov M, Frank L, Venyaminova A, Vorobyeva M. Reporter-recruiting bifunctional aptasensor for bioluminescent analytical assays. RSC Adv 2020; 10:32393-32399. [PMID: 35516485 PMCID: PMC9056652 DOI: 10.1039/d0ra05117a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
A novel structure-switching bioluminescent 2′-F-RNA aptasensor consists of analyte-binding and obelin-recruiting modules, joined into a bi-specific aptamer construct.
Collapse
Affiliation(s)
- Anna Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Vasilisa Krasitskaya
- Institute of Biophysics SB RAS
- Federal Research Center “Krasnoyarsk Science Center SB RAS”
- Krasnoyarsk 660036
- Russia
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Valentina Timoshenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Ludmila Frank
- Institute of Biophysics SB RAS
- Federal Research Center “Krasnoyarsk Science Center SB RAS”
- Krasnoyarsk 660036
- Russia
- Siberian Federal University
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| |
Collapse
|
14
|
Gao M, Ding BW, Liu YJ. Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad - a QM/MM study. Photochem Photobiol Sci 2019; 18:1823-1832. [PMID: 31165126 DOI: 10.1039/c9pp00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence (FL) of calcium-discharged photoprotein (CaDP) can be altered by easily mutating CaDP without modifying coelenteramide (CLM), which is the decarboxylation product of coelenterazine in calcium-regulated photoprotein. The His22-Phe88-Trp92 triad (the ordering numbers of three amino acids are sorted by a crystal structure (PDB: 2F8P) of calcium-discharged obelin, i.e., CaDP-obelin) is closely related to CaDP-obelin FL, since it exists in close proximity to the 5-p-hydroxyphenyl of CLM. Therefore, it is important to thoroughly investigate how the mutations of this triad affect the emission color of CaDP-obelin FL. In this study, by mutating wild-type CaDP-obelin (WT) at the His22-Phe88-Trp92 triad, we theoretically constructed its nine mutants of separable FL colors. Through combined quantum mechanics and molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations, the influence of the mutations of this triad on the CaDP-obelin FL was analyzed considering the H-bond effect and the charge effect. This study demonstrated that the mutations at the His22-Phe88-Trp92 triad redistribute the charges on the D-π-A molecule, CLM, change the charge transfer from the D to the (π + A) moiety, and thereby alter the FL emission. Appending more negative charges on the phenolate moiety of CLM benefits the FL redshift.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| | - Bo-Wen Ding
- School of Environment, Beijing Normal University, Beijing, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
15
|
Webb SE, Miller AL. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca 2+ Signaling Events During the Early Development of Zebrafish (Danio rerio). Methods Mol Biol 2019; 1929:73-93. [PMID: 30710268 DOI: 10.1007/978-1-4939-9030-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We have visualized many of the Ca2+ signaling events that occur during the early stages of zebrafish development using complementary luminescent and fluorescent imaging techniques. We initially microinject embryos with the luminescent Ca2+ reporter, f-holo-aequorin, and using a custom-designed luminescent imaging system, we can obtain pan-embryonic visual information continually for up to the first ~24 h postfertilization (hpf). Once we know approximately when and where to look for these Ca2+ signaling events within a complex developing embryo, we then repeat the experiment using a fluorescent Ca2+ reporter such as calcium green-1 dextran and use confocal laser scanning microscopy to provide time-lapse series of higher-resolution images. These protocols allow us to identify the specific cell types and even the particular subcellular domain (e.g., nucleus or cytoplasm) generating the Ca2+ signal. Here, we outline the techniques we use to precisely microinject f-holo-aequorin or calcium green-1 dextran into embryos without affecting their viability or development. We also describe how to inject specific regions of early embryos in order to load localized embryonic domains with a particular Ca2+ reporter. These same techniques can also be used to introduce other membrane-impermeable reagents into embryos, including Ca2+ channel antagonists, Ca2+ chelators, fluorescent dyes, RNA, and DNA.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China.
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
16
|
Burakova LP, Vysotski ES. Recombinant Ca 2+-regulated photoproteins of ctenophores: current knowledge and application prospects. Appl Microbiol Biotechnol 2019; 103:5929-5946. [PMID: 31172204 DOI: 10.1007/s00253-019-09939-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Bright bioluminescence of ctenophores is conditioned by Ca2+-regulated photoproteins. Although they share many properties characteristic of hydromedusan Ca2+-regulated photoproteins responsible for light emission of marine animals belonging to phylum Cnidaria, a substantial distinction still exists. The ctenophore photoproteins appeared to be extremely sensitive to light-they lose the ability for bioluminescence on exposure to light over the entire absorption spectrum. Inactivation is irreversible because keeping the inactivated photoprotein in the dark does not recover its activity. The capability to emit light can be restored only by incubation of inactivated photoprotein with coelenterazine in the dark at alkaline pH in the presence of oxygen. Although these photoproteins were discovered many years ago, only the cloning of cDNAs encoding these unique bioluminescent proteins in the early 2000s has provided a new impetus for their studies. To date, cDNAs encoding Ca2+-regulated photoproteins from four different species of luminous ctenophores have been cloned. The amino acid sequences of ctenophore photoproteins turned out to completely differ from those of hydromedusan photoproteins (identity less than 29%) though also similar to them having three EF-hand Ca2+-binding sites. At the same time, these photoproteins reveal the same two-domain scaffold characteristic of hydromedusan photoproteins. This review is an attempt to systemize and critically evaluate the data scattered through various articles regarding the structural features of recombinant light-sensitive Ca2+-regulated photoproteins of ctenophores and their bioluminescent and physicochemical properties as well as to compare them with those of hydromedusan photoproteins. In addition, we also discuss the prospects of their biotechnology applications.
Collapse
Affiliation(s)
- Lyudmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| |
Collapse
|
17
|
QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8237-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Eremeeva EV, Vysotski ES. Exploring Bioluminescence Function of the Ca2+
-regulated Photoproteins with Site-directed Mutagenesis. Photochem Photobiol 2018; 95:8-23. [DOI: 10.1111/php.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| |
Collapse
|
19
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
21
|
Bioluminescent and biochemical properties of Cys-free Ca 2+ -regulated photoproteins obelin and aequorin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:97-105. [DOI: 10.1016/j.jphotobiol.2017.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022]
|
22
|
Markova SV, Larionova MD, Gorbunova DA, Vysotski ES. The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:51-57. [PMID: 28846935 DOI: 10.1016/j.jphotobiol.2017.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λmax=480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies.
Collapse
Affiliation(s)
- Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Marina D Larionova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | | | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia.
| |
Collapse
|
23
|
Alieva RR, Kudryasheva NS. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017; 170:425-431. [PMID: 28501192 DOI: 10.1016/j.talanta.2017.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures - chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.
Collapse
Affiliation(s)
- Roza R Alieva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
24
|
Krasitskaya VV, Burakova LP, Komarova AA, Bashmakova EE, Frank LA. Mutants of Ca2+-regulated Photoprotein Obelin for Site-specific Conjugation. Photochem Photobiol 2017; 93:553-557. [DOI: 10.1111/php.12712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Ludmila P. Burakova
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | | | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
25
|
Bakayan A, Domingo B, Vaquero CF, Peyriéras N, Llopis J. Fluorescent Protein-photoprotein Fusions and Their Applications in Calcium Imaging. Photochem Photobiol 2017; 93:448-465. [PMID: 27925224 DOI: 10.1111/php.12682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Calcium-activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP-aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.
Collapse
Affiliation(s)
- Adil Bakayan
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Cecilia F Vaquero
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Nadine Peyriéras
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
26
|
Eremeeva EV, Bartsev SI, van Berkel WJH, Vysotski ES. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca2+-regulated Photoproteins of Different Organisms. Photochem Photobiol 2016; 93:495-502. [DOI: 10.1111/php.12664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Sergey I. Bartsev
- Theoretical Biophysics Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | | | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| |
Collapse
|
27
|
Malikova NP, Borgdorff AJ, Vysotski ES. Semisynthetic photoprotein reporters for tracking fast Ca(2+) transients. Photochem Photobiol Sci 2016; 14:2213-24. [PMID: 26508209 DOI: 10.1039/c5pp00328h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the intracellular concentration of free ionized calcium ([Ca(2+)]i) control a host of cellular processes as varied as vision, muscle contraction, neuronal signal transmission, proliferation, apoptosis etc. The disturbance in Ca(2+)-signaling causes many severe diseases. To understand the mechanisms underlying the control by calcium and how disorder of this regulation relates to pathological conditions, it is necessary to measure [Ca(2+)]i. The Ca(2+)-regulated photoproteins which are responsible for bioluminescence of marine coelenterates have been successfully used for this purpose over the years. Here we report the results on comparative characterization of bioluminescence properties of aequorin from Aequorea victoria, obelin from Obelia longissima, and clytin from Clytia gregaria charged by native coelenterazine and coelenterazine analogues f, i, and hcp. The comparison of specific bioluminescence activity, stability, emission spectra, stopped-flow kinetics, sensitivity to calcium, and effect of physiological concentrations of Mg(2+) establishes obelin-hcp as an excellent semisynthetic photoprotein to keep track of fast intracellular Ca(2+) transients. The rate of rise of its light signal on a sudden change of [Ca(2+)] is almost 3- and 11-fold higher than those of obelin and aequorin with native coelenterazine, respectively, and 20 times higher than that of the corresponding aequorin-hcp. In addition, obelin-hcp preserves a high specific bioluminescence activity and displays higher Ca(2+)-sensitivity as compared to obelin charged by native coelenterazine and sensitivity to Ca(2+) comparable with those of aequorin-f and aequorin-hcp.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Aren J Borgdorff
- Institut des Neurosciences Alfred Fessard, UPR 3294, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| |
Collapse
|
28
|
Burakova LP, Natashin PV, Markova SV, Eremeeva EV, Malikova NP, Cheng C, Liu ZJ, Vysotski ES. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:286-297. [PMID: 27395792 DOI: 10.1016/j.jphotobiol.2016.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia.
| |
Collapse
|
29
|
Identification of amino acid residues responsible for high initial luminescence intensity in a calcium-binding photoprotein, clytin-II. Biochem Biophys Res Commun 2016; 469:300-5. [DOI: 10.1016/j.bbrc.2015.11.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/22/2015] [Indexed: 11/23/2022]
|
30
|
Burakova LP, Natashin PV, Malikova NP, Niu F, Pu M, Vysotski ES, Liu ZJ. All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2+-loaded apo-berovin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 154:57-66. [DOI: 10.1016/j.jphotobiol.2015.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022]
|
31
|
Markova SV, Vysotski ES. Coelenterazine-dependent luciferases. BIOCHEMISTRY (MOSCOW) 2015; 80:714-32. [DOI: 10.1134/s0006297915060073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Mahdavi A, Sajedi RH, Hosseinkhani S, Taghdir M. Hyperactive Arg39Lys mutated mnemiopsin: implication of positively charged residue in chromophore binding cavity. Photochem Photobiol Sci 2015; 14:792-800. [DOI: 10.1039/c4pp00191e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mnemiopsin, a Ca2+-regulated photoprotein isolated fromMnemiopsis leidyi, belongs to the family of ctenophore photoproteins. While there are no charged amino acid residues in the coelenterazine binding cavity of cnidarian photoproteins, ctenophore photoproteins have a positively charged residue (Arg) in this region.
Collapse
Affiliation(s)
- Atiyeh Mahdavi
- Department of Biological Sciences
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45195-1159
- Iran
| | - Reza H. Sajedi
- Department of Biochemistry
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| | - Saman Hosseinkhani
- Department of Biochemistry
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| | - Majid Taghdir
- Department of Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| |
Collapse
|
33
|
Characterization of hydromedusan Ca2+-regulated photoproteins as a tool for measurement of Ca2+concentration. Anal Bioanal Chem 2014; 406:5715-26. [DOI: 10.1007/s00216-014-7986-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/30/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
34
|
Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal Bioanal Chem 2014; 406:2965-74. [PMID: 24618986 DOI: 10.1007/s00216-014-7685-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.
Collapse
Affiliation(s)
- Roza R Alieva
- Siberian Federal University, Svobodny Prospect 79, 660041, Krasnoyarsk, Russia
| | | | | | | |
Collapse
|
35
|
Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues. Anal Bioanal Chem 2014; 406:2695-707. [DOI: 10.1007/s00216-014-7656-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/28/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
36
|
Natashin PV, Ding W, Eremeeva EV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction. ACTA ACUST UNITED AC 2014; 70:720-32. [DOI: 10.1107/s1399004713032434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 11/11/2022]
Abstract
Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Collapse
|
37
|
Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 2014; 281:1432-1445. [DOI: 10.1111/febs.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel V. Natashin
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens GA USA
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- iHuman Institute; ShanghaiTech University; Shanghai China
| |
Collapse
|
38
|
Eremeeva EV, Burakova LP, Krasitskaya VV, Kudryavtsev AN, Shimomura O, Frank LA. Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules. Photochem Photobiol Sci 2014; 13:541-7. [PMID: 24463740 DOI: 10.1039/c3pp50369k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have stated that aequorin loses most of its bioluminescence activity upon modification of the C-terminus, thus limiting the production of photoprotein fusion proteins at its N-terminus. In the present work, we investigate the importance of the C-terminal proline and the hydrogen bonds it forms for photoprotein active complex formation, stability and functional activity. According to the crystal structures of obelin and aequorin, two Ca(2+)-regulated photoproteins, the carboxyl group of the C-terminal Pro forms two hydrogen bonds with the side chain of Arg21 (Arg15 in aequorin case) situated in the first α-helix. Whereas, deletion or substitution of the C-terminal proline could noticeably change the bioluminescence activity, stability or the yield of an active photoprotein complex. Therefore, modifications of the first α-helix Arg has a clear destructive effect on the main photoprotein properties. A C-terminal hydrogen-bond network is proposed to be important for the stability of photoprotein molecules towards external disturbances, when taking part in the formation of locked protein conformations and isolation of coelenterazine-binding cavities.
Collapse
Affiliation(s)
- Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russia.
| | | | | | | | | | | |
Collapse
|
39
|
Webb SE, Karplus E, Miller AL. Retrospective on the development of aequorin and aequorin-based imaging to visualize changes in intracellular free [Ca2+]. Mol Reprod Dev 2014; 82:563-86. [DOI: 10.1002/mrd.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/26/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah E. Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
| | | | - Andrew L. Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Kowloon Hong Kong
- Marine Biological Laboratory; Woods Hole Massachusetts
| |
Collapse
|
40
|
Application of enzyme bioluminescence for medical diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:175-97. [PMID: 25084998 DOI: 10.1007/978-3-662-43385-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays luciferases are effectively used as analytical instruments in a great variety of research fields. Of special interest are the studies dealing with elaboration of novel analytical systems for the purposes of medical diagnostics. The ever-expanding spectrum of clinically important analytes accounts for the increasing demand for new techniques for their detection. In this chapter we have made an attempt to summarize the results on applications of luciferases as reporters in binding assays including immunoassay, nucleic acid hybridization assay, and so on. The data over the last 15 years have been analyzed and clearly show that luciferase-based assays, due to extremely high sensitivity, low cost, and the lack of need for skilled personnel, hold much promise for clinical diagnostics.
Collapse
|
41
|
Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014; 1098:33-45. [PMID: 24166366 DOI: 10.1007/978-1-62703-718-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetically encoded indicators are valuable tools to study intracellular signaling cascades in real time using fluorescent or bioluminescent imaging techniques. Imaging of Ca(2+) indicators is widely used to record transient intracellular Ca(2+) increases associated with bioelectrical activity. The natural bioluminescent Ca(2+) sensor aequorin has been historically the first Ca(2+) indicator used to address biological questions. Aequorin imaging offers several advantages over fluorescent reporters: it is virtually devoid of background signal; it does not require light excitation and interferes little with intracellular processes. Genetically encoded sensors such as aequorin are commonly used in dissociated cultured cells; however it becomes more challenging to express them in differentiated intact specimen such as brain tissue. Here we describe a method to express a GFP-aequorin (GA) fusion protein in pyramidal cells of neocortical acute slices using recombinant Sindbis virus. This technique allows expressing GA in several hundreds of neurons on the same slice and to perform the bioluminescence recording of Ca(2+) transients in single neurons or multiple neurons simultaneously.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neurobiologie des processus adaptatifs, UMR7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
42
|
Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 2013; 8:2105-18. [DOI: 10.1038/nprot.2013.127] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:133-9. [DOI: 10.1016/j.jphotobiol.2013.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/10/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022]
|
44
|
Chen SF, Ferré N, Liu YJ. QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms. Chemistry 2013; 19:8466-72. [PMID: 23670851 DOI: 10.1002/chem.201300678] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Indexed: 11/06/2022]
Abstract
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF-hand calcium-binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H-bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine-type luciferases).
Collapse
Affiliation(s)
- Shu-Feng Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | | | | |
Collapse
|
45
|
Li ZS, Zhao X, Zou LY, Ren AM. The Dynamics Simulation and Quantum Calculation Investigation About Luminescence Mechanism of Coelenteramide. Photochem Photobiol 2013; 89:849-55. [DOI: 10.1111/php.12073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Zuo-Sheng Li
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Xi Zhao
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Lu-Yi Zou
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Ai-Min Ren
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| |
Collapse
|
46
|
Eremeeva EV, Markova SV, Frank LA, Visser AJWG, van Berkel WJH, Vysotski ES. Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin. Photochem Photobiol Sci 2013; 12:1016-24. [PMID: 23525241 DOI: 10.1039/c3pp00002h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca(2+)-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.
Collapse
Affiliation(s)
- Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | | | | | | | | | | |
Collapse
|
47
|
Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Fluorescence properties of Ca2+-independent discharged obelin and its application prospects. Anal Bioanal Chem 2013; 405:3351-8. [PMID: 23392408 DOI: 10.1007/s00216-013-6757-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/06/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Discharged obelin, a complex of coelenteramide and polypeptide, is a fluorescent protein produced from the photoprotein obelin, which is responsible for bioluminescence of the marine hydroid Obelia longissima. Discharged obelin is stable and nontoxic and its spectra are variable, and this is why it can be used as a fluorescent biomarker of variable color in vivo and in vitro. Here we examined light-induced fluorescence of Ca(2+)-independent discharged obelin (obtained without addition of Ca(2+)). Its emission and excitation spectra were analyzed under variation of the excitation wavelength (260-390 nm) and the emission wavelength (400-700 nm), as well as the 40 °C exposure time. The emission spectra obtained with excitation at 260-300 nm (tryptophan absorption region) included three peaks with maxima at 355, 498, and 660 nm, corresponding to fluorescence of tryptophan, polypeptide-bound coelenteramide, and a hypothetical indole-coelenteramide exciplex, respectively. The emission spectra obtained with excitation at 310-380 nm (coelenteramide absorption region) did not include the 660-nm maximum. The peak in the red spectral region (λ(max) = 660 nm) has not been previously reported. Exposure to 40 °C under excitation at 310-380 nm shifted the obelin fluorescence spectra to the blue, whereas excitation at 260-300 nm shifted them to the red. Hence, red emission and variation of the excitation wavelength form a basis for development of new medical techniques involving obelin as a colored biomarker. The addition of red color to the battery of known (violet to yellow) colors increases the potential of application of obelin.
Collapse
|
48
|
Mahdavi A, Sajedi RH, Hosseinkhani S, Taghdir M, Sariri R. Site-directed mutagenesis of photoprotein mnemiopsin: implication of some conserved residues in bioluminescence properties. Photochem Photobiol Sci 2013. [DOI: 10.1039/c2pp25320h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol 2012; 10:107. [PMID: 23259493 PMCID: PMC3570280 DOI: 10.1186/1741-7007-10-107] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/21/2012] [Indexed: 11/26/2022] Open
Abstract
Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. Conclusions This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.
Collapse
|
50
|
Chen SF, Navizet I, Roca-Sanjuán D, Lindh R, Liu YJ, Ferré N. Chemiluminescence of Coelenterazine and Fluorescence of Coelenteramide: A Systematic Theoretical Study. J Chem Theory Comput 2012; 8:2796-807. [DOI: 10.1021/ct300356j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Feng Chen
- Key Laboratory of Theoretical and
Computational Photochemistry (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Isabelle Navizet
- Université Paris-Est, Laboratoire
Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS,
5 bd Descartes, 77454 Marne-la-Vallée, France
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits Johannesburg
2050, South Africa
| | - Daniel Roca-Sanjuán
- Department
of Chemistry—Ångström, the Theoretical Chemistry
Programme, Uppsala University, P.O. Box
518, S-75120 Uppsala, Sweden
| | - Roland Lindh
- Department
of Chemistry—Ångström, the Theoretical Chemistry
Programme, Uppsala University, P.O. Box
518, S-75120 Uppsala, Sweden
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and
Computational Photochemistry (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nicolas Ferré
- Aix-Marseille Université, Institut
de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| |
Collapse
|