1
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580553. [PMID: 38405983 PMCID: PMC10889028 DOI: 10.1101/2024.02.15.580553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A. Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lia M. Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Buchel G, Nayak AR, Herbine K, Sarfallah A, Sokolova VO, Zamudio-Ochoa A, Temiakov D. Structural basis for DNA proofreading. Nat Commun 2023; 14:8501. [PMID: 38151585 PMCID: PMC10752894 DOI: 10.1038/s41467-023-44198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.
Collapse
Affiliation(s)
- Gina Buchel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Ashok R Nayak
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Karl Herbine
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Viktoriia O Sokolova
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Dahl JM, Thomas N, Tracy MA, Hearn BL, Perera L, Kennedy SR, Herr AJ, Kunkel TA. Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ. Nucleic Acids Res 2022; 50:962-974. [PMID: 35037018 DOI: 10.1093/nar/gkab1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.
Collapse
Affiliation(s)
- Joseph M Dahl
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Natalie Thomas
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Maxwell A Tracy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Brady L Hearn
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Lalith Perera
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Alan J Herr
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Thomas A Kunkel
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
6
|
Foster BM, Rosenberg D, Salvo H, Stephens KL, Bintz BJ, Hammel M, Ellenberger T, Gainey MD, Wallen JR. Combined Solution and Crystal Methods Reveal the Electrostatic Tethers That Provide a Flexible Platform for Replication Activities in the Bacteriophage T7 Replisome. Biochemistry 2019; 58:4466-4479. [PMID: 31659895 DOI: 10.1021/acs.biochem.9b00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown. We have determined an X-ray crystal structure of the T7 DNA polymerase bound to both a primer/template DNA and a peptide that mimics the C-terminal tail of the primase-helicase. The structure reveals that the essential C-terminal phenylalanine of the tail binds to a hydrophobic pocket that is surrounded by positive charge on the surface of the polymerase. We show that alterations of polymerase residues that engage the tail lead to defects in viral replication. In the structure, we also observe dTTP bound in the exonuclease active site and stacked against tryptophan 160. Using both primer/extension assays and high-throughput sequencing, we show how mutations in the exonuclease active site lead to defects in mismatch repair and an increase in the level of mutagenesis of the T7 genome. Finally, using small-angle X-ray scattering, we provide the first solution structures of a complex between the single-stranded DNA binding protein and the DNA polymerase and show how a single-stranded DNA binding protein dimer engages both one and two copies of DNA polymerase.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Daniel Rosenberg
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Graduate Group in Biophysics , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Henry Salvo
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Kasie L Stephens
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Brittania J Bintz
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Maria D Gainey
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Jamie R Wallen
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| |
Collapse
|
7
|
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. BIOLOGY 2018; 7:biology7010005. [PMID: 29301327 PMCID: PMC5872031 DOI: 10.3390/biology7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3'-5' exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis.
Collapse
|
8
|
Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H, Fujiwara S. Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng 2011; 113:315-21. [PMID: 22143068 DOI: 10.1016/j.jbiosc.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Family A DNA polymerase (K4PolI) from Thermotoga petrophila K4 was obtained as a recombinant form, and the enzyme characteristics were analyzed. K4PolI showed thermostable DNA-dependent DNA polymerase activity with 3'-5' exonuclease activity but no detectable RNA-dependent DNA polymerase activity. Its tertiary structure was speculated by in silico modeling to understand the binding situation between K4PolI and template DNA. Nine amino acids in the 3'-5' exonuclease domain are predicted to be involved in DNA/RNA distinction by steric interference with the 2' hydroxy group of ribose. To allow K4PolI to accept RNA as the template, mutants were constructed focusing on the amino acids located around the 2' hydroxyl group of the bound ribose. The mutants in which Thr326, Leu329, Gln384, Phe388, Met408, or Tyr438 was replaced with Ala (designated as T326A, L329A, Q384A, F388A, M408A, or Y438A, respectively) showed RNA-dependent DNA polymerase activity. All the mutants showed reduced 3'-5' exonuclease activity, suggesting that gain of reverse transcriptase activity is correlated with loss of 3'-5' exonuclease activity. In particular, the mutants enabled direct DNA amplification in a single tube format from structured RNA that was not efficiently amplified by retroviral reverse transcriptase.
Collapse
Affiliation(s)
- Sotaro Sano
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Wowor AJ, Datta K, Brown HS, Thompson GS, Ray S, Grove A, LiCata VJ. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Biophys J 2010; 98:3015-24. [PMID: 20550914 DOI: 10.1016/j.bpj.2010.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022] Open
Abstract
Understanding the thermodynamics of substrate selection by DNA polymerase I is important for characterizing the balance between replication and repair for this enzyme in vivo. Due to their sequence and structural similarities, Klenow and Klentaq, the large fragments of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus, are considered functional homologs. Klentaq, however, does not have a functional proofreading site. Examination of the DNA binding thermodynamics of Klenow and Klentaq to different DNA structures: single-stranded DNA (ss-DNA), primer-template DNA (pt-DNA), and blunt-end double-stranded DNA (ds-DNA) show that the binding selectivity pattern is similar when examined across a wide range of salt concentration, but can significantly differ at any individual salt concentration. For both proteins, binding of single-stranded DNA shifts from weakest to tightest binding of the three structures as the salt concentration increases. Both Klenow and Klentaq release two to three more ions when binding to pt-DNA and ds-DNA than when binding to ss-DNA. Klenow exhibits significant differences in the Delta C(p) of binding to pt-DNA versus ds-DNA, and a difference in pI for these two complexes, whereas Klentaq does not, suggesting that Klenow and Klentaq discriminate between these two structures differently. Taken together, the data suggest that the two polymerases bind ds-DNA very differently, but that both bind pt-DNA and ss-DNA similarly, despite the absence of a proofreading site in Klentaq.
Collapse
Affiliation(s)
- Andy J Wowor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Johnson KA. The kinetic and chemical mechanism of high-fidelity DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1041-8. [PMID: 20079883 DOI: 10.1016/j.bbapap.2010.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/15/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
This review summarizes our current understanding of the structural, kinetic and thermodynamic basis for the extraordinary accuracy of high-fidelity DNA polymerases. High-fidelity DNA polymerases, such as the enzyme responsible for the replication of bacteriophage T7 DNA, discriminate against similar substrates with an accuracy that approaches one error in a million base pairs while copying DNA at a rate of approximately 300 base pairs per second. When the polymerase does make an error, it stalls, giving time for the slower proofreading exonuclease to remove the mismatch so that the overall error frequency approaches one in a billion. Structural analysis reveals a large change in conformation after nucleotide binding from an open to a closed state. Kinetic analysis has shown that the substrate-induced structural change plays a key role in the discrimination between correct and incorrect base pairs by governing whether a nucleotide will be retained and incorporated or rapidly released.
Collapse
Affiliation(s)
- Kenneth A Johnson
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution. Proc Natl Acad Sci U S A 2009; 106:21109-14. [PMID: 19955412 DOI: 10.1073/pnas.0908640106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.
Collapse
|
12
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Marini V, Christofis P, Novakova O, Kasparkova J, Farrell N, Brabec V. Conformation, protein recognition and repair of DNA interstrand and intrastrand cross-links of antitumor trans-[PtCl2(NH3)(thiazole)]. Nucleic Acids Res 2005; 33:5819-28. [PMID: 16237123 PMCID: PMC1258167 DOI: 10.1093/nar/gki884] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022] Open
Abstract
Replacement of one ammine in clinically ineffective trans-[PtCl2(NH3)2] (transplatin) by a planar N-heterocycle, thiazole, results in significantly enhanced cytotoxicity. Unlike 'classical' cisplatin {cis-[PtCl2(NH3)2]} or transplatin, modification of DNA by this prototypical cytotoxic transplatinum complex trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) leads to monofunctional and bifunctional intra or interstrand adducts in roughly equal proportions. DNA fragments containing site-specific bifunctional DNA adducts of trans-PtTz were prepared. The structural distortions induced in DNA by these adducts and their consequences for high-mobility group protein recognition, DNA polymerization and nucleotide excision repair were assessed in cell-free media by biochemical methods. Whereas monofunctional adducts of trans-PtTz behave similar to the major intrastrand adduct of cisplatin [J. Kasparkova, O. Novakova, N. Farrell and V. Brabec (2003) Biochemistry, 42, 792-800], bifunctional cross-links behave distinctly differently. The results suggest that the multiple DNA lesions available to trans-planaramine complexes may all contribute substantially to their cytotoxicity so that the overall drug cytotoxicity could be the sum of the contributions of each of these adducts. However, acquisition of drug resistance could be a relatively rare event, since it would have to entail resistance to or tolerance of multiple, structurally dissimilar DNA lesions.
Collapse
Affiliation(s)
- Victoria Marini
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Petros Christofis
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Viktor Brabec
- To whom correspondence should be addressed. Tel: +42 5 41517148; Fax: +42 5 41240499;
| |
Collapse
|
14
|
Luo N, Kaguni LS. Mutations in the spacer region of Drosophila mitochondrial DNA polymerase affect DNA binding, processivity, and the balance between Pol and Exo function. J Biol Chem 2004; 280:2491-7. [PMID: 15537632 DOI: 10.1074/jbc.m411447200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.
Collapse
Affiliation(s)
- Ningguang Luo
- Graduate Program in Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823, USA
| | | |
Collapse
|
15
|
Lou H, Duan Z, Sun T, Huang L. Cleavage of double-stranded DNA by the intrinsic 3'-5' exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus at high temperature. FEMS Microbiol Lett 2004; 231:111-7. [PMID: 14769474 DOI: 10.1016/s0378-1097(03)00932-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/20/2003] [Accepted: 12/08/2003] [Indexed: 11/30/2022] Open
Abstract
The substrate requirement of the intrinsic 3'-5' exonuclease of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus P2 (Sso polB1) was investigated. Sso polB1 degraded both single-stranded (ss) and double-stranded (ds) DNA at similar rates in vitro at temperatures of physiological relevance. No difference was found in the cleavage of 3'-recessive, 3'-protruding and blunt-ended DNA duplexes at these temperatures. However, a single-stranded nick in duplex DNA was less readily employed by the enzyme to initiate cleavage than a free 3' end. At lower temperatures, Sso polB1 cleaved ssDNA more efficiently than dsDNA. The strong 3'-5' exonuclease activity of polB1 was inhibited by 50% in the presence of 2 microM dNTPs, but remained measurable at up to 600 microM dNTPs. In view of the strong exonuclease activity of Sso polB1 on matched dsDNA, we suggest that S. solfataricus may have evolved mechanisms to regulate the exonuclease/polymerase ratio of the enzyme, thereby reducing the cost of proofreading at high temperature.
Collapse
Affiliation(s)
- Huiqiang Lou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | |
Collapse
|
16
|
van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T, Xie XS. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 2003; 301:1235-8. [PMID: 12947199 DOI: 10.1126/science.1084387] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of lambda-phage DNA by individual bacteriophage lambda exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the local base content of the substrate DNA. By relating single-molecule kinetics to the free energies of hydrogen bonding and base stacking, we establish that the melting of a base from the DNA is the rate-limiting step in the catalytic cycle. The catalytic rate also exhibits large fluctuations independent of the sequence, which we attribute to conformational changes of the enzyme-DNA complex.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|