1
|
Abstract
: The oligomerization of HIV-1 integrase onto DNA is not well understood. Here we show that HIV-1 integrase binds the DNA in biphasic (high-affinity and low-affinity) modes. For HIV-1 subtype B, the high-affinity mode is ∼100-fold greater than the low-affinity mode (Kd.DNA = 37 and 3400 nmol/l, respectively). The Kd.DNA values of patient-derived integrases containing subtype-specific polymorphisms were affected two- to four-fold, suggesting that polymorphisms may have an influence on effective-concentrations of inhibitors, as these inhibitors preferably bind to integrase-DNA complex.
Collapse
|
2
|
Blaum BS, Wünsche W, Benie AJ, Kusov Y, Peters H, Gauss-Müller V, Peters T, Sczakiel G. Functional binding of hexanucleotides to 3C protease of hepatitis A virus. Nucleic Acids Res 2012; 40:3042-55. [PMID: 22156376 PMCID: PMC3326307 DOI: 10.1093/nar/gkr1152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/01/2022] Open
Abstract
Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3C(pro)). Inhibition assays in vitro identified the hexanucleotide 5'-GGGGGT-3' (G(5)T) as a 3C(pro) protease inhibitor. Using (1)H NMR spectroscopy, G(5)T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of (1)H, (15)N-HSQC experiments the binding site for G(5)T was located to the C-terminal β-barrel of HAV 3C(pro). Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G(5)T-binding site, nor does G(5)T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid-protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance.
Collapse
Affiliation(s)
- Bärbel S. Blaum
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Winfried Wünsche
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Andrew J. Benie
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Yuri Kusov
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Hannelore Peters
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Verena Gauss-Müller
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Thomas Peters
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| | - Georg Sczakiel
- Institute of Chemistry, Institute of Molecular Medicine, Institute for Virology and Cell Biology and Institute for Biochemistry, University of Luebeck, Center for Structural and Cell Biology in Medicine (CSCM), Ratzeburger Allee 160, D-23538 Luebeck, Germany
| |
Collapse
|
3
|
Elyakova LA, Vaskovsky BV, Khoroshilova NI, Vantseva SI, Agapkina YY. Isolation and structure of a novel peptide inhibitor of HIV-1 integrase from marine polychaetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:233-43. [DOI: 10.1134/s1068162010061019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
5
|
Prikazchikova TA, Volkov EM, Zubin EM, Romanova EA, Gottikh MB. Inhibition of HIV-1 integrase by modified oligonucleotides: Optimization of the inhibitor structure. Mol Biol 2007. [DOI: 10.1134/s0026893307010165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mescalchin A, Wünsche W, Laufer SD, Grohmann D, Restle T, Sczakiel G. Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules. Nucleic Acids Res 2006; 34:5631-7. [PMID: 17038335 PMCID: PMC1635251 DOI: 10.1093/nar/gkl533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Short oligonucleotides below 8–10 nt in length adopt relatively simple structures. Accordingly, they represent interesting and so far unexplored lead compounds as molecular tools and, potentially, for drug development as a rational improvement of efficacy seem to be less complex than for other classes of longer oligomeric nucleic acid. As a ‘proof of concept’, we describe the highly specific binding of the hexanucleotide UCGUGU (Hex-S3) to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) as a model target. Ultraviolet (UV) cross-linking studies and competition experiments with primer/template substrates and a RT-directed aptamer suggest site-specific binding of Hex-S3 to the large subunit (p66) of the viral enzyme. The affinity of 5.3 μM is related to hexanucleotide-specific suppression of HIV-1 replication in human cells by up to three orders of magnitude indicating that Hex-S3 exerts specific and biologically relevant activity. Experimental evidence described here further suggests a systematic hexamer array-based search for new tools for molecular biology and novel lead compounds in nucleic acid-based drug development.
Collapse
Affiliation(s)
- Alessandra Mescalchin
- Kompetenzzentrum Drug Design and Target MonitoringMaria-Göppert-Strasse 1, D-23538 Lübeck, Germany
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Winfried Wünsche
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sandra D. Laufer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Dina Grohmann
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
| | - Georg Sczakiel
- Kompetenzzentrum Drug Design and Target MonitoringMaria-Göppert-Strasse 1, D-23538 Lübeck, Germany
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Universität zu LübeckRatzeburger Allee 160, D-23538 Lübeck, Germany
- To whom correspondence should be addressed. Tel: +49 451 500 2731l; Fax: +49 451 500 2729;
| |
Collapse
|
7
|
Agapkina J, Smolov M, Barbe S, Zubin E, Zatsepin T, Deprez E, Le Bret M, Mouscadet JF, Gottikh M. Probing of HIV-1 integrase/DNA interactions using novel analogs of viral DNA. J Biol Chem 2006; 281:11530-40. [PMID: 16500899 DOI: 10.1074/jbc.m512271200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific activity of the human immunodeficiency virus, type 1 (HIV-1), integrase on the viral long terminal repeat requires the binding of the enzyme to certain sequences located in the U3 and U5 regions at the ends of viral DNA, but the determinants of this specific DNA-protein recognition are not yet completely understood. We synthesized DNA duplexes mimicking the U5 region and containing either 2'-modified nucleosides or 1,3-propanediol insertions and studied their interactions with HIV-1 integrase, using Mn2+ or Mg2+ ions as integrase cofactors. These DNA modifications had no strong effect on integrase binding to the substrate analogs but significantly affected 3'-end processing rate. The effects of nucleoside modifications at positions 5, 6, and especially 3 strongly depended on the cationic cofactor used. These effects were much more pronounced in the presence of Mg2+ than in the presence of Mn2+. Modifications of base pairs 7-9 affected 3'-end processing equally in the presence of both ions. Adenine from the 3rd bp is thought to form at least two hydrogen bonds with integrase that are crucial for specific DNA recognition. The complementary base, thymine, is not important for integrase activity. For other positions, our results suggest that integrase recognizes a fine structure of the sugar-phosphate backbone rather than heterocyclic bases. Integrase interactions with the unprocessed strand at positions 5-8 are more important than interactions with the processed strand for specific substrate recognition. Based on our results, we suggest a model for integrase interaction with the U5 substrate.
Collapse
Affiliation(s)
- Julia Agapkina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia and LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Oz Gleenberg I, Avidan O, Goldgur Y, Herschhorn A, Hizi A. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. J Biol Chem 2005; 280:21987-96. [PMID: 15790559 DOI: 10.1074/jbc.m414679200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that the integrase (IN) of HIV-1 is inhibited in vitro by HIV-1 reverse transcriptase (RT). We further investigated the specific protein sequences of RT that were involved in this inhibition by screening a complete library of RT-derived peptides for their inhibition of IN activities. Two 20-residue peptides, peptide 4286, derived from the RT DNA polymerase domain, and the one designated 4321, from the RT ribonuclease H domain, inhibit the enzymatic activities of IN in vitro. The former peptide inhibits all three IN-associated activities (3'-end processing, strand transfer, and disintegration), whereas the latter one inhibits primarily the first two functions. We showed the importance of the sequences and peptide length for the effective inhibition of IN activities. Binding assays of the peptides to IN (with no DNA substrate present) indicated that the two inhibitory peptides (as well as several non-inhibitory peptides) interact directly with IN. Moreover, the isolated catalytic core domain of IN also interacted directly with the two inhibitory peptides. Nevertheless, only peptide 4286 can inhibit the disintegration activity associated with the IN core domain, because this activity is the only one exhibited by this domain. This result was expected from the lack of inhibition of disintegration of full-length IN by peptide 4321. The data and the three-dimensional models presented suggested that the inhibition resulted from steric hindrance of the catalytic domain of IN. This information can substantially facilitate the development of novel drugs against HIV INs and thus contribute to the fight against AIDS.
Collapse
Affiliation(s)
- Iris Oz Gleenberg
- Department of Cell and Developmental Biology, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
9
|
Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF. Mechanism of HIV-1 Integrase Inhibition by Styrylquinoline Derivatives in Vitro. Mol Pharmacol 2004; 65:85-98. [PMID: 14722240 DOI: 10.1124/mol.65.1.85] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Styrylquinoline derivatives (SQ) efficiently inhibit the 3'-processing activity of integrase (IN) with IC50 values of between 0.5 and 5 microM. We studied the mechanism of action of these compounds in vitro. First, we used steady-state fluorescence anisotropy to assay the effects of the SQ derivatives on the formation of IN-viral DNA complexes independently of the catalytic process. The IC50 values obtained in activity and DNA-binding tests were similar, suggesting that the inhibition of 3'-processing can be fully explained by the prevention of IN-DNA recognition. SQ compounds act in a competitive manner, with Ki values of between 400 and 900 nM. In contrast, SQs did not inhibit 3'-processing when IN-DNA complexes were preassembled. Computational docking followed or not by molecular dynamics using the catalytic core of HIV-1 IN suggested a competitive inhibition mechanism, which is consistent with our previous data obtained with the corresponding Rous sarcoma virus domain. Second, we used preassembled IN-preprocessed DNA complexes to assay the potency of SQs against the strand transfer reaction, independently of 3'-processing. Inhibition occurred even if the efficiency was decreased by about 5- to 10-fold. Our results suggest that two inhibitor-binding modes exist: the first one prevents the binding of the viral DNA and then the two subsequent reactions (i.e., 3'-processing and strand transfer), whereas the second one prevents the binding of target DNA, thus inhibiting strand transfer. SQ derivatives have a higher affinity for the first site, in contrast to that observed for the diketo acids, which preferentially bind to the second one.
Collapse
Affiliation(s)
- Eric Deprez
- Centre National de la Recherche Scientifique Unité Mixte Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, Ecole Normale Supérieure de Cachan, Cachan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bischerour J, Tauc P, Leh H, de Rocquigny H, Roques B, Mouscadet JF. The (52-96) C-terminal domain of Vpr stimulates HIV-1 IN-mediated homologous strand transfer of mini-viral DNA. Nucleic Acids Res 2003; 31:2694-702. [PMID: 12736319 PMCID: PMC156046 DOI: 10.1093/nar/gkg364] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viral integrase (IN) and Vpr are both components of the human immunodeficiency virus type 1 (HIV-1) pre-integration complex. To investigate whether these proteins interact within this complex, we investigated the effects of Vpr and its subdomains on IN activity in vitro. When a 21mer oligonucleotide was used as a donor and acceptor, both Vpr and its C-terminal DNA-binding domain [(52-96)Vpr] inhibited the integration reaction, whereas the (1-51)Vpr domain did not affect IN activity. Steady-state fluorescence anisotropy showed that both full-length and (52-96)Vpr bind to the short oligonucleotide, thereby extending previous observations with long DNA. The concentrations of the two proteins required to inhibit IN activity were consistent with their affinities for the oligonucleotide. The use of a 492 bp mini-viral substrate confirmed that Vpr can inhibit the IN-mediated reaction. However, the activity of (52-96)Vpr differed notably since it stimulated specifically integration events involving two homologous mini-viral DNAs. Order of addition experiments indicated that the stimulation was maximal when IN, (50-96)Vpr and the mini-viral DNA were allowed to form a complex. Furthermore, in the presence of (50-96)Vpr, the binding of IN to the mini-viral DNA was dramatically enhanced. Taken together, these data suggest that (52-96)Vpr stimulates the formation of a specific complex between IN and the mini-viral DNA.
Collapse
Affiliation(s)
- Julien Bischerour
- CNRS-UMR 8532, L.B.P.A., ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | |
Collapse
|
11
|
Polanski J, Zouhiri F, Jeanson L, Desmaële D, d'Angelo J, Mouscadet JF, Gieleciak R, Gasteiger J, Le Bret M. Use of the Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J Med Chem 2002; 45:4647-54. [PMID: 12361391 DOI: 10.1021/jm020845g] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the Kohonen neural network, the electrostatic potentials on the molecular surfaces of 14 styrylquinoline derivatives were drawn as comparative two-dimensional maps and compared with their known human immunodeficiency virus (HIV)-1 replication blocking potency in cells. A feature of the potential map was discovered to be related with the HIV-1 blocking activity and was used to unmask the activity of further five analogues, previously described but whose cytotoxicity precluded an estimation of their activity, and to predict the activity of 10 new compounds while the experimental data were unknown. The measurements performed later turned out to agree with the predictions.
Collapse
Affiliation(s)
- Jaroslaw Polanski
- CNRS UMR 8532, LBPA, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | |
Collapse
|