1
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
3
|
Stitzinger SH, Sohrabi-Jahromi S, Söding J. Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains. NAR Genom Bioinform 2023; 5:lqad057. [PMID: 37305168 PMCID: PMC10251633 DOI: 10.1093/nargab/lqad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Numerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA-binding domains display low specificity and affinity in comparison to DNA-binding domains. The best binding motif is typically only enriched by less than a factor 10 in high-throughput RNA SELEX or RNA bind-n-seq measurements. Here, we provide insight into how cooperative binding of multiple domains in RNA-binding proteins (RBPs) can boost their effective affinity and specificity orders of magnitude higher than their individual domains. We present a thermodynamic model to calculate the effective binding affinity (avidity) for idealized, sequence-specific RBPs with any number of RBDs given the affinities of their isolated domains. For seven proteins in which affinities for individual domains have been measured, the model predictions are in good agreement with measurements. The model also explains how a two-fold difference in binding site density on RNA can increase protein occupancy 10-fold. It is therefore rationalized that local clusters of binding motifs are the physiological binding targets of multi-domain RBPs.
Collapse
Affiliation(s)
- Simon H Stitzinger
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Johannes Söding
- To whom correspondence should be addressed. Tel: +49 551 201 2890;
| |
Collapse
|
4
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
5
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Roemer A, Mohammed L, Strickfaden H, Underhill DA, Hendzel MJ. Mechanisms governing the accessibility of DNA damage proteins to constitutive heterochromatin. Front Genet 2022; 13:876862. [PMID: 36092926 PMCID: PMC9458887 DOI: 10.3389/fgene.2022.876862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Chromatin is thought to regulate the accessibility of the underlying DNA sequence to machinery that transcribes and repairs the DNA. Heterochromatin is chromatin that maintains a sufficiently high density of DNA packing to be visible by light microscopy throughout the cell cycle and is thought to be most restrictive to transcription. Several studies have suggested that larger proteins and protein complexes are attenuated in their access to heterochromatin. In addition, heterochromatin domains may be associated with phase separated liquid condensates adding further complexity to the regulation of protein concentration within chromocenters. This provides a solvent environment distinct from the nucleoplasm, and proteins that are not size restricted in accessing this liquid environment may partition between the nucleoplasm and heterochromatin based on relative solubility. In this study, we assessed the accessibility of constitutive heterochromatin in mouse cells, which is organized into large and easily identifiable chromocenters, to fluorescently tagged DNA damage response proteins. We find that proteins larger than the expected 10 nm size limit can access the interior of heterochromatin. We find that the sensor proteins Ku70 and PARP1 enrich in mouse chromocenters. At the same time, MRE11 shows variability within an asynchronous population that ranges from depleted to enriched but is primarily homogeneously distribution between chromocenters and the nucleoplasm. While larger downstream proteins such as ATM, BRCA1, and 53BP1 are commonly depleted in chromocenters, they show a wide range of concentrations, with none being depleted beyond approximately 75%. Contradicting exclusively size-dependent accessibility, many smaller proteins, including EGFP, are also depleted in chromocenters. Our results are consistent with minimal size-dependent selectivity but a distinct solvent environment explaining reduced concentrations of diffusing nucleoplasmic proteins within the volume of the chromocenter.
Collapse
|
7
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
8
|
Huang Q, Wang Y, Liu Z, Lai L. The Regulatory Roles of Intrinsically Disordered Linker in VRN1-DNA Phase Separation. Int J Mol Sci 2022; 23:ijms23094594. [PMID: 35562982 PMCID: PMC9106000 DOI: 10.3390/ijms23094594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Biomacromolecules often form condensates to function in cells. VRN1 is a transcriptional repressor that plays a key role in plant vernalization. Containing two DNA-binding domains connected by an intrinsically disordered linker (IDL), VRN1 was shown to undergo liquid-like phase separation with DNA, and the length and charge pattern of IDL play major regulatory roles. However, the underlying mechanism remains elusive. Using a polymer chain model and lattice-based Monte-Carlo simulations, we comprehensively investigated how the IDL regulates VRN1 and DNA phase separation. Using a worm-like chain model, we showed that the IDL controls the binding affinity of VRN1 to DNA, by modulating the effective local concentration of the VRN1 DNA-binding domains. The predicted binding affinities, under different IDL lengths, were in good agreement with previously reported experimental results. Our simulation of the phase diagrams of the VRN1 variants with neutral IDLs and DNA revealed that the ability of phase separation first increased and then decreased, along with the increase in the linker length. The strongest phase separation ability was achieved when the linker length was between 40 and 80 residues long. Adding charged patches to the IDL resulted in robust phase separation that changed little with IDL length variations. Our study provides mechanism insights on how IDL regulates VRN1 and DNA phase separation, and why naturally occurring VRN1-like proteins evolve to contain the charge segregated IDL sequences, which may also shed light on the molecular mechanisms of other IDL-regulated phase separation processes in living cells.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Yanyan Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China;
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Correspondence: (Z.L.); (L.L.)
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China;
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing 100871, China
- Correspondence: (Z.L.); (L.L.)
| |
Collapse
|
9
|
Modulating binding affinity, specificity and configurations by multivalent interactions. Biophys J 2022; 121:1868-1880. [PMID: 35450827 DOI: 10.1016/j.bpj.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biological functions of proteins rely on their specific interactions with binding partners. Many proteins contain multiple domains, which can bind to their targets that often have more than one binding site, resulting in multivalent interactions. While it has been shown that multivalent interactions play an crucial role in modulating binding affinity and specificity, other potential effects of multivalent interactions are less explored. Here, we developed a broadly applicable transfer matrix formalism and used it to investigate the binding of two-domain ligands to targets with multiple binding sites. We show that 1) ligands with two specific binding domains can drastically boost both the binding affinity and specificity and down-shift the working concentration range, compared to single-domain ligands, 2) the presence of a positive domain-domain cooperativity or containing a non-specific binding domain can down-shift the working concentration range of ligands by increasing the binding affinity without compromising the binding specificity, 3) the configuration of the bound ligands has a strong concentration dependence, providing important insights into the physical origin of phase-separation processes taking place in living cells. In line with previous studies, our results suggest that multivalent interactions are utilized by cells for highly efficient regulation of target binding involved in a diverse range of cellular processes such as signal transduction, gene transcription, antibody-antigen recognition.
Collapse
|
10
|
Kjaergaard M. Estimation of Effective Concentrations Enforced by Complex Linker Architectures from Conformational Ensembles. Biochemistry 2022; 61:171-182. [DOI: 10.1021/acs.biochem.1c00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
- Center for Proteins in Memory─PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
11
|
Wang Y, Zhou H, Sun X, Huang Q, Li S, Liu Z, Zhang C, Lai L. Charge Segregation in the Intrinsically Disordered Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness. J Mol Biol 2021; 433:167269. [PMID: 34571015 DOI: 10.1016/j.jmb.2021.167269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
VERNALIZATION1 (VRN1) is a transcriptional repressor involved in plant vernalization that undergoes liquid-liquid phase separation (LLPS) with DNA. The naturally occurring VRN1-like proteins contain two B3 DNA binding domains connected by an intrinsically disordered region (IDR). The IDR length in VRN1-like proteins has a broad distribution, while the charge segregation pattern is largely conserved. We studied the effect of IDR length and charge segregation on DNA-induced VRN1 phase separation. When only neutral residues (Pro-Ser repeats) were used, the phase separation behavior is sensitive to IDR length, changing from gel-like aggregates (L = 40) to liquid-like droplets (L = 100-120) and clear solution (L = 160). When a pair of continuous patches of positive and negative residues were added to the IDRs, all the VRN1 variants formed robust and durable droplets with DNA independent of the IDR length. To test how robust the system is, we introduced folded green fluorescent protein or the enzyme GPX4 into VRN1 variants with charge segregation in IDR, the resulting proteins form LLPS with DNA as well. Our study implies that VRN1-like proteins use conserved charge segregation pattern to retain functional LLPS during evolution, and demonstrates the possibility of using this system to design novel biosensors or bio-factories by introducing various functional modules.
Collapse
Affiliation(s)
- Yanyan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huabin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. https://twitter.com/huabin_zhou
| | - Xiangyu Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiaojing Huang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Siyang Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhirong Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changsheng Zhang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Intrinsic disorder in protein kinase A anchoring proteins signaling complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34656331 DOI: 10.1016/bs.pmbts.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Protein kinase A (PKA) is regulated by a diverse class of anchoring proteins known as AKAPs that target PKA to subsets of its activators and substrates. Recently, it was reported that PKA can remain bound to its regulatory subunit after activation in contrast to classical model of activation-by-dissociation. This implies that PKA remains bound to the AKAPs and its substrates, and thus suggest many phosphorylation reactions occur while PKA is physically connected to its substrate. Intra-complex reactions are sensitive to the architecture of the signaling complex, but generally concentration independent. We show that most AKAPs have long intrinsically disordered regions, and suggest that they represent an adaptation for intra-complex phosphorylation. Based on polymer models of the disordered proteins, we predict that the effective concentrations of tethered substrates range from the low millimolar range to tens of micromolar. Based on recent models for intra-complex enzyme reactions, we suggest that the structure of the AKAP signaling complex is likely to be source of allosteric regulation of PKA signaling.
Collapse
|
13
|
Kjaergaard M, Glavina J, Chemes LB. Predicting the effect of disordered linkers on effective concentrations and avidity with the "C eff calculator" app. Methods Enzymol 2020; 647:145-171. [PMID: 33482987 DOI: 10.1016/bs.mie.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Linkers are crucial to the functions of multidomain proteins as they couple functional units to encode regulation such as auto-inhibition, enzyme targeting or tuning of interaction strength. A linker changes reactions from bimolecular to unimolecular, and the equilibrium and kinetics is thus determined by the properties of the linker rather than concentrations. We present a theoretical workflow for estimating the functional consequences of tethering by a linker. We discuss how to: (1) Identify flexible linkers from sequence. (2) Model the end-to-end distance distribution for a flexible linker using a worm-like chain. (3) Estimate the effective concentration of a ligand tethered by a flexible linker. (4) Calculate the decrease in binding affinity caused by auto-inhibition. (5) Calculate the expected avidity enhancement of a bivalent interaction from effective concentration. The worm-like chain modeling is available through a web application called the "Ceff calculator" (http://ceffapp.chemeslab.org), which will allow user-friendly prediction of experimentally inaccessible parameters.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus, Denmark; Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
14
|
Prasad R, Zhou HX. Membrane Association and Functional Mechanism of Synaptotagmin-1 in Triggering Vesicle Fusion. Biophys J 2020; 119:1255-1265. [PMID: 32882186 DOI: 10.1016/j.bpj.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Upon Ca2+ influx, synaptic vesicles fuse with the presynaptic plasma membrane (PM) to release neurotransmitters. Membrane fusion is triggered by synaptotagmin-1, a transmembrane protein in the vesicle membrane (VM), but the mechanism is under debate. Synaptotagmin-1 contains a single transmembrane helix (TM) and two tandem C2 domains (C2A and C2B). This study aimed to use molecular dynamics simulations to elucidate how Ca2+-bound synaptotagmin-1, by simultaneously associating with VM and PM, brings them together for fusion. Although C2A stably associates with VM via two Ca2+-binding loops, C2B has a propensity to partially dissociate. Importantly, an acidic motif in the TM-C2A linker competes with VM for interacting with C2B, thereby flipping its orientation to face PM. Subsequently, C2B readily associates with PM via a polybasic cluster and a Ca2+-binding loop. The resulting mechanistic model for the triggering of membrane fusion by synaptotagmin-1 reconciles many experimental observations.
Collapse
Affiliation(s)
- Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois; Department of Physics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
15
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Role of intrinsic disorder in muscle sarcomeres. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:311-340. [PMID: 31521234 DOI: 10.1016/bs.pmbts.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role and utility of intrinsically disordered regions (IDRs) is reviewed for two groups of sarcomeric proteins, such as members of tropomodulin/leiomodin (Tmod/Lmod) protein homology group and myosin binding protein C (MyBP-C). These two types of sarcomeric proteins represent very different but strongly interdependent functions, being responsible for maintaining structure and operation of the muscle sarcomere. The role of IDRs in the formation of complexes between thin filaments and Tmods/Lmods is discussed within the framework of current understanding of the thin filament length regulation. For MyBP-C, the function of IDRs is discussed in the context of MYBP-C-dependent sarcomere contraction and actomyosin activation.
Collapse
|
17
|
Krepel D, Levy Y. Intersegmental transfer of proteins between DNA regions in the presence of crowding. Phys Chem Chem Phys 2018; 19:30562-30569. [PMID: 29115315 DOI: 10.1039/c7cp05251k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intersegmental transfer that involves direct relocation of a DNA-binding protein from one nonspecific DNA site to another was previously shown to contribute to speeding up the identification of the DNA target site. This mechanism is promoted when the protein is composed of at least two domains that have different DNA binding affinities and thus show a degree of mobility. In this study, we investigate the effect of particle crowding on the ability of a multi-domain protein to perform intersegmental transfer. We show that although crowding conditions often favor 1D diffusion of proteins along DNA over 3D diffusion, relocation of one of the tethered domains to initiate intersegmental transfer is possible even under crowding conditions. The tendency to perform intersegmental transfer by a multi-domain protein under crowding conditions is much higher for larger crowding particles than smaller ones and can be even greater than under no-crowding conditions. We report that the asymmetry of the two domains is even magnified by the crowders. The observations that crowding supports intersegmental transfer serve as another example that in vivo complexity does not necessarily slow down DNA search kinetics by proteins.
Collapse
Affiliation(s)
- Dana Krepel
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
18
|
Katayama T, Kasho K, Kawakami H. The DnaA Cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein. Front Microbiol 2017; 8:2496. [PMID: 29312202 PMCID: PMC5742627 DOI: 10.3389/fmicb.2017.02496] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023] Open
Abstract
This review summarizes the mechanisms of the initiator protein DnaA in replication initiation and its regulation in Escherichia coli. The chromosomal origin (oriC) DNA is unwound by the replication initiation complex to allow loading of DnaB helicases and replisome formation. The initiation complex consists of the DnaA protein, DnaA-initiator-associating protein DiaA, integration host factor (IHF), and oriC, which contains a duplex-unwinding element (DUE) and a DnaA-oligomerization region (DOR) containing DnaA-binding sites (DnaA boxes) and a single IHF-binding site that induces sharp DNA bending. DiaA binds to DnaA and stimulates DnaA assembly at the DOR. DnaA binds tightly to ATP and ADP. ATP-DnaA constructs functionally different sub-complexes at DOR, and the DUE-proximal DnaA sub-complex contains IHF and promotes DUE unwinding. The first part of this review presents the structures and mechanisms of oriC-DnaA complexes involved in the regulation of replication initiation. During the cell cycle, the level of ATP-DnaA level, the active form for initiation, is strictly regulated by multiple systems, resulting in timely replication initiation. After initiation, regulatory inactivation of DnaA (RIDA) intervenes to reduce ATP-DnaA level by hydrolyzing the DnaA-bound ATP to ADP to yield ADP-DnaA, the inactive form. RIDA involves the binding of the DNA polymerase clamp on newly synthesized DNA to the DnaA-inactivator Hda protein. In datA-dependent DnaA-ATP hydrolysis (DDAH), binding of IHF at the chromosomal locus datA, which contains a cluster of DnaA boxes, results in further hydrolysis of DnaA-bound ATP. SeqA protein inhibits untimely initiation at oriC by binding to newly synthesized oriC DNA and represses dnaA transcription in a cell cycle dependent manner. To reinitiate DNA replication, ADP-DnaA forms oligomers at DnaA-reactivating sequences (DARS1 and DARS2), resulting in the dissociation of ADP and the release of nucleotide-free apo-DnaA, which then binds ATP to regenerate ATP-DnaA. In vivo, DARS2 plays an important role in this process and its activation is regulated by timely binding of IHF to DARS2 in the cell cycle. Chromosomal locations of DARS sites are optimized for the strict regulation for timely replication initiation. The last part of this review describes how DDAH and DARS regulate DnaA activity.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements. Biochemistry 2017; 56:4134-4144. [DOI: 10.1021/acs.biochem.7b00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Agato Murata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Fukuchi
- Faculty
of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Saori Kanbayashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kiyoto Kamagata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Abstract
The light chains (KLCs) of the microtubule motor kinesin-1 bind cargoes and regulate its activity. Through their tetratricopeptide repeat domain (KLC(TPR)), they can recognize short linear peptide motifs found in many cargo proteins characterized by a central tryptophan flanked by aspartic/glutamic acid residues (W-acidic). Using a fluorescence resonance energy transfer biosensor in combination with X-ray crystallographic, biochemical, and biophysical approaches, we describe how an intramolecular interaction between the KLC2(TPR) domain and a conserved peptide motif within an unstructured region of the molecule, partly occludes the W-acidic binding site on the TPR domain. Cargo binding displaces this interaction, effecting a global conformational change in KLCs resulting in a more extended conformation. Thus, like the motor-bearing kinesin heavy chains, KLCs exist in a dynamic conformational state that is regulated by self-interaction and cargo binding. We propose a model by which, via this molecular switch, W-acidic cargo binding regulates the activity of the holoenzyme.
Collapse
|
21
|
Marasco D, Scognamiglio PL. Identification of inhibitors of biological interactions involving intrinsically disordered proteins. Int J Mol Sci 2015; 16:7394-412. [PMID: 25849651 PMCID: PMC4425024 DOI: 10.3390/ijms16047394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few "hot spots", thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.
Collapse
Affiliation(s)
- Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", DFM-Scarl, 80134 Naples, Italy.
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB), University of Naples "Federico II", DFM-Scarl, 80134 Naples, Italy.
| |
Collapse
|
22
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
23
|
Maric HM, Kasaragod VB, Schindelin H. Modulation of gephyrin-glycine receptor affinity by multivalency. ACS Chem Biol 2014; 9:2554-62. [PMID: 25137389 DOI: 10.1021/cb500303a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gephyrin is a major determinant for the accumulation and anchoring of glycine receptors (GlyRs) and the majority of γ-aminobutyric acid type A receptors (GABAARs) at postsynaptic sites. Here we explored the interaction of gephyrin with a dimeric form of a GlyR β-subunit receptor-derived peptide. A 2 Å crystal structure of the C-terminal domain of gephyrin (GephE) in complex with a 15-residue peptide derived from the GlyR β-subunit defined the core binding site, which we targeted with the dimeric peptide. Biophysical analyses via differential scanning calorimetry (DSC), thermofluor, and isothermal titration calorimetry (ITC) demonstrated that this dimeric ligand is capable of binding simultaneously to two receptor binding sites and that this multivalency results in a 25-fold enhanced affinity. Our study therefore suggests that the oligomeric state of gephyrin and the number of gephyrin-binding subunits in the pentameric GABAARs and GlyRs together control postsynaptic receptor clustering.
Collapse
Affiliation(s)
- Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| |
Collapse
|
24
|
Lindenburg LH, Malisauskas M, Sips T, van Oppen L, Wijnands SPW, van de Graaf SFJ, Merkx M. Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors. Biochemistry 2014; 53:6370-81. [PMID: 25216081 DOI: 10.1021/bi500433j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Förster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (ΔG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (ΔG0(o-c) = .0.39 kCal/mol) to relatively stable (ΔG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Pineda-Sanabria SE, Julien O, Sykes BD. Versatile cardiac troponin chimera for muscle protein structural biology and drug discovery. ACS Chem Biol 2014; 9:2121-30. [PMID: 25010113 DOI: 10.1021/cb500249j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Investigation of the molecular interactions within and between subunits of the heterotrimeric troponin complex, and with other proteins in the sarcomere, has revealed salient structural elements involved in regulation of muscle contraction. The discovery of new cardiotonic drugs and structural studies utilizing intact troponin, or regulatory complexes formed between the key regions identified in troponin C and troponin I, face intrinsic and technical difficulties associated with weak protein-protein interactions and with solubility, aggregation, stability of the overall architecture, isotope labeling, and size, respectively. We have designed and characterized a chimeric troponin C-troponin I hybrid protein with a cleavable linker that is useful for producing isotopically labeled troponin peptides, stabilizes their interaction, and has proven to be a faithful representation of the original complex in the systolic state, but lacking its disadvantages, making it particularly suitable for drug screening and structural studies.
Collapse
Affiliation(s)
- Sandra E. Pineda-Sanabria
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| |
Collapse
|
26
|
Vuzman D, Levy Y. The “Monkey-Bar” Mechanism for Searching for the DNA Target Site: The Molecular Determinants. Isr J Chem 2014. [DOI: 10.1002/ijch.201400107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. J Struct Biol 2014; 187:194-205. [DOI: 10.1016/j.jsb.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
|
28
|
Chen J, Xie ZR, Wu Y. A multiscale model for simulating binding kinetics of proteins with flexible linkers. Proteins 2014; 82:2512-22. [DOI: 10.1002/prot.24614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| | - Zhong-Ru Xie
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| | - Yinghao Wu
- Department of Systems and Computational Biology; Albert Einstein College of Medicine of Yeshiva University; Bronx New York 10461
| |
Collapse
|
29
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
30
|
Liu Z, Huang Y. Advantages of proteins being disordered. Protein Sci 2014; 23:539-50. [PMID: 24532081 DOI: 10.1002/pro.2443] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
Abstract
The past decade has witnessed great advances in our understanding of protein structure-function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non-native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed.
Collapse
Affiliation(s)
- Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | | |
Collapse
|
31
|
Dickey TH, Altschuler SE, Wuttke DS. Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure 2014; 21:1074-84. [PMID: 23823326 DOI: 10.1016/j.str.2013.05.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
32
|
Zhou HX. Theoretical frameworks for multiscale modeling and simulation. Curr Opin Struct Biol 2014; 25:67-76. [PMID: 24492203 DOI: 10.1016/j.sbi.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/25/2013] [Accepted: 01/10/2014] [Indexed: 02/08/2023]
Abstract
Biomolecular systems have been modeled at a variety of scales, ranging from explicit treatment of electrons and nuclei to continuum description of bulk deformation or velocity. Many challenges of interfacing between scales have been overcome. Multiple models at different scales have been used to study the same system or calculate the same property (e.g., channel conductance). Accurate modeling of biochemical processes under in vivo conditions and the bridging of molecular and subcellular scales will likely soon become reality.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Procacci P, Bizzarri M, Marsili S. Energy-Driven Undocking (EDU-HREM) in Solute Tempering Replica Exchange Simulations. J Chem Theory Comput 2013; 10:439-50. [DOI: 10.1021/ct400809n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Piero Procacci
- Dipartimento
di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Marco Bizzarri
- Dipartimento
di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Simone Marsili
- Centro Nacional de Investigaciones Oncologicas, Calle de Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| |
Collapse
|
34
|
Park JH, Kwon HW, Jeong KJ. Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. J Biosci Bioeng 2013; 116:246-52. [DOI: 10.1016/j.jbiosc.2013.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
35
|
Hu D, Scott IC, Snider F, Geary-Joo C, Zhao X, Simmons DG, Cross JC. The basic helix-loop-helix transcription factor Hand1 regulates mouse development as a homodimer. Dev Biol 2013; 382:470-81. [PMID: 23911935 DOI: 10.1016/j.ydbio.2013.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/04/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Hand1 is a basic helix-loop-helix transcription factor that is essential for development of the placenta, yolk sac and heart during mouse development. While Hand1 is essential for trophoblast giant cell (TGC) differentiation, its potential heterodimer partners are not co-expressed in TGCs. To test the hypothesis that Hand1 functions as homodimer, we generated knock-in mice in which the Hand1 gene was altered to encode a tethered homodimer (TH). Some Hand1(TH/-) conceptuses in which the only form of Hand1 is Hand1(TH) are viable and fertile, indicating that homodimer Hand1 is sufficient for mouse survival. ~2/3 of Hand1(TH/-) and all Hand1(TH/TH) mice died in utero and displayed severe placental defects and variable cardial and cranial-facial abnormalities, indicating a dosage-dependent effect of Hand1(TH). Meanwhile, expression of the Hand1(TH) protein did not have negative effects on viability or fertility in all Hand1(TH/+) mice. These data imply that Hand1 homodimer plays a dominant role during development and its expression dosage is critical for survival, whereas Hand1 heterodimers can be either dispensable or play a regulatory role to modulate the activity of Hand1 homodimer in vivo.
Collapse
Affiliation(s)
- Dong Hu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Center for Stem Cell Application and Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Feinauer CJ, Hofmann A, Goldt S, Liu L, Máté G, Heermann DW. Zinc finger proteins and the 3D organization of chromosomes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:67-117. [PMID: 23582202 DOI: 10.1016/b978-0-12-410523-2.00003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zinc finger domains are one of the most common structural motifs in eukaryotic cells, which employ the motif in some of their most important proteins (including TFIIIA, CTCF, and ZiF268). These DNA binding proteins contain up to 37 zinc finger domains connected by flexible linker regions. They have been shown to be important organizers of the 3D structure of chromosomes and as such are called the master weaver of the genome. Using NMR and numerical simulations, much progress has been made during the past few decades in understanding their various functions and their ways of binding to the DNA, but a large knowledge gap remains to be filled. One problem of the hitherto existing theoretical models of zinc finger protein DNA binding in this context is that they are aimed at describing specific binding. Furthermore, they exclusively focus on the microscopic details or approach the problem without considering such details at all. We present the Flexible Linker Model, which aims explicitly at describing nonspecific binding. It takes into account the most important effects of flexible linkers and allows a qualitative investigation of the effects of these linkers on the nonspecific binding affinity of zinc finger proteins to DNA. Our results indicate that the binding affinity is increased by the flexible linkers by several orders of magnitude. Moreover, they show that the binding map for proteins with more than one domain presents interesting structures, which have been neither observed nor described before, and can be interpreted to fit very well with existing theories of facilitated target location. The effect of the increased binding affinity is also in agreement with recent experiments that until now have lacked an explanation. We further explore the class of proteins with flexible linkers, which are unstructured until they bind. We have developed a methodology to characterize these flexible proteins. Employing the concept of barcodes, we propose a measure to compare such flexible proteins in terms of a similarity measure. This measure is validated by a comparison between a geometric similarity measure and the topological similarity measure that takes geometry as well as topology into account.
Collapse
Affiliation(s)
- Christoph J Feinauer
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Pang X, Zhou KH, Qin S, Zhou HX. Prediction and dissection of widely-varying association rate constants of actin-binding proteins. PLoS Comput Biol 2012; 8:e1002696. [PMID: 23055910 PMCID: PMC3464195 DOI: 10.1371/journal.pcbi.1002696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022] Open
Abstract
Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as ka = ka0, where ka0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold ka variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions. Actin polymerization and depolymerization drive cell motility and are regulated by a variety of actin-binding proteins. The widely-varying rate constants (ka) of the actin-binding proteins associating with G-actin, spanning at least three orders of magnitude, appear to be tuned for their distinct regulatory functions. Here we applied our previously developed transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold ka variations among them can mostly be attributed to disparate inter-protein electrostatic interactions. By computing the association mechanisms and quantifying the physical determinants of association rate constants, the present study reveals critical links between the structure and function of the actin-binding proteins.
Collapse
Affiliation(s)
- Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Kenneth H. Zhou
- Lawton Chiles High School, Tallahassee, Florida, United States of America
| | - Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhou HX, Pang X, Lu C. Rate constants and mechanisms of intrinsically disordered proteins binding to structured targets. Phys Chem Chem Phys 2012; 14:10466-76. [PMID: 22744607 DOI: 10.1039/c2cp41196b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of intrinsically disordered proteins (IDPs) to structured targets is gaining increasing attention. Here we review experimental and computational studies on the binding kinetics of IDPs. Experiments have yielded both the binding rate constants and the binding mechanisms, the latter via mutation and deletion studies and NMR techniques. Most computational studies have aimed at qualitative understanding of the binding rate constants or at mapping the free energy surfaces after the IDPs are engaged with their targets. The experiments and computation show that IDPs generally gain structures after they are engaged with their targets; that is, interactions with the targets facilitate the IDPs' folding. It also seems clear that the initial contact of an IDP with the target is formed by just a segment, not the entire IDP. The docking of one segment to its sub-site followed by coalescing of other segments around the corresponding sub-sites emerges as a recurring feature in the binding of IDPs. Such a dock-and-coalesce model forms the basis for quantitative calculation of binding rate constants. For both disordered and ordered proteins, strong electrostatic attraction with their targets can enhance the binding rate constants by several orders of magnitude. There are now tremendous opportunities in narrowing the gap in our understanding of IDPs relative to ordered proteins with regard to binding kinetics.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
39
|
Ertekin A, Aramini JM, Rossi P, Leonard PG, Janjua H, Xiao R, Maglaqui M, Lee HW, Prestegard JH, Montelione GT. Human cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) is dimeric in its disulfide-reduced state, with natively disordered N-terminal region. J Biol Chem 2012; 287:16541-9. [PMID: 22427660 DOI: 10.1074/jbc.m112.343863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition. Here, we report the solution structure of CDK2AP1 by combined methods of solution state NMR and amide hydrogen/deuterium exchange measurements with mass spectrometry. The homodimeric structure of CDK2AP1 includes an intrinsically disordered 60-residue N-terminal region and a four-helix bundle dimeric structure with reduced Cys-105 in the C-terminal region. The Cys-105 residues are, however, poised for disulfide bond formation. CDK2AP1 is phosphorylated at a conserved Ser-46 site in the N-terminal "intrinsically disordered" region by IκB kinase ε.
Collapse
Affiliation(s)
- Asli Ertekin
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tantos A, Han KH, Tompa P. Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 2012; 348:457-65. [PMID: 21782886 DOI: 10.1016/j.mce.2011.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022]
Abstract
Structural disorder, which enables unique modes of action often associated with molecular recognition and folding induced by a partner, is widespread in eukaryotic proteomes. Due to the ensuing advantages, such as specificity without strong binding, adaptability to multiple partners and subtle regulation by post-translational modification, structural disorder is prevalent in proteins of signaling and regulatory functions, such as membrane receptors, scaffold proteins, cytoskeletal proteins, transcription factors and nuclear hormone receptors. In this review we survey the most important aspects of structural disorder, with major focus on features and advantages pertinent to signal transduction. Our major goal is to elucidate how the functional requirements of these protein classes concur with specific functional modes disorder enables.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
41
|
Vuzman D, Levy Y. Intrinsically disordered regions as affinity tuners in protein–DNA interactions. ACTA ACUST UNITED AC 2012; 8:47-57. [DOI: 10.1039/c1mb05273j] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Wong-Deyrup SW, Prasannan C, Dupureur CM, Franklin SJ. DNA targeting and cleavage by an engineered metalloprotein dimer. J Biol Inorg Chem 2011; 17:387-98. [PMID: 22116546 DOI: 10.1007/s00775-011-0861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/08/2011] [Indexed: 11/27/2022]
Abstract
Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.
Collapse
|
43
|
Ozaki S, Katayama T. Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res 2011; 40:1648-65. [PMID: 22053082 PMCID: PMC3287180 DOI: 10.1093/nar/gkr832] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, the replication origin oriC consists of two functional regions: the duplex unwinding element (DUE) and its flanking DnaA-assembly region (DAR). ATP-DnaA molecules multimerize on DAR, unwinding DUE for DnaB helicase loading. However, DUE-unwinding mechanisms and functional structures in DnaA–oriC complexes supporting those remain unclear. Here, using various in vitro reconstituted systems, we identify functionally distinct DnaA sub-complexes formed on DAR and reveal novel mechanisms in DUE unwinding. The DUE-flanking left-half DAR carrying high-affinity DnaA box R1 and the ATP-DnaA-preferential DnaA box R5, τ1-2 and I1-2 sites formed a DnaA sub-complex competent in DUE unwinding and ssDUE binding, thereby supporting basal DnaB loading activity. This sub-complex is further subdivided into two; the DUE-distal DnaA sub-complex formed on the ATP–DnaA-preferential sites binds ssDUE. Notably, the DUE-flanking, DnaA box R1–DnaA sub-complex recruits DUE to the DUE-distal DnaA sub-complex in concert with a DNA-bending nucleoid protein IHF, thereby promoting DUE unwinding and binding of ssDUE. The right-half DAR–DnaA sub-complex stimulated DnaB loading, consistent with in vivo analyses. Similar features are seen in DUE unwinding of the hyperthermophile, Thermotoga maritima, indicating evolutional conservation of those mechanisms.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
44
|
Sethi A, Goldstein B, Gnanakaran S. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. PLoS Comput Biol 2011; 7:e1002192. [PMID: 22022247 PMCID: PMC3192808 DOI: 10.1371/journal.pcbi.1002192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 01/27/2023] Open
Abstract
Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment.
Collapse
Affiliation(s)
- Anurag Sethi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
45
|
Rakhmetova SY, Radko SP, Gnedenko OV, Bodoev NV, Ivanov AS, Archakov AI. Comparative thermodynamic analysis of thrombin interaction with anti-thrombin aptamers and their heterodimeric construct. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Golynskiy MV, Koay MS, Vinkenborg JL, Merkx M. Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology. Chembiochem 2011; 12:353-61. [DOI: 10.1002/cbic.201000642] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Indexed: 12/31/2022]
|
47
|
Kim J, Hu J, Sollie RS, Easley CJ. Improvement of sensitivity and dynamic range in proximity ligation assays by asymmetric connector hybridization. Anal Chem 2010; 82:6976-82. [PMID: 20704387 DOI: 10.1021/ac101762m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The proximity ligation assay (PLA) is one of the most sensitive and simple protein assays developed to date, yet a major limitation is the relatively narrow dynamic range compared to other assays such as enzyme-linked immunosorbent assays. In this work, the dynamic range of PLA was improved by 2 orders of magnitude and the sensitivity was improved by a factor of 1.57. To accomplish this, asymmetric DNA hybridization was used to reduce the probability of target-independent, background ligation. An experimental model of the aptamer-target-connector complex (apt(A)-T-apt(B)-C(20,PLA)) in PLA was developed to study the effects of asymmetry in aptamer-connector hybridization. Connector base pairing was varied from the PLA standard of 20 total bases (C(20)) to an asymmetric combination with 15 total bases (C(15)). The results of this model suggested that weakening the affinity of one side of the connector to one aptamer would significantly reduce target-independent ligation (background) without greatly affecting target-dependent ligation (signal). These predictions were confirmed using PLA with asymmetric connectors for detection of human thrombin. This novel, asymmetric PLA approach should impact any previously developed PLA method (using aptamers or antibodies) by reducing target-independent ligation events, thus generally improving the sensitivity and dynamic range of the assay.
Collapse
Affiliation(s)
- Joonyul Kim
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
48
|
Vuzman D, Polonsky M, Levy Y. Facilitated DNA search by multidomain transcription factors: cross talk via a flexible linker. Biophys J 2010; 99:1202-11. [PMID: 20713004 DOI: 10.1016/j.bpj.2010.06.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022] Open
Abstract
More than 70% of eukaryotic proteins are composed of multiple domains. However, most studies of the search for DNA focus on individual protein domains and do not consider potential cross talk within a multidomain transcription factor. In this study, the molecular features of the DNA search mechanism were explored for two multidomain transcription factors: human Pax6 and Oct-1. Using a simple computational model, we compared a DNA search of multidomain proteins with a search of isolated domains. Furthermore, we studied how manipulating the binding affinity of a single domain to DNA can affect the overall DNA search of the multidomain protein. Tethering the two domains via a flexible linker increases their affinity to the DNA, resulting in a higher propensity for sliding along the DNA, which is more significant for the domain with the weaker DNA-binding affinity. In this case, the domain that binds DNA more tightly anchors the multidomain protein to the DNA and, via the linker, increases the local concentration of the weak DNA-binding domain (DBD). The tethered domains directly exchange between two parallel DNA molecules via a bridged intermediate, where intersegmental transfer is promoted by the weaker DBD. We found that, in general, the relative affinity of the two domains can significantly affect the cross talk between them and thus their overall capability to search DNA efficiently. The results we obtained by examining various multidomain DNA-binding proteins support the necessity of discrepancies between the DNA-binding affinities of the constituent domains.
Collapse
Affiliation(s)
- Dana Vuzman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
49
|
Chi CN, Bach A, Gottschalk M, Kristensen AS, Strømgaard K, Jemth P. Deciphering the kinetic binding mechanism of dimeric ligands using a potent plasma-stable dimeric inhibitor of postsynaptic density protein-95 as an example. J Biol Chem 2010; 285:28252-60. [PMID: 20576616 DOI: 10.1074/jbc.m110.124040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimeric ligands can be potent inhibitors of protein-protein or enzyme-substrate interactions. They have increased affinity and specificity toward their targets due to their ability to bind two binding sites simultaneously and are therefore attractive in drug design. However, few studies have addressed the kinetic mechanism of interaction of such bivalent ligands. We have investigated the binding interaction of a recently identified potent plasma-stable dimeric pentapeptide and PDZ1-2 of postsynaptic density protein-95 (PSD-95) using protein engineering in combination with fluorescence polarization, isothermal titration calorimetry, and stopped-flow fluorimetry. We demonstrate that binding occurs via a two-step process, where an initial binding to either one of the two PDZ domains is followed by an intramolecular step, which produces the bidentate complex. We have determined all rate constants involved in the binding reaction and found evidence for a conformational transition of the complex. Our data demonstrate the importance of a slow dissociation for a successful dimeric ligand but also highlight the possibility of optimizing the intramolecular association rate. The results may therefore aid the design of dimeric inhibitors in general.
Collapse
Affiliation(s)
- Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. An attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck's constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so that theories can be used for generating rate constants for systems biology studies is particularly exciting.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|