1
|
Zhang B, Li B, Chen D, Zong J, Sun F, Qu H, Liang C. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation. PLoS One 2016; 11:e0161502. [PMID: 27537181 PMCID: PMC4990298 DOI: 10.1371/journal.pone.0161502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Dai Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Jie Zong
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Huixin Qu
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
- * E-mail:
| |
Collapse
|
2
|
Barbas A, Popescu A, Frazão C, Arraiano CM, Fialho AM. Rossmann-fold motifs can confer multiple functions to metabolic enzymes: RNA binding and ribonuclease activity of a UDP-glucose dehydrogenase. Biochem Biophys Res Commun 2012; 430:218-24. [PMID: 23137539 DOI: 10.1016/j.bbrc.2012.10.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
Metabolic enzymes are usually characterized to have one specific function, and this is the case of UDP-glucose dehydrogenase that catalyzes the twofold NAD(+)-dependent oxidation of UDP-glucose into UDP-glucuronic acid. We have determined that this enzyme is also capable of participating in other cellular processes. Here, we report that the bacterial UDP-glucose dehydrogenase (UgdG) from Sphingomonas elodea ATCC 31461, which provides UDP-glucuronic acid for the synthesis of the exopolysaccharide gellan, is not only able to bind RNA but also acts as a ribonuclease. The ribonucleolytic activity occurs independently of the presence of NAD(+) and the RNA binding site does not coincide with the NAD(+) binding region. We have also performed the kinetics of interaction between UgdG and RNA. Moreover, computer analysis reveals that the N- and C-terminal domains of UgdG share structural features with ancient mitochondrial ribonucleases named MAR. MARs are present in lower eukaryotic microorganisms, have a Rossmannoid-fold and belong to the isochorismatase superfamily. This observation reinforces that the Rossmann structural motifs found in NAD(+)-dependent dehydrogenases can have a dual function working as a nucleotide cofactor binding domain and as a ribonuclease.
Collapse
Affiliation(s)
- Ana Barbas
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
3
|
Yang F, Zhang S, Zhou YJ, Zhu Z, Lin X, Zhao ZK. Characterization of the mitochondrial NAD+-dependent isocitrate dehydrogenase of the oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 2012; 94:1095-105. [DOI: 10.1007/s00253-011-3820-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
|
4
|
Lin AP, Demeler B, Minard KI, Anderson SL, Schirf V, Galaleldeen A, McAlister-Henn L. Construction and analyses of tetrameric forms of yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 2010; 50:230-9. [PMID: 21133413 DOI: 10.1021/bi101401h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. The crystal structure suggested that the interactions between tetramers in the octamer are restricted to defined regions in IDH1 subunits from each tetramer. Using truncation and mutagenesis, we constructed three tetrameric forms of IDH. Truncation of five residues from the amino terminus of IDH1 did not alter the octameric form of the enzyme, but this truncation with an IDH1 G15D or IDH1 D168K residue substitution produced tetrameric enzymes as assessed by sedimentation velocity ultracentrifugation. The IDH1 G15D substitution in the absence of any truncation of IDH1 was subsequently found to be sufficient for production of a tetrameric enzyme. The tetrameric forms of IDH exhibited ∼50% reductions in V(max) and in cooperativity with respect to isocitrate relative to those of the wild-type enzyme, but they retained the property of allosteric activation by AMP. The truncated (-5)IDH1/IDH2 and tetrameric enzymes were much more sensitive than the wild-type enzyme to inhibition by the oxidant diamide and concomitant formation of a disulfide bond between IDH2 Cys-150 residues. Binding of ligands reduced the sensitivity of the wild-type enzyme to diamide but had no effect on inhibition of the truncated or tetrameric enzymes. These results suggest that the octameric structure of IDH has in part evolved for regulation of disulfide bond formation and activity by ensuring the proximity of the amino terminus of an IDH1 subunit of one tetramer to the IDH2 Cys-150 residues in the other tetramer.
Collapse
Affiliation(s)
- An-Ping Lin
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, 78229, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model. BMC SYSTEMS BIOLOGY 2009; 3:107. [PMID: 19903354 PMCID: PMC2786910 DOI: 10.1186/1752-0509-3-107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/10/2009] [Indexed: 11/10/2022]
Abstract
Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism) known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention), and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models.
Collapse
|
6
|
Taylor AB, Hu G, Hart PJ, McAlister-Henn L. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 2008; 283:10872-80. [PMID: 18256028 DOI: 10.1074/jbc.m708719200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial NAD(+)-specific isocitrate dehydrogenases (IDHs) are key regulators of flux through biosynthetic and oxidative pathways in response to cellular energy levels. Here we present the first structures of a eukaryotic member of this enzyme family, the allosteric, hetero-octameric, NAD(+)-specific IDH from yeast in three forms: 1) without ligands, 2) with bound analog citrate, and 3) with bound citrate + AMP. The structures reveal the molecular basis for ligand binding to homologous but distinct regulatory and catalytic sites positioned at the interfaces between IDH1 and IDH2 subunits and define pathways of communication between heterodimers and heterotetramers in the hetero-octamer. Disulfide bonds observed at the heterotetrameric interfaces in the unliganded IDH hetero-octamer are reduced in the ligand-bound forms, suggesting a redox regulatory mechanism that may be analogous to the "on-off" regulation of non-allosteric bacterial IDHs via phosphorylation. The results strongly suggest that eukaryotic IDH enzymes are exquisitely tuned to ensure that allosteric activation occurs only when concentrations of isocitrate are elevated.
Collapse
Affiliation(s)
- Alexander B Taylor
- Department of Biochemistry and X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
7
|
Chen XJ, Wang X, Butow RA. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA. Proc Natl Acad Sci U S A 2007; 104:13738-43. [PMID: 17698960 PMCID: PMC1959452 DOI: 10.1073/pnas.0703078104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.
Collapse
Affiliation(s)
- Xin Jie Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390
- To whom correspondence may be addressed. E-mail: or
| | - Xiaowen Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390
| | - Ronald A. Butow
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
8
|
Hu G, McAlister-Henn L. Novel allosteric properties produced by residue substitutions in the subunit interface of yeast NAD+-specific isocitrate dehydrogenase. Arch Biochem Biophys 2006; 453:207-16. [PMID: 16884682 DOI: 10.1016/j.abb.2006.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/23/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Yeast NAD+-specific isocitrate dehydrogenase (IDH) is an octamer of four IDH1 and four IDH2 subunits, and the basic structural unit of the enzyme is an IDH1/IDH2 heterodimer. To investigate one aspect of the interaction between IDH1 and IDH2, residues in a hydrophobic region at the heterodimer interface (Val-216, Ser-220, and Val-224 in IDH1; Ile-221, Val-225, and Val-229 in IDH2) were replaced by alanine residues in each and in both subunits. Gel filtration and sedimentation velocity analyses demonstrated that the residue substitutions do not disrupt the octameric structure of IDH. However, these substitutions produce novel kinetic properties including, with respect to cofactor, positive allosteric regulation by AMP and cooperativity in the absence of AMP. These allosteric properties are also apparent in NAD+-binding experiments. Despite substantial measurable activity for the mutant enzyme containing residue substitutions in both subunits, expression of this enzyme produces growth phenotypes indicative of IDH dysfunction in vivo.
Collapse
Affiliation(s)
- Gang Hu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
9
|
Anderson SL, Lin AP, McAlister-Henn L. Analysis of interactions with mitochondrial mRNA using mutant forms of yeast NAD(+)-specific isocitrate dehydrogenase. Biochemistry 2006; 44:16776-84. [PMID: 16342968 PMCID: PMC2560988 DOI: 10.1021/bi0515568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated tricarboxylic acid cycle enzyme that has been shown to bind specifically and with high affinity to 5'-untranslated regions of yeast mitochondrial mRNAs. The absence of IDH has been shown to result in reduced expression of mitochondrial translation products, leading to the suggestion that this macromolecular interaction may contribute to regulating rates of translation. The interaction with mitochondrial mRNAs also produces a dramatic inhibition of IDH catalytic activity that is specifically alleviated by AMP, the primary allosteric activator of IDH. Using mutant forms of IDH with defined catalytic or regulatory kinetic defects, we found that residue changes altering ligand binding in the catalytic site reduce the inhibitory effect of a transcript from the mitochondrial COX2 mRNA. In contrast, residue changes altering binding of allosteric regulators do not prevent inhibition by the COX2 RNA transcript but do prevent alleviation of inhibition by AMP. Results obtained using surface plasmon resonance methods suggest that the mRNA transcript may bind at the active site of IDH. Also, the presence of AMP has little effect on overall affinity but renders the binding of mRNA ineffective in catalytic inhibition of IDH. Finally, by expressing mutant forms of IDH in vivo, we determined that detrimental effects on levels of mitochondrial translation products correlate with a substantial reduction in catalytic activity. However, concomitant loss of IDH and of citrate synthase eliminates these effects, suggesting that any role of IDH in mitochondrial translation is indirect.
Collapse
Affiliation(s)
| | | | - Lee McAlister-Henn
- To whom correspondence should be addressed. Phone: (210) 567−3782. Fax: (210) 567−6595. E-mail:
| |
Collapse
|
10
|
McCammon MT, McAlister-Henn L. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction. Arch Biochem Biophys 2004; 419:222-33. [PMID: 14592466 DOI: 10.1016/j.abb.2003.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To probe the functions of multiple forms of isocitrate dehydrogenase in Saccharomyces cerevisiae, mutants lacking three of the isozymes were constructed and analyzed. Results show that, while the mitochondrial NAD+-dependent enzyme, IDH (composed of Idh1p and Idh2p subunits) is not the major contributor to total isocitrate dehydrogenase activity under any growth condition, loss of IDH produces the most dramatic growth phenotypes. These include reduced growth in the absence of glutamate, as well as an increase in expression of Idp2p (the cytosolic NADP+-dependent enzyme) under some growth conditions. In this study, we have focused on another phenotype associated with loss of IDH, an elevated frequency of petite mutations indicating loss of functional mtDNA. Using mutant forms of IDH with altered active site residues, a correlation was observed between the high frequency of petite mutations and the loss of catalytic activity. Loss of Idp1p (the mitochondrial NADP+-dependent enzyme) and Idp2p contributes to the loss of functional mtDNA, but only in an IDH dysfunctional background. Surprisingly, overexpression of Idp1p, but not of Idp2p, was found to result in an elevated petite frequency independent of the functional state of IDH. This is the first phenotype associated with altered Idp1p. Finally, throughout this study we examined effects of loss of mitochondrial citrate synthase (Cit1p) on isocitrate dehydrogenase mutants, since defects in the CIT1 gene were previously shown to enhance growth of IDH dysfunctional strains on nonfermentable carbon sources. Loss of Cit1p was found to suppress the petite phenotype of strains lacking IDH, suggesting that these phenotypes may be linked.
Collapse
Affiliation(s)
- Mark T McCammon
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
11
|
Current awareness on yeast. Yeast 2002; 19:1277-84. [PMID: 12400546 DOI: 10.1002/yea.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|