1
|
Wang H, Liu X, Tan L. A naked-eye colorimetric molecular "light switch" based on ruthenium(II) polypyridyl complex [Ru(phen) 2ttbd] 2+ as binder and stabilizer for RNA duplex and triplex. Int J Biol Macromol 2022; 215:571-578. [PMID: 35752337 DOI: 10.1016/j.ijbiomac.2022.06.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022]
Abstract
Binding of [Ru(phen)2ttbd]2+ (phen = 1,10-phenanthroline, ttbd = 4-(6-propenylpyrido-[3,2-a]- phenzain-10-yl-benzene-1,2-diamine) to the RNA triplex poly(U-A*U) (herein "-" and "*" refer to the Watson-Crick and Hoogsteen binding, respectively) and the duplex poly(A-U) have been investigated by spectral technology and viscosity method. Analysis of spectral titrations and viscosity experiments as well as melting measurements suggest that [Ru(phen)2ttbd]2+ binds to the studied RNA triplex and duplex through intercalation, while its binding constant toward the triplex is greater than the duplex. Luminescent titrations indicate that [Ru(phen)2ttbd]2+ can act as a molecular "light switch" for the two RNAs and the switch effect can be detected by the naked-eye. Moreover, the "light switch" can be repeatedly cycled off and on by adjusting the pH of the solution, whereas color change in the case of the triplex is more significant compared with the duplex. To our knowledge, [Ru(phen)2ttbd]2+ is the first small molecule capable of serving as a pH-controlled reversible visual molecular "light switch" for both the RNA triplex poly(U-A*U) and duplex poly(A-U). Thermal denaturation experiments suggest that [Ru(phen)2ttbd]2+ can obviously increase the triplex stabilization, while it stabilizing third-strand is more marked in comparison with the template duplex of the triplex, indicating this complex preferentially binds to third-strand. The obtained results may be useful for understanding the binding of Ru(II) polypyridyl complexes to RNAs.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
2
|
Danielsen MB, Wengel J. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J Org Chem 2021; 17:1828-1848. [PMID: 34386102 PMCID: PMC8329367 DOI: 10.3762/bjoc.17.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
3
|
Sayoh I, Rusling DA, Brown T, Fox KR. DNA Structural Changes Induced by Intermolecular Triple Helix Formation. ACS OMEGA 2020; 5:1679-1687. [PMID: 32010842 PMCID: PMC6990630 DOI: 10.1021/acsomega.9b03776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
DNase I footprints of intermolecular DNA triplexes are often accompanied by enhanced cleavage at the 3'-end of the target site at the triplex-duplex junction. We have systematically studied the sequence dependence of this effect by examining oligonucleotide binding to sites flanked by each base in turn. For complexes with a terminal T.AT triplet, the greatest enhancement is seen with ApC, followed by ApG and ApT, with the weakest enhancement at ApA. Similar DNase I enhancements were observed for a triplex with a terminal C+.GC triplet, though with little difference between the different GpN sites. Enhanced reactivity to diethylpyrocarbonate was observed at As that flank the triplex-duplex junction at AAA or AAC but not AAG or AAT. Fluorescence melting experiments demonstrated that the flanking base affected the stability with a 4 °C difference in T m between a flanking C and G. Sequences that produced the strongest enhancement correlated with those having the lower thermal stability. These results are interpreted in terms of oligonucleotide-induced changes in DNA structure and/or flexibility.
Collapse
Affiliation(s)
- Ibrahim Sayoh
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| | - David A. Rusling
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Tom Brown
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Keith R. Fox
- School
of Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
4
|
Ito Y, Masaki Y, Kanamori T, Ohkubo A, Seio K, Sekine M. Synthesis of 5-[3-(2-aminopyrimidin-4-yl)aminopropyn-1-yl]uracil derivative that recognizes Ade-Thy base pairs in double-stranded DNA. Bioorg Med Chem Lett 2016; 26:194-6. [PMID: 26602276 DOI: 10.1016/j.bmcl.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/28/2022]
Abstract
5-[3-(2-Aminopyrimidin-4-yl)aminopropyn-1-yl]uracil (Ura(Pyr)) was designed as a new nucleobase to recognize Ade-Thy base pair in double-stranded DNA. We successfully synthesized the dexoynucleoside phosphoramidite having Ura(Pyr) and incorporated it into triplex forming oligonucleotides (TFOs). Melting temperature analysis revealed that introduction of Ura(Pyr) into TFOs could effectively stabilize their triplex structures without loss of base recognition capabilities.
Collapse
Affiliation(s)
- Yu Ito
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan
| | - Kohji Seio
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan.
| | - Mitsuo Sekine
- Department of Life Science, Tokyo Institute of Technology, 4259, Nagatsuta, Yokohama 226-8501, Japan.
| |
Collapse
|
5
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Shrestha AR, Kotobuki Y, Hari Y, Obika S. Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity. Chem Commun (Camb) 2013; 50:575-7. [PMID: 24270219 DOI: 10.1039/c3cc46017g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel 2',4'-BNA/LNA analog bridged by guanidine, termed as guanidine bridged nucleic acid (GuNA), was synthesized and incorporated into oligonucleotides. Thermal stabilities and nuclease resistance of GuNA-modified oligonucleotides were investigated and compared with those of 2',4'-BNA/LNA and natural DNA oligonucleotides. GuNA exhibited interestingly high binding affinity towards complementary ssDNA than 2',4'-BNA/LNA.
Collapse
Affiliation(s)
- Ajaya R Shrestha
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
7
|
Sau SP, Kumar P, Sharma PK, Hrdlicka PJ. Fluorescent intercalator displacement replacement (FIDR) assay: determination of relative thermodynamic and kinetic parameters in triplex formation--a case study using triplex-forming LNAs. Nucleic Acids Res 2012; 40:e162. [PMID: 22855561 PMCID: PMC3505983 DOI: 10.1093/nar/gks729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson-Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine.
Collapse
Affiliation(s)
- Sujay P Sau
- Department of Chemistry, University of Idaho, PO Box 442343, Moscow, ID 83844-2343, USA
| | | | | | | |
Collapse
|
8
|
Hari Y, Obika S, Imanishi T. Towards the Sequence-Selective Recognition of Double-Stranded DNA Containing Pyrimidine-Purine Interruptions by Triplex-Forming Oligonucleotides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101821] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Cardew AS, Brown T, Fox KR. Secondary binding sites for heavily modified triplex forming oligonucleotides. Nucleic Acids Res 2011; 40:3753-62. [PMID: 22180535 PMCID: PMC3333850 DOI: 10.1093/nar/gkr1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In order to enhance DNA triple helix stability synthetic oligonucleotides have been developed that bear amino groups on the sugar or base. One of the most effective of these is bis-amino-U (B), which possesses 5-propargylamino and 2′-aminoethoxy modifications. Inclusion of this modified nucleotide not only greatly enhances triplex stability, but also increases the affinity for related sequences. We have used a restriction enzyme protection, selection and amplification assay (REPSA) to isolate sequences that are bound by the heavily modified 9-mer triplex-forming oligonucleotide B6CBT. The isolated sequences contain An tracts (n = 6), suggesting that the 5′-end of this TFO was responsible for successful triplex formation. DNase I footprinting with these sequences confirmed triple helix formation at these secondary targets and demonstrated no interaction with similar oligonucleotides containing T or 5-propargylamino-dU.
Collapse
Affiliation(s)
- Antonia S Cardew
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
10
|
Sinha R, Saha I, Kumar GS. Protoberberine Alkaloids Berberine, Palmatine, and Coralyne Binding to Poly(dT)⋅(Poly(dA)⋅Poly(dT)) Triplex: Comparative Structural Aspects and Energetics Profiles of the Interaction. Chem Biodivers 2011. [DOI: 10.1002/cbdv.201000182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Abstract
Triple-helical nucleic acids are formed by binding an oligonucleotide within the major groove of duplex DNA. These complexes offer the possibility of designing oligonucleotides which bind to duplex DNA with considerable sequence specificity. However, triple-helix formation with natural nucleotides is limited by (i) the requirement for low pH, (ii) the requirement for homopurine target sequences, and (iii) their relatively low affinity. We have prepared modified oligonucleotides to overcome these limitations, including the addition of positive charges to the sugar and/or base, the inclusion of cytosine analogues, the development of nucleosides for recognition of pyrimidine interruptions and the attachment of one or more cross-linking groups. By these means we are able to generate triplexes which have high affinities at physiological pH at sequences that contain pyrimidine interruptions.
Collapse
|
12
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
13
|
Malnuit V, Duca M, Benhida R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 2010; 9:326-36. [PMID: 21046036 DOI: 10.1039/c0ob00418a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, divided into three sections, describes the contribution of the chemists' community to the development and application of triple helix strategy by using artificial nucleic acids, particularly for the recognition of DNA sequences incorporating base pair inversions. Firstly, the development of nucleobases that recognise CG inversion is surveyed followed secondly by specific recognition of TA inverted base pair. Finally, we point out in the last section recent perspectives and applications, driven from knowledge in nucleic acids interactions, in the growing field of nanotechnology and supramolecular chemistry at the border area of physics, chemistry and molecular biology.
Collapse
Affiliation(s)
- Vincent Malnuit
- Laboratoire de Chimie des Molécules Bioactives et des Arômes, LCMBA, UMR 6001, Institut de Chimie de Nice, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
14
|
Morvan F, Debart F, Vasseur JJ. From anionic to cationic alpha-anomeric oligodeoxynucleotides. Chem Biodivers 2010; 7:494-535. [PMID: 20232324 DOI: 10.1002/cbdv.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- François Morvan
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1 and Université Montpellier 2, Place Eugène Bataillon, CC1704, FR-34095 Montpellier cedex 5, France
| | | | | |
Collapse
|
15
|
Sinha R, Kumar GS. Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)(*)poly(U). J Phys Chem B 2009; 113:13410-20. [PMID: 19754095 DOI: 10.1021/jp9069515] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of two natural protoberberine alkaloids berberine and palmatine and the synthetic derivative coralyne with the RNA triplex poly(U).poly(A)(*)poly(U) was studied using various biophysical and calorimetric techniques. All the three alkaloids bind noncooperatively to the triplex. The affinity of berberine and palmatine was in the order of 10(5) M(-1), while that of coralyne was one order higher as inferred from spectroscopic studies. The alkaloids stabilized the Hoogsteen base-paired third strand of the triplex without affecting the stability of the duplex. Fluorescence quenching and viscosity studies gave convincing evidence for the partial intercalation of berberine and palmatine and a true intercalative binding of coralyne to the triplex. This was further supported from the significant polarization of the emission spectra of the complex and the energy transfer from the base triplets to the alkaloids. Circular dichroic studies suggested that the conformation of the triplex was perturbed significantly by the binding of the alkaloids, being more by coralyne compared to berberine and palmatine and also evidenced by the generation of strong induced optical activity in the bound coralyne molecules. Isothermal titration calorimetric studies revealed that the binding to the triplex was favored by a predominantly large negative enthalpy change (DeltaH degrees = -5.42 kcal/mol) with small favorable entropy contribution (TDeltaS degrees = 2.02 kcal/mol) in berberine, favored by almost equal negative enthalpy (DeltaH degrees = -3.93 kcal/mol) and entropy changes (TDeltaS degrees = 3.89 kcal/mol) in palmatine and driven by predominant entropy contributions (DeltaH degrees = -1.84 and TDeltaS degrees = 7.44 kcal/mol) in coralyne. These results advance our knowledge on the binding of small molecule isoquinoline alkaloids that are specific binders of RNA structures, particularly triplexes.
Collapse
Affiliation(s)
- Rangana Sinha
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, CSIR, Kolkata 700032, India
| | | |
Collapse
|
16
|
Ben Gaied N, Zhao Z, Gerrard SR, Fox KR, Brown T. Potent triple helix stabilization by 5',3'-modified triplex-forming oligonucleotides. Chembiochem 2009; 10:1839-51. [PMID: 19554592 DOI: 10.1002/cbic.200900232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anthraquinone and pyrene analogues attached to the 3' and/or 5' termini of triplex-forming oligonucleotides (TFOs) by various linkers increased the stability of parallel triple helices. The modifications are simple to synthesize and can be introduced during standard solid-phase oligonucleotide synthesis. Potent triplex stability was achieved by using doubly modified TFOs, which in the most favourable cases gave an increase in melting temperature of 30 degrees C over the unmodified counterparts and maintained their selectivity for the correct target duplex. Such TFOs can produce triplexes with melting temperatures of 40 degrees C at pH 7 even though they do not contain any triplex-stabilizing base analogues. These studies have implications for the design of triplex-forming oligonucleotides for use in biology and nanotechnology.
Collapse
Affiliation(s)
- Nouha Ben Gaied
- School of Chemistry, University of Southampton, Highfield, SO17 1BJ, Southampton, UK
| | | | | | | | | |
Collapse
|
17
|
Sau SP, Kumar P, Anderson BA, Østergaard ME, Deobald L, Paszczynski A, Sharma PK, Hrdlicka PJ. Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA. Chem Commun (Camb) 2009:6756-8. [PMID: 19885469 DOI: 10.1039/b917312a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplex forming oligonucleotides (TFOs) modified with C5-alkynyl functionalized LNA (locked nucleic acid) monomers display extraordinary thermal affinity toward double stranded DNA targets, excellent discrimination of Hoogsteen-mismatched targets, and high stability against 3?-exonucleases.
Collapse
Affiliation(s)
- Sujay P Sau
- Dept. of Chemistry, Univ. of Idaho, ID-83844, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rusling DA, Rachwal PA, Brown T, Fox KR. The stability of triplex DNA is affected by the stability of the underlying duplex. Biophys Chem 2009; 145:105-10. [PMID: 19819611 DOI: 10.1016/j.bpc.2009.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/16/2022]
Abstract
We have studied the formation of DNA triple helices in different sequence contexts and show that, for the most stable triplexes, their apparent stability is affected by the stability of the underlying duplex. For a 14-mer parallel triplex-forming oligonucleotide (generating C(+).GC and T.AT triplets) at pH 5.0 the T(m) is more than 10 degrees C lower with an intermolecular 14-mer duplex target, than it is with an intramolecular duplex, or one which is flanked by 6 GC base pairs at either end. A similar effect is seen with triplex-forming oligonucleotides that contain stabilising analogues, for which the T(m) is higher for an intramolecular than an intermolecular duplex target. These results suggest that the use of simple intermolecular duplex targets may underestimate the triplex stabilisation that is produced by some nucleotide analogues.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|
19
|
Rusling DA, Peng G, Srinivasan N, Fox KR, Brown T. DNA triplex formation with 5-dimethylaminopropargyl deoxyuridine. Nucleic Acids Res 2009; 37:1288-96. [PMID: 19139069 PMCID: PMC2651792 DOI: 10.1093/nar/gkn1060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have prepared triplex-forming oligonucleotides containing the nucleotide analogue 5-dimethylaminopropargyl deoxyuridine (DMAPdU) in place of thymidine and examined their ability to form intermolecular triple helices by thermal melting and DNase I footprinting studies. The results were compared with those for oligonucleotides containing 5-aminopropargyl-dU (APdU), 5-guanidinopropargyl-dU (GPdU) and 5-propynyl dU (PdU). We find that DMAPdU enhances triplex stability relative to T, though slightly less than the other analogues that bear positive charges (T << PdU < DMAPdU < APdU < GPdU). For oligonucleotides that contain multiple substitutions with DMAPdU dispersed residues are more effective than clustered combinations. DMAPdU will be especially useful as a nucleotide analogue as, unlike APdU and GPdU, the base does not require protection during oligonucleotide synthesis and it can therefore be used with other derivatives that require mild deprotection conditions.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | |
Collapse
|
20
|
Li H, Miller PS, Seidman MM. Selectivity and affinity of DNA triplex forming oligonucleotides containing the nucleoside analogues 2'-O-methyl-5-(3-amino-1-propynyl)uridine and 2'-O-methyl-5-propynyluridine. Org Biomol Chem 2008; 6:4212-7. [PMID: 18972052 DOI: 10.1039/b810709b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplex forming oligonucleotides (TFOs) containing the nucleoside analogues 2'-O-methyl-5-propynyluridine (1) and 2'-O-methyl-5-(3-amino-1-propynyl)uridine (2) were synthesized. The affinity and selectivity of triplex formation by these TFOs were studied by gel shift analysis, T(m) value measurement, and association rate assays. The results show that the introduction of 1 and 2 into TFOs can improve the stability of the triplexes under physiological conditions. Optimized distribution of 1 or 2 in the TFOs combined with a cluster of contiguous nucleosides with 2'-aminoethoxy sugars resulted in formation of triplexes with further enhanced stability and improved selectivity.
Collapse
Affiliation(s)
- Hong Li
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
21
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
22
|
Rusling DA, Broughton-Head VJ, Tuck A, Khairallah H, Osborne SD, Brown T, Fox KR. Kinetic studies on the formation of DNA triplexes containing the nucleoside analogue 2'-O-(2-aminoethyl)-5-(3-amino-1-propynyl)uridine. Org Biomol Chem 2007; 6:122-9. [PMID: 18075656 DOI: 10.1039/b713088k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have examined the kinetics of triple helix formation of oligonucleotides that contain the nucleotide analogue 2'-O-(2-aminoethyl)-5-(3-amino-1-propynyl)uridine (bis-amino-U, BAU), which forms very stable base triplets with AT. Triplex stability is determined by both the number and location of the modifications. BAU-containing oligonucleotides generate triplexes with extremely slow kinetics, as evidenced by 14 degrees C hysteresis between annealing and melting profiles even when heated at a rate as slow as 0.2 degrees C min(-1). The association kinetics were measured by analysis of the hysteresis profiles, temperature-jump relaxation and DNase I footprinting. We find that the slow kinetics are largely due to the decreased rate of dissociation; BAU modification has little effect on the association reaction. The sequence selectivity is also due to the slower dissociation of BAU from AT than other base pairs.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Højland T, Kumar S, Babu BR, Umemoto T, Albaek N, Sharma PK, Nielsen P, Wengel J. LNA (locked nucleic acid) and analogs as triplex-forming oligonucleotides. Org Biomol Chem 2007; 5:2375-9. [PMID: 17637956 DOI: 10.1039/b706101c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The triplex-forming abilities of some conformationally restricted nucleotide analogs are disclosed and compared herein. 2'-Amino-LNA monomers proved to be less stabilising to triplexes than LNA monomers when incorporated into a triplex-forming third strand. N2'-functionalisation of 2'-amino-LNA monomers with a glycyl unit induced the formation of exceptionally stable triplexes. Nucleotide analogs containing a C2',C3'-oxymethylene linker (E-type furanose conformation) or a C2',C4'-propylene linker (N-type furanose conformation) had no significant effect on triplex stability proving that conformational restriction per se is insufficient to stabilise triplexes.
Collapse
Affiliation(s)
- Torben Højland
- Nucleic Acid Center, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Boutorine AS, Escudé C. Biophysical Analysis of Triple‐Helix Formation. ACTA ACUST UNITED AC 2007; Chapter 7:Unit 7.12. [DOI: 10.1002/0471142700.nc0712s29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Deglane G, Morvan F, Debart F, Vasseur JJ. 5-Propynylamino alpha-deoxyuridine promotes DNA duplex stabilization of anionic and neutral but not cationic alpha-oligonucleotides. Bioorg Med Chem Lett 2006; 17:951-4. [PMID: 17157020 DOI: 10.1016/j.bmcl.2006.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/14/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Incorporation of 5-propynylamino and 5-propynyl alpha-2'-deoxyuridine into alpha-oligonucleotides (alpha-ON) allows high-affinity targeting of complementary DNA for alpha-ON with anionic and neutral backbone but not for cationic alpha-ON, revealing clues on the role of the amino group of the propynylamino on the formation of DNA duplexes.
Collapse
Affiliation(s)
- Gaëlle Deglane
- LCOBS, UMR 5625 CNRS-UM II, Université Montpellier II, 34095 Montpellier, France
| | | | | | | |
Collapse
|
26
|
Deglane G, Abes S, Michel T, Prévot P, Vives E, Debart F, Barvik I, Lebleu B, Vasseur JJ. Impact of the guanidinium group on hybridization and cellular uptake of cationic oligonucleotides. Chembiochem 2006; 7:684-92. [PMID: 16518865 DOI: 10.1002/cbic.200500433] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The grafting of cationic groups to synthetic oligonucleotides (ONs) in order to reduce the charge repulsion between the negatively charged strands of a duplex or triplex, and consequently to increase a complex's stability, has been extensively studied. Guanidinium groups, which are highly basic and positively charged over a wide pH range, could be an efficient ON modification to enhance their affinity for nucleic acid targets and to improve cellular uptake. A straightforward post-synthesis method to convert amino functions attached to ONs (on sugar, nucleobase or backbone) into guanidinium tethers has been perfected. In comparison to amino groups, such cationic groups anchored to alpha-oligonucleotide phosphoramidate backbones play important roles in duplex stability, particularly with RNA targets. This high affinity could be explained by dual recognition resulting from Watson-Crick or Hoogsteen base pairing combined with cationic/anionic backbone recognition between strands involving H-bond formation and salt bridging. Molecular-dynamics simulations corroborate interactions between the cationic backbones of the alpha-ONs and the anionic backbones of the nucleic acid targets. Moreover, ONs with guanidinium modification increased cellular uptake relative to negatively charged ONs. The cellular localization of these new cationic phosphoramidate ONs is mainly cytoplasmic. The uptake of these ON analogues might occur through endocytosis.
Collapse
Affiliation(s)
- Gaëlle Deglane
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rusling DA, Brown T, Fox KR. DNA triple-helix formation at target sites containing duplex mismatches. Biophys Chem 2006; 123:134-40. [PMID: 16735088 DOI: 10.1016/j.bpc.2006.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 11/29/2022]
Abstract
We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn). Similar experiments were also performed with N=bis-amino-U (BAU) (for stable recognition of AT base pairs) and N=S (for recognition of TA inversions). We find that the introduction of a duplex mismatch destabilises the C+.GZ, T.AZ and G.TZ triplets. A similar effect is seen with BAU.AZ triplets. In contrast, other base combinations, based on non-standard triplets such as C.AZ, T.TZ, G.CZ and A.CZ are stabilised by the presence of a duplex mismatch. In each case S binds to sites containing duplex mismatches better than the corresponding Watson-Crick base pairs.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
28
|
Rusling DA, Le Strat L, Powers VEC, Broughton-Head VJ, Booth J, Lack O, Brown T, Fox KR. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH. FEBS Lett 2005; 579:6616-20. [PMID: 16293248 DOI: 10.1016/j.febslet.2005.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/12/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
We have used DNase I footprinting to examine DNA triple helix formation at a 12 base pair oligopurine.oligopyrimidine sequence, using oligonucleotides that contain combinations of 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) and 3-methyl-2-aminopyridine (MeP) in place of T and C, respectively. This combination acts cooperatively to enable high affinity triple helix formation at physiological pH. The affinity depends on the number of substitutions and their arrangement; oligonucleotides in which these analogues are evenly distributed throughout the third strand bind much better than those in which they are clustered together.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Michel T, Debart F, Heitz F, Vasseur JJ. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Chembiochem 2005; 6:1254-62. [PMID: 15912553 DOI: 10.1002/cbic.200400436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of cationic phosphoramidate pyrimidine alpha-oligonucleotides (ONs) to form triplexes with DNA duplexes was investigated by UV melting experiments, circular dichroism spectroscopy and gel mobility shift experiments. Replacement of the phosphodiester linkages in alpha-ONs with positively charged phosphoramidate linkages results in more efficient triplex formation, the triplex stability increasing with the number of positive charges. At a neutral pH and in the absence of magnesium ions, it was found that a fully cationic phosphoramidate alpha-TFO (triplex-forming oligonucleotide) forms a highly stable triplex that melts at a higher temperature than the duplex target. No hysteresis between the annealing and melting curves was noticed; this indicates fast association. Moreover, the recognition of a DNA duplex with a cationic alpha-TFO through Hoogsteen base pairing is highly sequence-specific. To the best of our knowledge, this is the first report of stable triplexes in the pyrimidine motif formed by cationic alpha-oligonucleotides and duplex targets.
Collapse
Affiliation(s)
- Thibaut Michel
- LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
30
|
Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR. Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 2005; 33:3025-32. [PMID: 15911633 PMCID: PMC1137030 DOI: 10.1093/nar/gki625] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 04/29/2005] [Accepted: 05/12/2005] [Indexed: 11/29/2022] Open
Abstract
We have achieved recognition of all 4 bp by triple helix formation at physiological pH, using triplex-forming oligonucleotides that contain four different synthetic nucleotides. BAU [2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine] recognizes AT base pairs with high affinity, (Me)P (3-methyl-2 aminopyridine) binds to GC at higher pHs than cytosine, while (A)PP (6-(3-aminopropyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one) and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-acetamide)] bind to CG and TA base pairs, respectively. Fluorescence melting and DNase I footprinting demonstrate successful triplex formation at a 19mer oligopurine sequence that contains two CG and two TA interruptions. The complexes are pH dependent, but are still stable at pH 7.0. BAU, (Me)P and (A)PP retain considerable selectivity, and single base pair changes opposite these residues cause a large reduction in affinity. In contrast, S is less selective and tolerates CG pairs as well as TA.
Collapse
Affiliation(s)
- David A. Rusling
- School of Biological Sciences, University of SouthamptonBassett Crescent East, Southampton SO16 7PX, UK
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Vicki E. C. Powers
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Rohan T. Ranasinghe
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Yang Wang
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Sadie D. Osborne
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Keith R. Fox
- To whom correspondence should be addressed. Tel: +44 23 8059 4374; Fax: +44 23 8059 4459;
| |
Collapse
|
31
|
Mayer A, Häberli A, Leumann CJ. Synthesis and triplex forming properties of pyrrolidino pseudoisocytidine containing oligodeoxynucleotides. Org Biomol Chem 2005; 3:1653-8. [PMID: 15858646 DOI: 10.1039/b502799c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pyrrolidino pseudo-C-nucleosides are isosteres of natural deoxynucleosides which are protonated at the pyrrolidino ring nitrogen under physiological conditions. As constituents of a triplex forming oligodeoxynucleotide (TFO), the positive charge is expected to stabilise DNA triple helices via electrostatic interactions with the phosphodiester backbone of the target DNA. We describe the synthesis of the pyrrolidino isocytidine pseudonucleoside and the corresponding phosphoramidite building block and its incorporation into TFOs. Such TFOs show substantially increased DNA affinity compared to unmodified oligodeoxynucleotides. The increase in affinity is shown to be due to the positive charge at the pyrrolidino subunit.
Collapse
Affiliation(s)
- Alain Mayer
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | | | | |
Collapse
|
32
|
Brazier JA, Shibata T, Townsley J, Taylor BF, Frary E, Williams NH, Williams DM. Amino-functionalized DNA: the properties of C5-amino-alkyl substituted 2'-deoxyuridines and their application in DNA triplex formation. Nucleic Acids Res 2005; 33:1362-71. [PMID: 15745996 PMCID: PMC552953 DOI: 10.1093/nar/gki254] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The incorporation of C5-amino-modified 2′-deoxyuridine analogues into DNA have found application in nucleic acid labelling, the stabilization of nucleic acid structures, functionalization of nucleic acid aptamers and catalysts, and the investigation of sequence-specific DNA bending. In this study, we describe the physicochemical properties of four different C5-amino-modified 2′-deoxyuridines in which the amino group is tethered to the base via a 3-carbon alkyl, Z- or E-alkenyl or alkynyl linker. Conformational parameters of the nucleosides and their pKa values were deduced using 1H NMR. All of them display the expected anti-conformation of the nucleoside with 2′-endo sugar puckers for the deoxyribose ring. A preference for the cisoid conformation for the Z-alkenyl analogue is found, while the E-alkenyl analogue exists exclusively as its transoid conformation. The pKa values range from 10.0 for the analogue with an aliphatic propyl linker to 8.5 for the propargylamino analogue. The analogues have been used for the synthesis of triple-helix forming oligonucleotides (TFOs) in which they replace thymidine in the natural sequence. Oligonucleotides containing the propargylamino analogue display the highest stability especially at low pH, while those containing analogues with propyl and especially Z-alkenyl linkers are destabilized to a great extent. TFOs containing the analogue with the E-alkenyl linker have stability similar to the unmodified structures. The chemical synthesis of TFOs containing the analogue, 5-(3-hydroxyprop-1-ynyl)-2′-deoxyuridine that possesses a neutral but polar side chain show a remarkable stability, which is higher than that of all TFOs containing the alkylamino or alkenylamino analogues and only slightly lower than that of TFOs containing the propargylamino analogue. Both the hydroxyl and propargylamino substitutions impart enhanced triple-helix stability relative to the analogous sequences containing C5-propynyl-2′-deoxyuridine. Furthermore, a similar dependence of stability on pH is found between TFOs containing the hydroxypropynyl modifications and those containing the propargylamino side chains. This suggests that the major factor responsible for stabilizing such triple helices is due to the presence of the alkyne with an attached electronegative group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David M. Williams
- To whom correspondence should be addressed. Tel: +44 114 222 9502; Fax: +44 114 222 9346;
| |
Collapse
|
33
|
Osborne SD, Powers VEC, Rusling DA, Lack O, Fox KR, Brown T. Selectivity and affinity of triplex-forming oligonucleotides containing 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine for recognizing AT base pairs in duplex DNA. Nucleic Acids Res 2004; 32:4439-47. [PMID: 15317869 PMCID: PMC516051 DOI: 10.1093/nar/gkh776] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used DNase I footprinting, fluorescence and ultraviolet (UV) melting experiments and circular dichroism to demonstrate that, in the parallel triplex binding motif, 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) has very high affinity for AT relative to all other Watson-Crick base pairs in DNA. Complexes containing two or more substitutions with this nucleotide analogue are stable at pH 7.0, even though they contain several C.GC base triplets. These modified triplex-forming oligonucleotides retain exquisite sequence specificity, with enhanced discrimination against YR base pairs (especially CG). These properties make BAU a useful base analogue for the sequence-specific creation of stable triple helices at pH 7.0.
Collapse
Affiliation(s)
- Sadie D Osborne
- School of Chemistry, University of Southampton, Highfield, Southampton SC17 1BJ, UK
| | | | | | | | | | | |
Collapse
|
34
|
Olsen PA, McKeen C, Krauss S. Branched oligonucleotides induce in vivo gene conversion of a mutated EGFP reporter. Gene Ther 2003; 10:1830-40. [PMID: 12960973 DOI: 10.1038/sj.gt.3302079] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Branched oligonucleotides (b-oligonucleotides) based on a novel branching monomer were used for site-specific sequence alteration in vivo. With a stable integrated mutated enhanced green fluorescent protein (EGFP) template in Chinese hamster ovary cells, up to 0.1% EGFP-positive cells were counted after transfection with b-oligonucleotides. The presence of EGFP protein in converted cells was demonstrated by anti-EGFP immunocytochemistry. Genomic sequencing of converted cells showed in 40% of the analysed clones the corrected wild-type codon, while 9.3% of the sequences showed a corrected wild-type sequence and an additional collateral mutation. Despite the stable corrected genomic locus, converted cells entered selective apoptosis after 3-6 days. The cell line Irs-1 that is deficient in the homologous recombination pathway showed a reduced frequency of b-oligonucleotide-induced site-specific sequence conversion. The reduced conversion rates in the mutant cell line could be partly rescued by complementation with XRCC2 cDNA.
Collapse
Affiliation(s)
- P A Olsen
- Section for Genetic Therapy, Institute of Microbiology, The National Hospital, Oslo, Norway
| | | | | |
Collapse
|
35
|
Das S, Kumar GS, Ray A, Maiti M. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J Biomol Struct Dyn 2003; 20:703-14. [PMID: 12643773 DOI: 10.1080/07391102.2003.10506887] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A comparative study on the interaction of sanguinarine and berberine with DNA and RNA triplexes and their parent duplexes was performed, by using a combination of spectrophotometric, UV thermal melting, circular dichroic and thermodynamic techniques. Formation of the DNA and RNA triplexes was confirmed from UV-melting and circular dichroic measurements. The interaction process was characterized by increase of thermal melting temperature, perturbation in circular dichroic spectrum and the typical hypochromic and bathochromic effects in the absorption spectrum. Scatchard analysis indicated that both the alkaloids bound to the triplex and duplex structures in a non-cooperative manner and the binding was stronger to triplexes than to parent duplexes. Thermal melting studies further indicated that sanguinarine stabilized the Hoogsteen base paired third strand of both DNA and RNA triplexes more tightly compared to their Watson-Crick strands, while berberine stabilized the third strand only without affecting the Watson-Crick strand. However, sanguinarine stabilized the parent duplexes while no stabilization was observed with berberine under identical conditions. Circular dichroic studies were also consistent with the observation that perturbations of DNA and RNA triplexes were more compared to their parent duplexes in presence of the alkaloids. Thermodynamic data revealed that binding of sanguinarine and berberine to triplexes (T.AxT and U.AxU) and duplexes (A.T and A.U) showed negative enthalpy changes and positive entropy changes but that of sanguinarine to C.GxC(+) triplex and G.C duplex exhibited negative enthalpy and negative entropy changes. Taken together, these results suggest that both sanguinarine and berberine can bind and stabilize the DNA and RNA triplexes more strongly than their respective parent duplexes.
Collapse
Affiliation(s)
- Suman Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
36
|
Häberli A, Leumann CJ. DNA binding properties of oligodeoxynucleotides containing pyrrolidino C-nucleosides. Org Lett 2002; 4:3275-8. [PMID: 12227767 DOI: 10.1021/ol026537u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have incorporated pyrrolidino-C-nucleosides (pyrrolidino-pseudonucleosides) containing the base uracil and N-1-methyl uracil into oligodeoxynucleotides and compared their thermal duplex and triplex stabilities with unmodified or pseudouridine-containing oligodeoxynucleotides. We find relative destabilizations of triplex formation by ca. -13 to -1 degrees C per modification (relative to thymidine) in a strongly sequence dependent mode. Duplex formation is less destabilizing and more homogeneous with -4 to -2 degrees C per modification.
Collapse
Affiliation(s)
- Adrian Häberli
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Switzerland
| | | |
Collapse
|