1
|
Proctor NK, Ertan-Bolelli T, Bolelli K, Taylor EW, Chiu NHL, Bowen JP. Towards a Better Understanding of Computational Models for Predicting DNA Methylation Effects at the Molecular Level. Curr Top Med Chem 2021; 20:901-909. [PMID: 32101127 DOI: 10.2174/1568026620666200226110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Human DNA is a very sensitive macromolecule and slight changes in the structure of DNA can have disastrous effects on the organism. When nucleotides are modified, or changed, the resulting DNA sequence can lose its information, if it is part of a gene, or it can become a problem for replication and repair. Human cells can regulate themselves by using a process known as DNA methylation. This methylation is vitally important in cell differentiation and expression of genes. When the methylation is uncontrolled, however, or does not occur in the right place, serious pathophysiological consequences may result. Excess methylation causes changes in the conformation of the DNA double helix. The secondary structure of DNA is highly dependent upon the sequence. Therefore, if the sequence changes slightly the secondary structure can change as well. These slight changes will then cause the doublestranded DNA to be more open and available in some places where large adductions can come in and react with the DNA base pairs. Computer models have been used to simulate a variety of biological processes including protein function and binding, and there is a growing body of evidence that in silico methods can shed light on DNA methylation. Understanding the anomeric effect that contributes to the structural and conformational flexibility of furanose rings through a combination of quantum mechanical and experimental studies is critical for successful molecular dynamic simulations.
Collapse
Affiliation(s)
- Nathanael K Proctor
- Department of Chemistry & Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, United States
| | - Tugba Ertan-Bolelli
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, TR 06560, Turkey
| | - Kayhan Bolelli
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, TR 06560, Turkey.,LumiLabs LLC, Ulus, Ankara, TR 06050, Turkey
| | - Ethan W Taylor
- Department of Chemistry & Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, United States
| | - Norman H L Chiu
- Department of Chemistry & Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, United States
| | - J Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
2
|
Kung RW, Sharma P, Wetmore SD. Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine. J Chem Inf Model 2018; 58:1415-1425. [PMID: 29923712 DOI: 10.1021/acs.jcim.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryan W. Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
3
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Bose A, Millsap AD, DeLeon A, Rizzo C, Basu AK. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1. Chem Res Toxicol 2016; 29:1549-59. [PMID: 27490094 PMCID: PMC5031085 DOI: 10.1021/acs.chemrestox.6b00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 12/18/2022]
Abstract
Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences between the in vitro experiments using purified DNA polymerases, and the cellular results may arise from several factors including the crucial roles played by the accessory proteins in TLS.
Collapse
Affiliation(s)
- Arindam Bose
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Amy D. Millsap
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Arnie DeLeon
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carmelo
J. Rizzo
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashis K. Basu
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Borosky GL. Mutagenicity of heteroaromatic amines: Computational study on the influence of methyl substituents. J Mol Graph Model 2016; 69:92-102. [PMID: 27592197 DOI: 10.1016/j.jmgm.2016.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/18/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
Quantum mechanical calculations were performed to elucidate the factors determining the variations in mutagenic activity within groups of isomeric heteroaromatic amines that differ in the position of methyl substituents. Formation energies for noncovalent complexes and covalent DNA adducts were evaluated by means of high level quantum chemical methods. According to the computational results in this work, covalent adduct stability is proposed to influence the relative mutagenicities of structurally related heterocyclic amines. The stability of covalent C8-dG DNA adducts was found to be mainly determined by π-stacking interactions between the fused ring system of the heteroaromatic amines and the flanking nucleobases. Relative mutagenicity of amines of very related structure is proposed to be regulated by both nitrenium ion and covalent adduct stabilities.
Collapse
Affiliation(s)
- Gabriela L Borosky
- INFIQC, CONICET and Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
6
|
Manderville RA, Wetmore SD. C-Linked 8-aryl guanine nucleobase adducts: biological outcomes and utility as fluorescent probes. Chem Sci 2016; 7:3482-3493. [PMID: 29997840 PMCID: PMC6007177 DOI: 10.1039/c6sc00053c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
Aryl radical species derived from enzymatic transformations of aromatic mutagens preferentially react at the 8-site of the guanine (G) nucleobase to afford carbon-linked 8arylG adducts. The resulting lesions possess altered biophysical and genetic coding properties compared to the precursor G nucleoside in B-form DNA. Unlike other adducts, these lesions also possess useful fluorescent properties, since direct attachment of the 8aryl ring extends the purine π-system to afford G mimics with red-shifted excitation maxima and emission that can be sensitive to the microenvironment of the 8arylG base within nucleic acid structures. In B-form DNA, 8arylG adducts are disruptive to duplex formation because they prefer to adopt the syn-conformation about the bond connecting the nucleobase to the deoxyribose backbone, which perturbs Watson-Crick (WC) H-bonding with the opposing cytosine (C). Thus, in a B-form duplex, the emissive properties of 8arylG adducts can be employed as a tool to provide insight into adduct conformation, which can be related to their biological outcomes. However, since Gs preferentially adopt the syn-conformation in left-handed Z-DNA and antiparallel G-quadruplex (GQ) structures, 8arylG lesions can be inserted into syn-G positions without disrupting H-bonding interactions. In fact, 8arylG lesions can serve as ideal fluorescent probes in an antiparallel GQ because their emission is sensitive to GQ folding. This perspective outlines recent developments in the biological implications of 8arylG formation together with their utility as fluorescent G analogs for use in DNA-based diagnostic systems.
Collapse
Affiliation(s)
- Richard A Manderville
- Department of Chemistry & Toxicology , University of Guelph , Guelph , ON , Canada N1G 2W1 .
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry , University of Lethbridge , Lethbridge , AB , Canada T1K 3M4 .
| |
Collapse
|
7
|
Xu L, Cho BP. Conformational Insights into the Mechanism of Acetylaminofluorene-dG-Induced Frameshift Mutations in the NarI Mutational Hotspot. Chem Res Toxicol 2016; 29:213-26. [PMID: 26733364 DOI: 10.1021/acs.chemrestox.5b00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Frameshift mutagenesis encompasses the gain or loss of DNA base pairs, resulting in altered genetic outcomes. The NarI restriction site sequence 5'-G1G2CG3CX-3' in Escherichia coli is a well-known mutational hotspot, in which lesioning of acetylaminofluorene (AAF) at G3* induces a greater -2 deletion frequency than that at other guanine sites. Its mutational efficiency is modulated by the nature of the nucleotide in the X position (C ∼ A > G ≫ T). Here, we conducted a series of polymerase-free solution experiments that examine the conformational and thermodynamic basis underlying the propensity of adducted G3 to form a slipped mutagenic intermediate (SMI) and its sequence dependence during translesion synthesis (TLS). Instability of the AAF-dG3:dC pair at the replication fork promoted slippage to form a G*C bulge-out SMI structure, consisting of S- ("lesion stacked") and B-SMI ("lesion exposed") conformations, with conformational rigidity increasing as a function of primer elongation. We found greater stability of the S- compared to the B-SMI conformer throughout TLS. The dependence of their population ratios was determined by the 3'-next flanking base X at fully elongated bulge structures, with 59% B/41% S and 86% B/14% S for the dC and dT series, respectively. These results indicate the importance of direct interactions of the hydrophobic AAF lesion with the 3'-next flanking base pair and its stacking fit within the -2 bulge structure. A detailed conformational understanding of the SMI structures and their sequence dependence may provide a useful model for DNA polymerase complexes.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
Brenlla A, Rueda D, Romano LJ. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Nucleic Acids Res 2015; 43:9918-27. [PMID: 26481355 PMCID: PMC4787768 DOI: 10.1093/nar/gkv1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.
Collapse
Affiliation(s)
- Alfonso Brenlla
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA Department of Medicine, Section of Virology, Imperial College London, London, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Louis J Romano
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Bose A, Pande P, Jasti VP, Millsap AD, Hawkins EK, Rizzo CJ, Basu AK. DNA polymerases κ and ζ cooperatively perform mutagenic translesion synthesis of the C8-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells. Nucleic Acids Res 2015. [PMID: 26220181 PMCID: PMC4787813 DOI: 10.1093/nar/gkv750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The roles of translesion synthesis (TLS) DNA polymerases in bypassing the C8-2'-deoxyguanosine adduct (dG-C8-IQ) formed by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a highly mutagenic and carcinogenic heterocyclic amine found in cooked meats, were investigated. Three plasmid vectors containing the dG-C8-IQ adduct at the G1-, G2- or G3-positions of the NarI site (5'-G1G2CG3CC-3') were replicated in HEK293T cells. Fifty percent of the progeny from the G3 construct were mutants, largely G→T, compared to 18% and 24% from the G1 and G2 constructs, respectively. Mutation frequency (MF) of dG-C8-IQ was reduced by 38-67% upon siRNA knockdown of pol κ, whereas it was increased by 10-24% in pol η knockdown cells. When pol κ and pol ζ were simultaneously knocked down, MF of the G1 and G3 constructs was reduced from 18% and 50%, respectively, to <3%, whereas it was reduced from 24% to <1% in the G2 construct. In vitro TLS using yeast pol ζ showed that it can extend G3*:A pair more efficiently than G3*:C pair, but it is inefficient at nucleotide incorporation opposite dG-C8-IQ. We conclude that pol κ and pol ζ cooperatively carry out the majority of the error-prone TLS of dG-C8-IQ, whereas pol η is involved primarily in its error-free bypass.
Collapse
Affiliation(s)
- Arindam Bose
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Vijay P Jasti
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Amy D Millsap
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward K Hawkins
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Carmelo J Rizzo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Kathuria P, Sharma P, Abendong MN, Wetmore SD. Conformational Preferences of DNA following Damage by Aristolochic Acids: Structural and Energetic Insights into the Different Mutagenic Potential of the ALI and ALII-N6-dA Adducts. Biochemistry 2015; 54:2414-28. [PMID: 25761009 DOI: 10.1021/bi501484m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Minette N. Abendong
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
11
|
Sandineni A, Lin B, MacKerell AD, Cho BP. Structure and thermodynamic insights on acetylaminofluorene-modified deletion DNA duplexes as models for frameshift mutagenesis. Chem Res Toxicol 2013; 26:937-51. [PMID: 23688347 DOI: 10.1021/tx400116n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Acetylaminofluorene (AAF) is a prototype arylamine carcinogen that forms C8-substituted dG-AAF and dG-AF as the major DNA lesions. The bulky N-acetylated dG-AAF lesion can induce various frameshift mutations depending on the base sequence around the lesion. We hypothesized that the thermodynamic stability of bulged-out slipped mutagenic intermediates (SMIs) is directly related to deletion mutations. The objective of the present study was to probe the structural/conformational basis of various dG-AAF-induced SMIs formed during translesion synthesis. We performed spectroscopic, thermodynamic, and molecular dynamics studies of several AAF-modified 16-mer model DNA duplexes, including fully paired and -1, -2, and -3 deletion duplexes of the 5'-CTCTCGATG[FAAF]CCATCAC-3' sequence and an additional -1 deletion duplex of the 5'-CTCTCGGCG[FAAF]CCATCAC-3' NarI sequence. Modified deletion duplexes existed in a mixture of external B and stacked S conformers, with the population of the S conformer being 'GC'-1 (73%) > 'AT'-1 (72%) > full (60%) > -2 (55%) > -3 (37%). Thermodynamic stability was in the order of -1 deletion > -2 deletion > fully paired > -3 deletion duplexes. These results indicate that the stacked S-type conformer of SMIs is thermodynamically more stable than the conformationally flexible external B conformer. Results from the molecular dynamics simulations indicate that perturbation of base stacking dominates the relative stability along with contributions from bending, duplex dynamics, and solvation effects that are important in specific cases. Taken together, these results support a hypothesis that the conformational and thermodynamic stabilities of the SMIs are critical determinants for the induction of frameshift mutations.
Collapse
Affiliation(s)
- Anusha Sandineni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
12
|
Kawanishi M, Kanno T, Nishida H, Takamura-Enya T, Yagi T. Translesion DNA synthesis across various DNA adducts produced by 3-nitrobenzanthrone in Escherichia coli. Mutat Res 2013; 754:32-8. [PMID: 23583687 DOI: 10.1016/j.mrgentox.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/23/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022]
Abstract
To analyze translesion DNA synthesis (TLS) across lesions derived from the air pollutant 3-nitrobenzanthrone in Escherichia coli, we constructed site-specifically modified plasmids containing single molecule adducts derived from 3-nitrobenzanthrone. For this experiment, we adopted a modified version of the method developed by Fuchs et al. [29]. Each plasmid contained one of the following lesions in its LacZ' gene: N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-N-ABA); 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone (dG-N(2)-C2-ABA); 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-C2-ABA); 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone (dA-N(6)-C2-ABA); N-(2'-deoxyguanosin-8-yl)-3-acetylaminobenzanthrone (dG-C8-N-AcABA); or 2-(2'-deoxyguanosin-8-yl)-3-acetylaminobenzanthrone (dG-C8-C2-AcABA). All of the adducts inhibited DNA synthesis by replicative DNA polymerases in E. coli; however, the extent of the inhibition varied among the adducts. All five dG-adducts strongly blocked replication by replicative DNA polymerases; however, the dA-adduct only weakly blocked DNA replication. The induction of the SOS response increased the frequency of TLS, which was higher for the dG-C8-C2-ABA, dG-C8-N-AcABA and dG-C8-C2-AcABA adducts than for the other adducts. In our previous study, dG-C8-N-ABA blocked DNA replication more strongly and induced mutations more frequently than dG-N(2)-C2-ABA in human cells. In contrast, in E. coli the frequency of TLS over dG-N(2)-C2-ABA was markedly reduced, even under the SOS(+) conditions, and dG-N(2)-C2-ABA induced G to T mutations. All of the other adducts were bypassed in a less mutagenic manner. In addition, using E. coli strains that lacked particular DNA polymerases we found that DNA polymerase V was responsible for TLS over dG-C8-N-AcABA and dG-C8-C2-AcABA adducts.
Collapse
Affiliation(s)
- Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570, Japan
| | | | | | | | | |
Collapse
|
13
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
14
|
Mu H, Kropachev K, Wang L, Zhang L, Kolbanovskiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Res 2012; 40:9675-90. [PMID: 22904073 PMCID: PMC3479214 DOI: 10.1093/nar/gks788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide excision repair (NER) efficiencies of DNA lesions can vary by orders of magnitude, for reasons that remain unclear. An example is the pair of N-(2′-deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) adducts that differ by a single acetyl group. The NER efficiencies in human HeLa cell extracts of these lesions are significantly different when placed at G1, G2 or G3 in the duplex sequence (5′-CTCG1G2CG3CCATC-3′) containing the NarI mutational hot spot. Furthermore, the dG-C8-AAF adduct is a better substrate of NER than dG-C8-AF in all three NarI sequence contexts. The conformations of each of these adducts were investigated by Molecular dynamics (MD) simulation methods. In the base-displaced conformational family, the greater repair susceptibility of dG-C8-AAF in all sequences stems from steric hindrance effects of the acetyl group which significantly diminish the adduct-base stabilizing van der Waals stacking interactions relative to the dG-C8-AF case. Base sequence context effects for each adduct are caused by differences in helix untwisting and minor groove opening that are derived from the differences in stacking patterns. Overall, the greater NER efficiencies are correlated with greater extents of base sequence-dependent local untwisting and minor groove opening together with weaker stacking interactions.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jain V, Hilton B, Patnaik S, Zou Y, Chiarelli MP, Cho BP. Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence. Nucleic Acids Res 2012; 40:3939-51. [PMID: 22241773 PMCID: PMC3351159 DOI: 10.1093/nar/gkr1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G(1), G(2) or G(3) of NarI sequence (5'-CCG(1)G(2)CG(3)CC-3'). Our (19)F-NMR/ICD results showed that FAAF at G(1) and G(3) prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G(2). We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G(3) and -G(1) duplexes incised more efficiently than the B-type G(2) duplex (G(3)∼G(1)> G(2)). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G(2)∼G(1)> G(3), a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
16
|
Omumi A, Millen AL, Wetmore SD, Manderville RA. Fluorescent properties and conformational preferences of C-linked phenolic-DNA adducts. Chem Res Toxicol 2011; 24:1694-709. [PMID: 21905681 DOI: 10.1021/tx200247f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenolic toxins and mutagenic diazoquinones generate C-linked adducts at the C8 site of 2'-deoxyguanosine (dG) through the intermediacy of radical species. We have previously reported the site-specific incorporation of these adducts into oligonucleotides using a postsynthetic palladium-catalyzed cross-coupling strategy [Omumi (2011 ) J. Am. Chem. Soc. 133 , 42 - 50 ]. We report here the structural impact of these lesions within two decanucleotide sequences containing either 5'- and 3'-flanking pyrimidines or purines. In the complementary strands, the base opposite (N) the C-linked adduct was varied to determine the possibility of mismatch stabilization by the modified nucleobases. The resulting adducted duplex structures were characterized using UV thermal denaturation studies, circular dichroism, fluorescence spectroscopy, and molecular dynamics (MD) simulations. The experimental data showed the C-linked adducts to destabilize the duplex when base paired with its normal partner C but to increase duplex stability within a G:G mismatch. The stabilization within the G:G mismatch was sequence dependent, with flanking purine bases playing a key role in the stabilizing influence of the adduct. MD simulations showed no large structural changes to the B form double helix, regardless of the (anti/syn) adduct preference. Consideration of H-bonding and stacking interactions derived from the MD simulations together with the thermal melting data and changes in fluorescent emission of the adducts upon hybridization to the complementary strands implied that the C-linked phenolic adducts preferentially adopt the syn-conformation within both duplexes regardless of the opposite base N. Given that biological outcome in terms of mutagenicity appears to be strongly correlated to the conformational preference of the corresponding N-linked C8-dG adducts, the potential biological implications of phenolic C-linked adducts are discussed.
Collapse
Affiliation(s)
- Alireza Omumi
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Christov PP, Chowdhury G, Garmendia CA, Wang F, Stover JS, Elmquist CE, Kozekova A, Angel KC, Turesky RJ, Stone MP, Guengerich FP, Rizzo CJ. The C8-2'-deoxyguanosine adduct of 2-amino-3-methylimidazo[1,2-d]naphthalene, a carbocyclic analogue of the potent mutagen 2-amino-3-methylimidazo[4,5-f]quinoline, is a block to replication in vitro. Chem Res Toxicol 2010; 23:1076-88. [PMID: 20377178 DOI: 10.1021/tx100053n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
2-Amino-3-methylimidazo[1,2-d]naphthalene (cIQ) is a carbocyclic analogue of the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in which a naphthalene ring system replaces the quinoline unit of IQ. The activity of cIQ in Ames Salmonella typhimurium tester strain TA98 is known to be 4-5 orders of magnitude lower than IQ. cIQ undergoes efficient bioactivation with rat liver microsomes. The C8-dGuo adduct was formed when calf thymus DNA was treated with the N-hydroxy-cIQ metabolite and either acetic anhydride or extracts from cells that overexpress N-acetyl transferase (NAT). These studies indicate that bioactivation, the stability of the N-hydroxylamine ester, and the reactivity of the nitrenium ion with DNA of cIQ are similar to IQ and that none of these factors account for the differences in mutagenic potency of these analogues in Ames assays. Oligonucleotides were synthesized that contain the C8-dGuo adduct of cIQ in the frameshift-prone CG-dinucleotide repeat unit of the NarI recognition sequence. We have examined the in vitro translesion synthesis of this adduct and have found it to be a strong replication block to Escherichia coli DNA polymerase I, Klenow fragment exo(-) (Kf(-)), E. coli DNA polymerase II exo(-) (pol II(-)), and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Previous studies by Fuchs and co-workers identified E. coli pol II as the polymerase responsible for two-base deletions of the C8-dGuo adduct of N-acetyl-2-aminofluorene in the NarI sequence. Our observation that pol II is strongly inhibited by the C8-dGuo adduct of cIQ suggests that one of the other SOS inducible polymerases (E. coli pol IV or pol V) is required for its bypass, and this accounts for the greatly attenuated mutagenicity in the Ames assays as compared with IQ.
Collapse
Affiliation(s)
- Plamen P Christov
- Department of Chemistry and Biochemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rechkoblit O, Kolbanovskiy A, Malinina L, Geacintov NE, Broyde S, Patel DJ. Mechanism of error-free and semitargeted mutagenic bypass of an aromatic amine lesion by Y-family polymerase Dpo4. Nat Struct Mol Biol 2010; 17:379-88. [PMID: 20154704 PMCID: PMC4215948 DOI: 10.1038/nsmb.1771] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/09/2009] [Indexed: 12/22/2022]
Abstract
The aromatic amine carcinogen 2-aminofluorene (AF) forms covalent adducts with DNA, predominantly with guanine at the C8 position. Such lesions are bypassed by Y-family polymerases such as Dpo4 via error-free and error-prone mechanisms. We show that Dpo4 catalyzes elongation from a correct 3′-terminal C opposite [AF]G in a nonrepetitive template sequence with low efficiency. This extension leads to cognate full-length product, as well as mis-elongated products containing base mutations and deletions. Crystal structures of the Dpo4 ternary complex with the 3′-terminal primer C base opposite [AF]G in the anti conformation and with the AF-moiety positioned in the major groove, revealed both accurate and misalignment-mediated mutagenic extension pathways. The mutagenic template/primer-dNTP arrangement is promoted by interactions between the polymerase and the bulky lesion, rather than by a base pairstabilized misaligment. Further extension leads to semi-targeted mutations via this proposed polymerase-guided mechanism.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
Donny-Clark K, Shapiro R, Broyde S. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing? Biochemistry 2009; 48:7-18. [PMID: 19072536 DOI: 10.1021/bi801283d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase iota (poliota) is a bypass polymerase of the Y family. Crystal structures of poliota suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that poliota is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in poliota for bypass of dG-AAF. In poliota with Hoogsteen-paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick-paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that poliota would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for poliota in lesion bypass.
Collapse
Affiliation(s)
- Kerry Donny-Clark
- Department of Biology and Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
20
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
21
|
Jain N, Li Y, Zhang L, Meneni SR, Cho BP. Probing the sequence effects on NarI-induced -2 frameshift mutagenesis by dynamic 19F NMR, UV, and CD spectroscopy. Biochemistry 2007; 46:13310-21. [PMID: 17960913 DOI: 10.1021/bi701386f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The NarI recognition sequence (5'-G1G2CG3CN-3') is the most vulnerable hot spot for frameshift mutagenesis induced by the carcinogen 2-aminofluorene and its analogues in Escherichia coli. Lesioning of the guanine in the G3 position induces an especially high frequency of -2 deletion mutations; vulnerability to these mutations is modulated by the nature of the nucleotide in the N position (C approximately A > G > T). The objective of the present study was to probe the structural basis of this N-mediated influence on the propensity of the G3 lesion to form a slipped mutagenic intermediate (SMI) during translesion synthesis. We studied NarI-based fully paired [(5'-CTCG1G2CG3*CNATC-3')(5'-GATNCGGCCGAG-3'), N = dC or dT] and -2 deletion [(5'-CTCG1G2CG3*CNATC-3')(5'-GATNGCCGAG-3'), N = dC or dT] duplexes, in which G* was either AF [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene] or the 19F probe FAF [N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene]. The latter sequences mimic the bulged SMI for -2 deletion mutations. Dynamic 19F NMR, circular dichroism, and UV melting results indicated that the NarI-dC/-2 deletion duplex adopts exclusively an intercalated conformer, whereas the NarI-dT/-2 deletion duplex exists as multiple conformers. The data support the presence of a putative equilibrium between a carcinogen-intercalated and a carcinogen-exposed SMI for the dT/-2 duplex. A similar dT-induced conformational heterogeneity was observed for the fully paired duplexes in which all three guanines were individually modified by AF or FAF. The frequency of the carcinogen stacked S-conformation was found to be highest (69-75%) at the G3 hot spot in NarI-dC duplexes. Taken together, our results support the hypothesis that the conformational stability of the SMI is a critical determinant for the efficacy of -2 frameshift mutagenesis in the NarI sequence. We also provide evidence for AF/FAF conformational compatibility in the NarI sequences.
Collapse
Affiliation(s)
- Nidhi Jain
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | |
Collapse
|
22
|
Stover JS, Rizzo CJ. Synthesis of oligonucleotides containing the N2-deoxyguanosine adduct of the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline. Chem Res Toxicol 2007; 20:1972-9. [PMID: 17914884 PMCID: PMC3138521 DOI: 10.1021/tx7002867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine formed in all cooked meats. IQ has been found to be a potent inducer of frameshift mutations in bacteria and carcinogenic in laboratory animals. Upon metabolic activation, IQ forms covalent adducts at the C8- and N2-positions of deoxyguanosine with a relative ratio of up to approximately 4:1. We have previously incorporated the major dGuo-C8-IQ adduct into oligonucleotides through the corresponding phosphoramidite reagent. We report here the sequence-specific synthesis of oligonucleotides containing the minor dGuo-N2-IQ adduct. Thermal melting analysis revealed that the dGuo-N2-IQ adduct significantly destabilizes duplex DNA.
Collapse
Affiliation(s)
| | - Carmelo J. Rizzo
- To whom correspondence should be addressed. Tel: 615-322-6100. Fax: 615-343-1234.
| |
Collapse
|
23
|
Watt DL, Utzat CD, Hilario P, Basu AK. Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells. Chem Res Toxicol 2007; 20:1658-64. [PMID: 17907783 PMCID: PMC2532752 DOI: 10.1021/tx700131e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mutagenesis of the major DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene (C8-AP-dG) formed by 1-nitropyrene was compared with the analogous C8-dG adducts of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) in simian kidney (COS-7) cells. The DNA sequence chosen for this comparison contained 5'-CCATC GCTACC-3' that has been used for solution NMR investigations. The structural and conformational differences among these lesions are well-established [Patel, D. J., Mao, B., Gu, Z., Hingerty, B. E., Gorin, A., Basu, A. K., and Broyde,S. (1998) NMR solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance. Chem. Res. Toxicol. 11, 391- 407.]. Accordingly, we found a notable difference in the viability of the progeny, which showed that the AAF adduct was most toxic and that the AF adduct was least toxic, with the AP adduct exhibiting intermediate toxicity. However, analysis of the progeny showed that translesion synthesis was predominantly error-free. Only low-level mutations (<3%) were detected with G-->T as the dominant type of mutation by all three DNA adducts. When C8-AP-dG was evaluated in a repetitive 5'-CGC GCG-3' sequence, higher mutational frequency ( approximately 8%) was observed. Again, G-->T was the major type of mutations in simian kidney cells, even though in bacteria CpG deletions predominate in this sequence [Hilario, P., Yan, S., Hingerty, B. E., Broyde, S., and Basu, A. K. (2002) Comparative mutagenesis of the C8-guanine adducts of 1-nitropyrene,and 1,6- and 1,8-dinitropyrene in a CpG repeat sequence: A slipped frameshift intermediate model for dinucleotide deletion. J. Biol. Chem. 277, 45068- 45074.]. Mutagenesis of C8-AP-dG in a 12-mer containing the local DNA sequence around codon 273 of the p53 tumor suppressor gene, where the adduct was located at the second base of this codon, was also investigated. In this 5'-GTGC GTGTTTGT-3' site, the mutations were slightly lower but not very different from the progeny derived from the 5'-CGC GCG-3' sequence. However, the mutational frequency increased by more than 50% when the 5'-C to the adduct was replaced with a 5-methylcytosine (5-MeC). With a 5-MeC, the most notable change in mutation was the enhancement of G-->A, which occurred 2.5 times relative to a 5'-C. The C8-AP-dG adduct in codon 273 dodecamer sequence with a 5'-C or 5-MeC was also evaluated in human embryonic kidney (293T) cells. Similar to COS cells, targeted mutations doubled with a 5-MeC 5' to the adduct. Except for an increase in G-->C transversions, the results in 293T were similar to that in COS cells. We conclude that C8-AP-dG mutagenesis depends on the type of cell in which it is replicated, the neighboring DNA sequence, and the methylation status of the 5'-C.
Collapse
Affiliation(s)
| | | | | | - Ashis K. Basu
- *Address correspondence to Ashis K. Basu, Department of Chemistry, University of Connecticut, Storrs, CT. Tel. 860-486-3965; Fax 860-486-2981; E-mail:
| |
Collapse
|
24
|
Wang F, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. DNA sequence modulates the conformation of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme. Biochemistry 2007; 46:8498-516. [PMID: 17602664 PMCID: PMC2782574 DOI: 10.1021/bi700361u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The conformations of C8-dG adducts of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) positioned in the C-X1-G, G-X2-C, and C-X3-C contexts in the C-G1-G2-C-G3-C-C recognition sequence of the NarI restriction enzyme were compared, using the oligodeoxynucleotides 5'-d(CTCXGCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', 5'-d(CTCGXCGCCATC)-3'.5'-d(GATGGCGCCGAG)-3', and 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' (X is the C8-dG adduct of IQ). These were the NarIIQ1, NarIIQ2, and NarIIQ3 duplexes, respectively. In each instance, the glycosyl torsion angle chi for the IQ-modified dG was in the syn conformation. The orientations of the IQ moieties were dependent upon the conformations of torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)], which were monitored by the patterns of 1H NOEs between the IQ moieties and the DNA in the three sequence contexts. The conformational states of IQ torsion angles alpha' and beta' were predicted from the refined structures of the three adducts obtained from restrained molecular dynamics calculations, utilizing simulated annealing protocols. For the NarIIQ1 and NarIIQ2 duplexes, the alpha' torsion angles were predicted to be -176 +/- 8 degrees and -160 +/- 8 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle alpha' was predicted to be 159 +/- 7 degrees . Likewise, for the NarIIQ1 and NarIIQ2 duplexes, the beta' torsion angles were predicted to be -152 +/- 8 degrees and -164 +/- 7 degrees , respectively, whereas for the NarIIQ3 duplex, torsion angle beta' was predicted to be -23 +/- 8 degrees . Consequently, the conformations of the IQ adduct in the NarIIQ1 and NarIIQ2 duplexes were similar, with the IQ methyl protons and IQ H4 and H5 protons facing outward in the minor groove, whereas in the NarIIQ3 duplex, the IQ methyl protons and the IQ H4 and H5 protons faced into the DNA duplex, facilitating the base-displaced intercalated orientation of the IQ moiety [Wang, F., Elmquist, C. E., Stover, J. S., Rizzo, C. J., and Stone, M. P. (2006) J. Am. Chem. Soc. 128, 10085-10095]. In contrast, for the NarIIQ1 and NarIIQ2 duplexes, the IQ moiety remained in the minor groove. These sequence-dependent differences suggest that base-displaced intercalation of the IQ adduct is favored when both the 5'- and 3'-flanking nucleotides in the complementary strand are guanines. These conformational differences may correlate with sequence-dependent differences in translesion replication.
Collapse
Affiliation(s)
| | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. C.J.R.: telephone, (615) 322−6100; fax, (615) 343−1234; e-mail, . M.P.S.: telephone, (615) 322−2589; fax, (615) 322−7591; e-mail,
| | - Michael P. Stone
- To whom correspondence should be addressed. C.J.R.: telephone, (615) 322−6100; fax, (615) 343−1234; e-mail, . M.P.S.: telephone, (615) 322−2589; fax, (615) 322−7591; e-mail,
| |
Collapse
|
25
|
Stover JS, Chowdhury G, Zang H, Guengerich FP, Rizzo CJ. Translesion synthesis past the C8- and N2-deoxyguanosine adducts of the dietary mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline in the NarI recognition sequence by prokaryotic DNA polymerases. Chem Res Toxicol 2007; 19:1506-17. [PMID: 17112239 PMCID: PMC3150502 DOI: 10.1021/tx0601455] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is found in cooked meats and forms DNA adducts at the C8- and N2-positions of dGuo after appropriate activation. IQ is a potent inducer of frameshift mutations in bacteria and is carcinogenic in laboratory animals. We have incorporated both IQ-adducts into the G1- and G3-positions of the NarI recognition sequence (5'-G1G2CG3CC-3'), which is a hotspot for arylamine modification. The in vitro replication of the oligonucleotides was examined with Escherichia coli pol I Klenow fragment exo-, E. coli pol II exo-, and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and the extension products were sequenced by tandem mass spectrometry. Replication of the C8-adduct at the G3-position resulted in two-base deletions with all three polymerases, whereas error-free bypass and extension was observed at the G1-position. The N2-adduct was bypassed and extended by all three polymerases when positioned at the G1-position, and the error-free product was observed. The N2-adduct at the G3-position was more blocking and was bypassed and extended only by Dpo4 to produce an error-free product. These results indicate that the replication of the IQ-adducts of dGuo is strongly influenced by the local sequence and the regioisomer of the adduct. These results also suggest a possible role for pol II and IV in the error-prone bypass of the C8-IQ-adduct leading to frameshift mutations in reiterated sequences, whereas noniterated sequences result in error-free bypass.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo J. Rizzo
- Corresponding author. Tel.: (615) 322-6100; fax: (615) 343-1234;
| |
Collapse
|
26
|
Elmquist CE, Wang F, Stover JS, Stone MP, Rizzo CJ. Conformational differences of the C8-deoxyguanosine adduct of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) within the NarI recognition sequence. Chem Res Toxicol 2007; 20:445-54. [PMID: 17311423 PMCID: PMC2743555 DOI: 10.1021/tx060229d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine found in cooked meats. The major DNA adduct of IQ is at the C8-position of dGuo. We have previously reported the incorporation of the C8-IQ adduct into oligonucleotides, namely, the G1-position of codon 12 of the N-ras oncogene sequence (G1G2T) and the G3-position of the NarI recognition sequence (G1G2CG3CC) (Elmquist et al. (2004) J. Am. Chem. Soc. 126, 11189-11201). Ultraviolet spectroscopy and circular dichroism studies indicated that the conformation of the adduct in the two oligonucleotides was different, and they were assigned as groove-bound and base-displaced intercalated, respectively. The conformation of the latter was subsequently confirmed through NMR and restrained molecular dynamics studies (Wang et al. (2006) J. Am. Chem. Soc. 128, 10085-10095). We report here the incorporation of the C8-IQ adduct into the G1- and G2-positions of the NarI sequence. A complete analysis of the UV, CD, and NMR chemical shift data for the IQ protons are consistent with the IQ adduct adopting a minor groove-bound conformation at the G1- and G2-positions of the NarI sequence. To further correlate the spectroscopic data with the adduct conformation, the C8-aminofluorene (AF) adduct of dGuo was also incorporated into the NarI sequence; previous NMR studies demonstrated that the AF-modified oligonucleotides were in a sequence-dependent conformational exchange between major groove-bound and base-displaced intercalated conformations. The spectroscopic data for the IQ- and AF-modified oligonucleotides are compared. The sequence-dependent conformational preferences are likely to play a key role in the repair and mutagenicity of C8-arylamine adducts.
Collapse
Affiliation(s)
| | | | | | - Michael P. Stone
- To whom correspondence should be addressed. Phone: 615-322-6100. Fax: 615-343-1234. E-mail: (C.J.R.). Phone: (615) 322-2589. Fax: (615) 322-7591. E-mail: (M.P.S.)
| | - Carmelo J. Rizzo
- To whom correspondence should be addressed. Phone: 615-322-6100. Fax: 615-343-1234. E-mail: (C.J.R.). Phone: (615) 322-2589. Fax: (615) 322-7591. E-mail: (M.P.S.)
| |
Collapse
|
27
|
Meneni S, Liang F, Cho BP. Examination of the long-range effects of aminofluorene-induced conformational heterogeneity and its relevance to the mechanism of translesional DNA synthesis. J Mol Biol 2006; 366:1387-400. [PMID: 17217958 PMCID: PMC1850230 DOI: 10.1016/j.jmb.2006.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Adduct-induced conformational heterogeneity complicates the understanding of how DNA adducts exert mutation. A case in point is the N-deacetylated AF lesion [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene], the major adduct derived from the strong liver carcinogen N-acetyl-2-aminofluorene. Three conformational families have been previously characterized and are dependent on the positioning of the aminofluorene rings: B is in the "B-DNA" major groove, S is "stacked" into the helix with base-displacement, and W is "wedged" into the minor groove. Here, we conducted (19)F NMR, CD, T(m), and modeling experiments at various primer positions with respect to a template modified by a fluorine tagged AF-adduct (FAF). In the first set, the FAF-G was paired with C and in the second set it was paired with A. The FAF-G:C oligonucleotides were found to preferentially adopt the B or S-conformers while the FAF-G:A mismatch ones preferred the B and W-conformers. The conformational preferences of both series were dependent on temperature and complementary strand length; the largest differences in conformation were displayed at lower temperatures. The CD and T(m) results are in general agreement with the NMR data. Molecular modeling indicated that the aminofluorene moiety in the minor groove of the W-conformer would impose a steric clash with the tight-packing amino acid residues on the DNA binding area of the Bacillus fragment (BF), a replicative DNA polymerase. In the case of the B-type conformer, the carcinogenic moiety resides in the solvent-exposed major groove throughout the replication/translocation process. The present dynamic NMR results, combined with previous primer extension kinetic data by Miller & Grollman, support a model in which adduct-induced conformational heterogeneities at positions remote from the replication fork affect polymerase function through a long-range DNA-protein interaction.
Collapse
Affiliation(s)
| | | | - Bongsup P. Cho
- *Address correspondence to: Bongsup P. Cho, Dept. of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, Tel. 401-874-5024; Fax. 401-874-5766;
| |
Collapse
|
28
|
Zaliznyak T, Bonala R, Johnson F, de Los Santos C. Structure and stability of duplex DNA containing the 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene (dG(N2)-AAF) lesion: a bulky adduct that persists in cellular DNA. Chem Res Toxicol 2006; 19:745-52. [PMID: 16780352 DOI: 10.1021/tx060002i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The carcinogenic environmental pollutant 2-nitrofluorene produces several DNA adducts including the minor 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene (dG(N(2))-AAF) lesion, which persists for long times in rat tissue DNA after discontinuation of carcinogen administration. Here, we present the solution structure of a dG(N(2))-AAF duplex as determined by NMR spectroscopy and restrained molecular dynamics. The data establish a regular right-handed conformation with Watson-Crick base pair alignments throughout the duplex. The AAF moiety resides in the minor grove of the helix with its long axis directed toward the 5'-end of the modified strand. Restrained molecular dynamics shows that the duplex structure adjusts to the AAF lesion, reducing its exposure to water molecules. Analysis of UV melting profiles shows that the presence of dG(N(2))-AAF increases the thermal and thermodynamic stability of duplex DNA, an effect that is driven by a favorable entropy. The structure and stability of the dG(N(2))-AAF duplex have important implications in understanding the recognition of bulky lesions by the DNA repair system.
Collapse
Affiliation(s)
- Tanya Zaliznyak
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | | | | | |
Collapse
|
29
|
Wang F, DeMuro NE, Elmquist CE, Stover JS, Rizzo CJ, Stone MP. Base-displaced intercalated structure of the food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline in the recognition sequence of the NarI restriction enzyme, a hotspot for -2 bp deletions. J Am Chem Soc 2006; 128:10085-95. [PMID: 16881637 PMCID: PMC2692337 DOI: 10.1021/ja062004v] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of the oligodeoxynucleotide 5'-d(CTCGGCXCCATC)-3'.5'-d(GATGGCGCCGAG)-3' containing the heterocyclic amine 8-[(3-methyl-3H-imidazo[4,5-f]quinolin-2-yl)amino]-2'-deoxyguanosine adduct (IQ) at the third guanine in the NarI restriction sequence, a hot spot for -2 bp frameshifts, is reported. Molecular dynamics calculations restrained by distances derived from 24 (1)H NOEs between IQ and DNA, and torsion angles derived from (3)J couplings, yielded ensembles of structures in which the adducted guanine was displaced into the major groove with its glycosyl torsion angle in the syn conformation. One proton of its exocyclic amine was approximately 2.8 A from an oxygen of the 5' phosphodiester linkage, suggesting formation of a hydrogen bond. The carcinogen-guanine linkage was defined by torsion angles alpha' [N9-C8-N(IQ)-C2(IQ)] of 159 +/- 7 degrees and beta' [C8-N(IQ)-C2(IQ)-N3(IQ)] of -23 +/- 8 degrees . The complementary cytosine was also displaced into the major groove. This allowed IQ to intercalate between the flanking C.G base pairs. The disruption of Watson-Crick hydrogen bonding was corroborated by chemical-shift perturbations for base aromatic protons in the complementary strand opposite to the modified guanine. Chemical-shift perturbations were also observed for (31)P resonances corresponding to phosphodiester linkages flanking the adduct. The results confirmed that IQ adopted a base-displaced intercalated conformation in this sequence context but did not corroborate the formation of a hydrogen bond between the IQ quinoline nitrogen and the complementary dC [Elmquist, C. E.; Stover, J. S.; Wang, Z.; Rizzo, C. J. J. Am. Chem. Soc. 2004, 126, 11189-11201].
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
30
|
Choi JY, Stover JS, Angel KC, Chowdhury G, Rizzo CJ, Guengerich FP. Biochemical basis of genotoxicity of heterocyclic arylamine food mutagens: Human DNA polymerase eta selectively produces a two-base deletion in copying the N2-guanyl adduct of 2-amino-3-methylimidazo[4,5-f]quinoline but not the C8 adduct at the NarI G3 site. J Biol Chem 2006; 281:25297-306. [PMID: 16835218 DOI: 10.1074/jbc.m605699200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterocyclic arylamines are highly mutagenic and cause tumors in animal models. The mutagenicity is attributed to the C8- and N2-G adducts, the latter of which accumulates due to slower repair. The C8- and N 2-G adducts derived from 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) were placed at the G1 and G3 sites of the NarI sequence, in which the G3 site is an established hot spot for frameshift mutation with the model arylamine derivative 2-acetylaminofluorene but G1 is not. Human DNA polymerase (pol) eta extended primers beyond template G-IQ adducts better than did pol kappa and much better than pol iota or delta. In 1-base incorporation studies, pol eta inserted C and A, pol iota inserted T, and pol kappa inserted G. Steady-state kinetic parameters were measured for these dNTPs opposite the C8- and N 2-IQ adducts at both sites, being most favorable for pol eta. Mass spectrometry of pol eta extension products revealed a single major product in each of four cases; with the G1 and G3 C8-IQ adducts, incorporation was largely error-free. With the G3 N 2-IQ adduct, a -2 deletion occurred at the site of the adduct. With the G1 N 2-IQ adduct, the product was error-free at the site opposite the base and then stalled. Thus, the pol eta products yielded frame-shifts with the N 2 but not the C8 IQ adducts. We show a role for pol eta and the complexity of different chemical adducts of IQ, DNA position, and DNA polymerases.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
32
|
Garcia-Diaz M, Kunkel TA. Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci 2006; 31:206-14. [PMID: 16545956 DOI: 10.1016/j.tibs.2006.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/17/2006] [Accepted: 02/22/2006] [Indexed: 11/30/2022]
Abstract
Insertions and deletions of bases in DNA (collectively termed "indels") are both common and biologically relevant, being associated with different human pathologies including cancer and diseases associated with expansions of repeats. Four decades of research have resulted in several hypotheses regarding how indels are generated during DNA synthesis and how they subsequently undergo or escape correction. Recent structural studies of DNA polymerases bound to mutagenic substrates have increased our understanding of how DNA polymerases cope with abnormal substrates. These structures provide insight into the molecular mechanisms underlying indel generation.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
33
|
Gillet LCJ, Alzeer J, Schärer OD. Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified 'ultra-mild' DNA synthesis. Nucleic Acids Res 2005; 33:1961-9. [PMID: 15814813 PMCID: PMC1074722 DOI: 10.1093/nar/gki335] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 12/30/2022] Open
Abstract
Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified 'ultra-mild' DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of beta-mercaptoethanol) designed to remove protecting groups of commercially available 'ultra-mild' phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA.
Collapse
Affiliation(s)
- Ludovic C. J. Gillet
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Jawad Alzeer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Orlando D. Schärer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| |
Collapse
|
34
|
Dutta S, Li Y, Johnson D, Dzantiev L, Richardson CC, Romano LJ, Ellenberger T. Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis. Proc Natl Acad Sci U S A 2004; 101:16186-91. [PMID: 15528277 PMCID: PMC528967 DOI: 10.1073/pnas.0406516101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carcinogen 2-acetylaminofluorene forms two major DNA adducts: N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and its deacetylated derivative, N-(2'-deoxyguanosin-8-yl)-2-aminofluorene (dG-AF). Although the dG-AAF and dG-AF adducts are distinguished only by the presence or absence of an acetyl group, they have profoundly different effects on DNA replication. dG-AAF poses a strong block to DNA synthesis and primarily induces frameshift mutations in bacteria, resulting in the loss of one or two nucleotides during replication past the lesion. dG-AF is less toxic and more easily bypassed by DNA polymerases, albeit with an increased frequency of misincorporation opposite the lesion, primarily resulting in G --> T transversions. We present three crystal structures of bacteriophage T7 DNA polymerase replication complexes, one with dG-AAF in the templating position and two others with dG-AF in the templating position. Our crystallographic data suggest why a dG-AAF adduct blocks replication more strongly than does a dG-AF adduct and provide a possible explanation for frameshift mutagenesis during replication bypass of a dG-AAF adduct. The dG-AAF nucleoside adopts a syn conformation that facilitates the intercalation of its fluorene ring into a hydrophobic pocket on the surface of the fingers subdomain and locks the fingers in an open, inactive conformation. In contrast, the dG-AF base at the templating position is not well defined by the electron density, consistent with weak binding to the polymerase and a possible interchange of this adduct between the syn and anti conformations.
Collapse
Affiliation(s)
- Shuchismita Dutta
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Delaney JC, Essigmann JM. Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli. Proc Natl Acad Sci U S A 2004; 101:14051-6. [PMID: 15381779 PMCID: PMC521119 DOI: 10.1073/pnas.0403489101] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AlkB repairs 1-alkyladenine and 3-methylcytosine lesions in DNA by directly reversing the base damage. Although repair studies with randomly alkylated substrates have been performed, the miscoding nature of these and related individually alkylated bases and the suppression of mutagenesis by AlkB within cells have not yet been explored. Here, we address the miscoding potential of 1-methyldeoxyadenosine (m1A), 3-methyldeoxycytidine (m3C), 3-ethyldeoxycytidine (e3C), 1-methyldeoxyguanosine (m1G), and 3-methyldeoxythymidine (m3T) by synthesizing single-stranded vectors containing each alkylated base, followed by vector passage through Escherichia coli. In SOS(-), AlkB-deficient cells, m1A was only 1% mutagenic; however, m3C and e3C were 30% mutagenic, rising to 70% in SOS(+) cells. In contrast, the mutagenicity of m1G and m3T in AlkB(-) cells dropped slightly when SOS polymerases were expressed (m1G from 80% to 66% and m3T from 60% to 53%). Mutagenicity was abrogated for m1A, m3C, and e3C in wild-type (AlkB(+)) cells, whereas m3T mutagenicity was only partially reduced. Remarkably, m1G mutagenicity was also eliminated in AlkB(+) cells, establishing it as a natural AlkB substrate. All lesions were blocks to replication in AlkB-deficient cells. The m1A, m3C, and e3C blockades were completely removed in wild-type cells; the m1G blockade was partially removed and that for m3T was unaffected by the presence of AlkB. All lesions demonstrated enhanced bypass when SOS polymerases were induced. This work provides direct evidence that AlkB suppresses both genotoxicity and mutagenesis by physiologically realistic low doses of 1-alkylpurine and 3-alkylpyrimidine DNA damage in vivo.
Collapse
Affiliation(s)
- James C Delaney
- Department of Chemistry and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|