1
|
Nicoletti FP, Droghetti E, Boechi L, Bonamore A, Sciamanna N, Estrin DA, Feis A, Boffi A, Smulevich G. Fluoride as a Probe for H-Bonding Interactions in the Active Site of Heme Proteins: The Case of Thermobifida fusca Hemoglobin. J Am Chem Soc 2011; 133:20970-80. [DOI: 10.1021/ja209312k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Francesco P. Nicoletti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Enrica Droghetti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Alessandra Bonamore
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Natascia Sciamanna
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA), Argentina
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Alberto Boffi
- Institute Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
2
|
Droghetti E, Nicoletti FP, Bonamore A, Boechi L, Arroyo Mañez P, Estrin DA, Boffi A, Smulevich G, Feis A. Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca. Biochemistry 2010; 49:10394-402. [PMID: 21049911 DOI: 10.1021/bi101452k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic surface variant (ASV) of the "truncated" hemoglobin from Thermobifida fusca was designed with the aim of creating a versatile globin scaffold endowed with thermostability and a high level of recombinant expression in its soluble form while keeping the active site unmodified. This engineered protein was obtained by mutating the surface-exposed residues Phe107 and Arg91 to Glu. Molecular dynamics simulations showed that the mutated residues remain solvent-exposed, not affecting the overall protein structure. Thus, the ASV was used in a combinatorial mutagenesis of the distal heme pocket residues in which one, two, or three of the conserved polar residues [TyrB10(54), TyrCD1(67), and TrpG8(119)] were substituted with Phe. Mutants were characterized by infrared and resonance Raman spectroscopy and compared with the wild-type protein. Similar Fe-proximal His stretching frequencies suggest that none of the mutations alters the proximal side of the heme cavity. Two conformers were observed in the spectra of the CO complexes of both wild-type and ASV protein: form 1 with ν(FeC) and ν(CO) at 509 and 1938 cm(-1) and form 2 with ν(FeC) and ν(CO) at 518 and 1920 cm(-1), respectively. Molecular dynamics simulations were performed for the wild-type and ASV forms, as well as for the TyrB10 mutant. The spectroscopic and computational results demonstrate that CO interacts with TrpG8 in form 1 and interacts with both TrpG8 and TyrCD1 in form 2. TyrB10 does not directly interact with the bound CO.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Smulevich G, Feis A, Howes BD. Fifteen years of Raman spectroscopy of engineered heme containing peroxidases: what have we learned? Acc Chem Res 2005; 38:433-40. [PMID: 15895981 DOI: 10.1021/ar020112q] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectroscopic techniques have been fundamental to the comprehension of peroxidase function under physiological conditions. This Account examines the contribution to our understanding of heme peroxidases provided by electronic and resonance Raman spectroscopies in conjunction with site-directed mutagenesis. The results obtained over 15 years with several heme peroxidases and selected mutants have provided important insights into the influence exerted by the protein in the vicinity of the active site via key amino acids on the functionality and stability of the enzymes. Moreover, resonance Raman spectroscopy has revealed that a common feature of heme peroxidases is the presence of an extensive network of H-bonds coupling the distal and proximal sides, which has a profound influence on the heme ligation, affecting both the fifth and the sixth coordination sites.
Collapse
Affiliation(s)
- Giulietta Smulevich
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | | | | |
Collapse
|
4
|
Peñéñory A, Argüello J, Puiatti M. Novel Model Sulfur Compounds as Mechanistic Probes for Enzymatic and Biomimetic Oxidations. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400382] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|