1
|
Dorner ME, McMunn RD, Bartholow TG, Calhoon BE, Conlon MR, Dulli JM, Fehling SC, Fisher CR, Hodgson SW, Keenan SW, Kruger AN, Mabin JW, Mazula DL, Monte CA, Olthafer A, Sexton AE, Soderholm BR, Strom AM, Hati S. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis. Protein Sci 2015; 24:1495-507. [PMID: 26130403 DOI: 10.1002/pro.2737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/18/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.
Collapse
Affiliation(s)
- Mariah E Dorner
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ryan D McMunn
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Thomas G Bartholow
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Brecken E Calhoon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Michelle R Conlon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Jessica M Dulli
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Samuel C Fehling
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Cody R Fisher
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shane W Hodgson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shawn W Keenan
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alyssa N Kruger
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Justin W Mabin
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Daniel L Mazula
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Christopher A Monte
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Augustus Olthafer
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ashley E Sexton
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Beatrice R Soderholm
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alexander M Strom
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| |
Collapse
|
2
|
Thielges MC, Chung JK, Fayer MD. Protein dynamics in cytochrome P450 molecular recognition and substrate specificity using 2D IR vibrational echo spectroscopy. J Am Chem Soc 2011; 133:3995-4004. [PMID: 21348488 PMCID: PMC3063108 DOI: 10.1021/ja109168h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.
Collapse
Affiliation(s)
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
3
|
Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 2010; 1. [PMID: 20714442 PMCID: PMC2921158 DOI: 10.1128/mbio.00135-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022] Open
Abstract
The Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1 have been implicated in the initial oxidation of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs), forming cis-dihydrodiols. To clarify how these two RHOs are functionally different with respect to the degradation of HMW PAHs, we investigated their substrate specificities to 13 representative aromatic substrates (toluene, m-xylene, phthalate, biphenyl, naphthalene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[a]pyrene, carbazole, and dibenzothiophene) by enzyme reconstitution studies of Escherichia coli. Both Nid systems were identified to be compatible with type V electron transport chain (ETC) components, consisting of a [3Fe-4S]-type ferredoxin and a glutathione reductase (GR)-type reductase. Metabolite profiles indicated that the Nid systems oxidize a wide range of aromatic hydrocarbon compounds, producing various isomeric dihydrodiol and phenolic compounds. NidAB and NidA3B3 showed the highest conversion rates for pyrene and fluoranthene, respectively, with high product regiospecificity, whereas other aromatic substrates were converted at relatively low regiospecificity. Structural characteristics of the active sites of the Nid systems were investigated and compared to those of other RHOs. The NidAB and NidA3B3 systems showed the largest substrate-binding pockets in the active sites, which satisfies spatial requirements for accepting HMW PAHs. Spatially conserved aromatic amino acids, Phe-Phe-Phe, in the substrate-binding pockets of the Nid systems appeared to play an important role in keeping aromatic substrates within the reactive distance from the iron atom, which allows each oxygen to attack the neighboring carbons.
Collapse
|
4
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
5
|
Harrelson JP, Atkins WM, Nelson SD. Multiple-ligand binding in CYP2A6: probing mechanisms of cytochrome P450 cooperativity by assessing substrate dynamics. Biochemistry 2008; 47:2978-88. [PMID: 18247580 DOI: 10.1021/bi702020y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The contribution of ligand dynamics to CYP allosterism has not been considered in detail. On the basis of a previous study, we hypothesized that CYP2A6 and CYP2E1 accommodate multiple xylene ligands. As a result, the intramolecular ( k H/ k D) obs values observed for some xylene isomers are expected to be dependent on ligand concentration with contributions from [CYP.xylene] and [CYP.xylene.xylene], etc. To explore this possibility and the utility of kinetic isotope effects in characterizing allosteric CYP behavior, steady state kinetics, product ratios, and ( k H/ k D) obs values for CYP2E1 and CYP2A6 oxidation of m-xylene-alpha- (2)H 3 and p-xylene-alpha- (2)H 3 were determined. Evidence is presented that CYP2A6 accommodates multiple ligands and that intramolecular isotope effect experiments can provide insight into the mechanisms of multiple-ligand binding. CYP2A6 exhibited cooperative kinetics for m-xylene-alpha- (2)H 3 oxidation and a concentration-dependent decrease in the m-methylbenzylalcohol:2,4-dimethylphenol product ratio (9.8 +/- 0.1 and 4.8 +/- 0.3 at 2.5 microM and 1 mM, respectively). Heterotropic effects were observed as well, as incubations containing both 15 microM m-xylene-alpha- (2)H 3 and 200 microM p-xylene resulted in further reduction of the product ratio (2.4 +/- 0.2). When p-xylene (60 microM) was replaced with deuterium-labeled d 6- p-xylene (60 microM), an intermolecular competitive inverse isotope effect on 2,4-dimethylphenol formation [( k H/ k D) obs = 0.49] was observed, indicating that p-xylene exerts heterotropic effects by residing in the active site simultaneously with m-xylene. The data indicate that there is a concentration-dependent decrease in the reorientation rate of m-xylene, as no increase in ( k H/ k D) obs was observed in the presence of an increased level of metabolic switching. That is, the accommodation of a second xylene molecule in the active site leads to a decrease in substrate dynamics.
Collapse
Affiliation(s)
- John P Harrelson
- School of Pharmacy, Pacific University, HPC-Ste 451, Hillsboro, Oregon 97123, USA.
| | | | | |
Collapse
|
6
|
Harrelson JP, Henne KR, Alonso DOV, Nelson SD. A comparison of substrate dynamics in human CYP2E1 and CYP2A6. Biochem Biophys Res Commun 2006; 352:843-9. [PMID: 17156750 PMCID: PMC2728047 DOI: 10.1016/j.bbrc.2006.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 11/11/2006] [Indexed: 11/26/2022]
Abstract
Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d(0)- and d(6)-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly, (k(H)/k(D))(obs) for d(3)-p-xylene oxidation ((k(H)/k(D))(obs)=6.04 and (k(H)/k(D))(obs)=5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k(H)/k(D))(obs) for d(3)-dimethylnaphthalene ((k(H)/k(D))(obs)=5.50 and (k(H)/k(D))(obs)=4.96, respectively). One explanation is that in some instances (k(H)/k(D))(obs) values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.
Collapse
Affiliation(s)
- John P Harrelson
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
7
|
Stortelder A, Keizers P, Oostenbrink C, De Graaf C, De Kruijf P, Vermeulen N, Gooijer C, Commandeur J, Van Der Zwan G. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy. Biochem J 2006; 393:635-43. [PMID: 16190863 PMCID: PMC1360716 DOI: 10.1042/bj20051169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/02/2005] [Accepted: 09/28/2005] [Indexed: 11/17/2022]
Abstract
Enzyme structure and dynamics may play a main role in substrate binding and the subsequent steps in the CYP (cytochrome P450) catalytic cycle. In the present study, changes in the structure of human CYP2D6 upon binding of the substrate are studied using steady-state and time-resolved fluorescence methods, focusing not only on the emission of the tryptophan residues, but also on emission of the substrate. As a substrate, MAMC [7-methoxy-4-(aminomethyl)-coumarin] was selected, a compound exhibiting native fluorescence. As well as the wild-type, the W128F (Trp128-->Phe) mutant of CYP2D6 was studied. After binding, a variety of energy transfer possibilities exist, and molecular dynamics simulations were performed to calculate distances and relative orientations of donors and acceptors. Energy transfer from Trp128 to haem appeared to be important; its emission was related to the shortest of the three average tryptophan fluorescence lifetimes observed for CYP2D6. MAMC to haem energy transfer was very efficient as well: when bound in the active site, the emission of MAMC was fully quenched. Steady-state anisotropy revealed that besides the MAMC in the active site, another 2.4% of MAMC was bound outside of the active site to wild-type CYP2D6. The tryptophan residues in CYP2D6 appeared to be less accessible for the external quenchers iodide and acrylamide in presence of MAMC, indicating a tightening of the enzyme structure upon substrate binding. However, the changes in the overall enzyme structure were not very large, since the emission characteristics of the enzyme were not very different in the presence of MAMC.
Collapse
Key Words
- cytochrome p450
- energy transfer
- enzyme structure
- substrate binding
- time-resolved fluorescence
- cyp, cytochrome p450
- das, decay-associated spectra
- fret, förster resonance energy transfer
- hamc, 7-hydroxy-4-(aminomethyl)-coumarin
- mamc, 7-methoxy-4-(aminomethyl)-coumarin
- md, molecular dynamics
- ni-nta, ni2+-nitrilotriacetate
- r.m.s.d., root-mean-square deviation
- sasa, solvent-accessible surface area
- tcspc, time-correlated single-photon counting
Collapse
Affiliation(s)
- Aike Stortelder
- *Laser Centre VU, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris Oostenbrink
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris De Graaf
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Petra De Kruijf
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- *Laser Centre VU, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- †LACDR, Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gert Van Der Zwan
- *Laser Centre VU, Department of Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Trnka MJ, Doneanu CE, Trager WF. Photoaffinity labeling of P450Cam by an imidazole-tethered benzophenone probe. Arch Biochem Biophys 2005; 445:95-107. [PMID: 16321358 DOI: 10.1016/j.abb.2005.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 11/24/2022]
Abstract
[(3)H]4-Benzoyl-N-[2-(imidazole-4-yl)ethyl]benzamide ([(3)H]HBP) was synthesized and used to photoaffinity label P450(Cam). The imidazole moiety of HBP anchors the compound in the P450(Cam) active site by coordination of the heme iron, thereby insuring that covalent modification occurs in the active site. Additionally, the imidazole anchor provides a known binding orientation of HBP to P450(Cam) from which conclusions about enzyme structure can be drawn based upon the locations of photoadducted residues. Two sites of adduction were identified by MS analysis of digested, photoaffinity labeled P450(Cam). Photoaffinity labeling experiments in the presence of the type II competitive inhibitor, 1-phenylimidazole, were used to assess the specificity of the photoadducts characterized. One adduct was located at Met103 on the flexible B'/C loop region of P450(Cam). The other adduct was localized on the C-helix at Met121. The implications of these data are discussed.
Collapse
Affiliation(s)
- Michael J Trnka
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
9
|
Hays AMA, Dunn AR, Chiu R, Gray HB, Stout CD, Goodin DB. Conformational States of Cytochrome P450cam Revealed by Trapping of Synthetic Molecular Wires. J Mol Biol 2004; 344:455-69. [PMID: 15522298 DOI: 10.1016/j.jmb.2004.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 11/15/2022]
Abstract
Members of the ubiquitous cytochrome P450 family catalyze a vast range of biologically significant reactions in mammals, plants, fungi, and bacteria. Some P450s display a remarkable promiscuity in substrate recognition, while others are very specific with respect to substrate binding or regio and stereo-selective catalysis. Recent results have suggested that conformational flexibility in the substrate access channel of many P450s may play an important role in controlling these effects. Here, we report the X-ray crystal structures at 1.8A and 1.5A of cytochrome P450cam complexed with two synthetic molecular wires, D-4-Ad and D-8-Ad, consisting of a dansyl fluorophore linked to an adamantyl substrate analog via an alpha,omega-diaminoalkane chain of varying length. Both wires bind with the adamantyl moiety in similar positions at the camphor-binding site. However, each wire induces a distinct conformational response in the protein that differs from the camphor-bound structure. The changes involve significant movements of the F, G, and I helices, allowing the substrate access channel to adapt to the variable length of the probe. Wire-induced opening of the substrate channel also alters the I helix bulge and Thr252 at the active site with binding of water that has been proposed to assist in peroxy bond cleavage. The structures suggest that the coupling of substrate-induced conformational changes to active-site residues may be different in P450cam and recently described mammalian P450 structures. The wire-induced changes may be representative of the conformational intermediates that must exist transiently during substrate entry and product egress, providing a view of how substrates enter the deeply buried active site. They also support observed examples of conformational plasticity that are believed be responsible for the promiscuity of drug metabolizing P450s. Observation of such large changes in P450cam suggests that substrate channel plasticity is a general property inherent to all P450 structures.
Collapse
Affiliation(s)
- Anna-Maria A Hays
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
10
|
Egawa T, Hishiki T, Ichikawa Y, Kanamori Y, Shimada H, Takahashi S, Kitagawa T, Ishimura Y. Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation. Formations of folding intermediates with non-native heme coordination state. J Biol Chem 2004; 279:32008-17. [PMID: 15128748 DOI: 10.1074/jbc.m310810200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Prasad S, Mitra S. Substrate modulates compound I formation in peroxide shunt pathway of Pseudomonas putida cytochrome P450(cam). Biochem Biophys Res Commun 2004; 314:610-4. [PMID: 14733951 DOI: 10.1016/j.bbrc.2003.12.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The active oxygenating intermediate, a ferryl-oxo-(II) porphyrin cation radical (compound I), in substrate-bound cytochrome P450(cam) (P450(cam)) has eluded detection and kinetic analysis for several decades. Upon rapid mixing of peroxides-H(2)O(2) and m-CPBA with substrate-bound forms of P450(cam), we observed an intermediate with spectral features characteristic of compound I. Unlike in H(2)O(2), kinetic investigation on the reaction of m-CPBA with various substrate (camphor, adamantone, and norcamphor)-bound P450(cam) and its Y96A mutant shows a preferential binding of the aromatic end group of m-CPBA to the active-site of the enzyme and modulation of compound I formation by the local environment of heme active-site. The results presented in this paper describe the importance of heme environment in modulating formation of compound I, and form the first kinetic analysis of this intermediate in the peroxide shunt pathway of substrate-bound P450(cam).
Collapse
Affiliation(s)
- Swati Prasad
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, 400005 Mumbai, India.
| | | |
Collapse
|