1
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
2
|
Kyrychenko A, Ladokhin AS. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions. CHEM REC 2024; 24:e202300232. [PMID: 37695081 PMCID: PMC11113672 DOI: 10.1002/tcr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, United States
| |
Collapse
|
3
|
Roussel G, Lindner E, White SH. Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. J Mol Biol 2022; 434:167607. [PMID: 35489383 PMCID: PMC10085631 DOI: 10.1016/j.jmb.2022.167607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022]
Abstract
The soluble cytoplasmic ATPase motor protein SecA powers protein transport across the Escherichia coli inner membrane via the SecYEG translocon. Although dimeric in solution, SecA associates monomerically with SecYEG during secretion according to several crystallographic and cryo-EM structural studies. The steps SecA follows from its dimeric cytoplasmic state to its active SecYEG monomeric state are largely unknown. We have previously shown that dimeric SecA in solution dissociates into monomers upon electrostatic binding to negatively charged lipid vesicles formed from E. coli lipids. Here we address the question of the disposition of SecA on the membrane prior to binding to membrane embedded SecYEG. We mutated to cysteine, one at a time, 25 surface-exposed residues of a Cys-free SecA. To each of these we covalently linked the polarity-sensitive fluorophore NBD whose intensity and fluorescence wavelength-shift change upon vesicle binding report on the the local membrane polarity. We established from these measurements the disposition of SecA bound to the membrane in the absence of SecYEG. Our results confirmed that SecA is anchored in the membrane interface primarily by the positive charges of the N terminus domain. But we found that a region of the nucleotide binding domain II is also important for binding. Both domains are rich in positively charged residues, consistent with electrostatic interactions playing the major role in membrane binding. Selective replacement of positively charged residues in these domains with alanine resulted in weaker binding to the membrane, which allowed us to quantitate the relative importance of the domains in stabilizing SecA on membranes. Fluorescence quenchers inside the vesicles had little effect on NBD fluorescence, indicating that SecA does not penetrate significantly across the membrane. Overall, the topology of SecA on the membrane is consistent with the conformation of SecA observed in crystallographic and cryo-EM structures of SecA-SecYEG complexes, suggesting that SecA can switch between the membrane-associated and the translocon-associated states without significant changes in conformation.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, United States.
| |
Collapse
|
4
|
O'Neil PT. A Limitation of Using Dithionite Quenching to Determine the Topology of Membrane-inserted Proteins. J Membr Biol 2021; 255:123-127. [PMID: 34694464 DOI: 10.1007/s00232-021-00199-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Determining the topology of membrane-inserted proteins and peptides often relies upon indirect fluorescent measurements. One such technique uses NBD, an environmentally sensitive fluorophore that can be covalently linked to proteins. Relative to a hydrophilic environment, NBD in a hydrophobic environment shows an increase in emission intensity and a shift to shorter wavelengths. To gain further insight, NBD fluorescence can be chemically quenched using dithionite. As dithionite is an anion, it is only expected to penetrate the outer leaflet interfacial region and should be excluded from the hydrocarbon core, the inner leaflet, and the lumen of LUV. This assumption holds at neutral pH, where a large number of NBD/dithionite experiments are carried out. Here, we report control experiments in which LUV were directly labeled with NBD-PE to assess dithionite quenching in acidic conditions. Results showed that at acidic pH, dithionite moved more freely across the bilayer to quench the inner leaflet. For the buffer conditions used, dithionite exhibited a sharp change in behavior between pH 5.5 and 6.0. Therefore, in acidic conditions, dithionite could not differentiate in which leaflet the NBD resided.
Collapse
Affiliation(s)
- Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Ladokhin AS, Kyrychenko A, Rodnin MV, Vasquez-Montes V. Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain. Methods Enzymol 2021; 649:341-370. [PMID: 33712192 DOI: 10.1016/bs.mie.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diphtheria toxin is among many bacterial toxins that utilize the endosomal pathway of cellular entry, which is ensured by the bridging of the endosomal membrane by the toxin's translocation (T) domain. Endosomal acidification triggers a series of conformational changes of the T-domain, that take place first in aqueous and subsequently in membranous milieu. These rearrangements ultimately result in establishing membrane-inserted conformation(s) and translocation of the catalytic moiety of the toxin into the cytoplasm. We discuss here the strategy for combining site-selective labeling with various spectroscopic methods to characterize structural and thermodynamic aspects of protonation-dependent conformational switching and membrane insertion of the diphtheria toxin T-domain. Among the discussed methods are FRET, FCS and depth-dependent fluorescence quenching with lipid-attached bromine atoms and spin probes. The membrane-insertion pathway of the T-domain contains multiple intermediates and is governed by staggered pH-dependent transitions involving protonation of histidines and acidic residues. Presented data demonstrate that the lipid bilayer plays an active part in T-domain functioning and that the so-called Open-Channel State does not constitute the translocation pathway, but is likely to be a byproduct of the translocation. The spectroscopic approaches presented here are broadly applicable to many other systems of physiological and biomedical interest for which conformational changes can lead to membrane insertion (e.g., other bacterial toxins, host defense peptides, tumor-targeting pHLIP peptides and members of Bcl-2 family of apoptotic regulators).
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States.
| | - Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
K.C. TB, Suga K, Isoshima T, Aigaki T, Ito Y, Shiba K, Uzawa T. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands. Biochem Biophys Res Commun 2018; 500:283-287. [DOI: 10.1016/j.bbrc.2018.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
|
7
|
Maeno T, Uzawa T, Kono I, Okano K, Iino T, Fukita K, Oshikawa Y, Ogawa T, Iwata O, Ito T, Suzuki K, Goda K, Hosokawa Y. Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution. Sci Rep 2018; 8:8271. [PMID: 29844463 PMCID: PMC5974127 DOI: 10.1038/s41598-018-26565-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
Microalgae-based metabolic engineering has been proven effective for producing valuable substances such as food supplements, pharmaceutical drugs, biodegradable plastics, and biofuels in the past decade. The ability to accurately visualize and quantify intracellular metabolites in live microalgae is essential for efficient metabolic engineering, but remains a major challenge due to the lack of characterization methods. Here we demonstrate it by synthesizing fluorogenic peptide aptamers with specific binding affinity to a target metabolite and delivering them into live microalgae by femtosecond laser photoporation at single-cell resolution. As a proof-of-principle demonstration of our method, we use it to characterize Euglena gracilis, a photosynthetic unicellular motile microalgal species, which is capable of producing paramylon (a carbohydrate granule similar to starch). Specifically, we synthesize a peptide aptamer containing a paramylon-binding fluorescent probe, 7-nitrobenzofurazan, and introduce it into E. gracilis cells one-by-one by suppressing their mobility with mannitol and transiently perforating them with femtosecond laser pulses at 800 nm for photoporation. To demonstrate the method’s practical utility in metabolic engineering, we perform spatially and temporally resolved fluorescence microscopy of single live photoporated E. gracilis cells under different culture conditions. Our method holds great promise for highly efficient microalgae-based metabolic engineering.
Collapse
Affiliation(s)
- Takanori Maeno
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN, Wako, 351-0198, Japan. .,RIKEN Center for Emergent Matter Science, Wako, 351-1098, Japan.
| | - Izumi Kono
- RIKEN Center for Emergent Matter Science, Wako, 351-1098, Japan
| | - Kazunori Okano
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takanori Iino
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Keisuke Fukita
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuki Oshikawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Taro Ogawa
- euglena Co., Ltd, Yokohama, 230-0046, Japan
| | | | - Takuro Ito
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | | | - Keisuke Goda
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan. .,Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| |
Collapse
|
8
|
Gahl RF, Tekle E, Zhu GA, Taraska JW, Tjandra N. Acquiring snapshots of the orientation of trans-membrane protein domains using a hybrid FRET pair. FEBS Lett 2015; 589:885-9. [PMID: 25747388 DOI: 10.1016/j.febslet.2015.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 01/24/2023]
Abstract
One challenge in studying the function of membrane-embedded proteins is determining the orientation of key domains in the context of the changing and dynamic membrane environment. We describe a confocal microscopy setup that utilizes external electric field pulses to direct dipicrylamine (DPA) to a membrane leaflet. The detection of FRET between DPA and a fluorescent probe attributes it to the inner or outer leaflet of a membrane. By utilizing short acquisition times and confocal imaging, this attribution could be made even in changing membrane environments. Our setup adds versatility to the study of the biological activity of membrane-embedded proteins.
Collapse
Affiliation(s)
- Robert F Gahl
- Biochemistry and Biophysics Center, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Ephrem Tekle
- Biochemistry and Biophysics Center, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Gefei Alex Zhu
- Biochemistry and Biophysics Center, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Flores-Canales JC, Vargas-Uribe M, Ladokhin AS, Kurnikova M. Membrane Association of the Diphtheria Toxin Translocation Domain Studied by Coarse-Grained Simulations and Experiment. J Membr Biol 2015; 248:529-43. [PMID: 25650178 DOI: 10.1007/s00232-015-9771-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/02/2015] [Indexed: 12/01/2022]
Abstract
Diphtheria toxin translocation (T) domain inserts in lipid bilayers upon acidification of the environment. Computational and experimental studies have suggested that low pH triggers a conformational change of the T-domain in solution preceding membrane binding. The refolded membrane-competent state was modeled to be compact and mostly retain globular structure. In the present work, we investigate how this refolded state interacts with membrane interfaces in the early steps of T-domain's membrane association. Coarse-grained molecular dynamics simulations suggest two distinct membrane-bound conformations of the T-domain in the presence of bilayers composed of a mixture of zwitteronic and anionic phospholipids (POPC:POPG with a 1:3 molar ratio). Both membrane-bound conformations show a common near parallel orientation of hydrophobic helices TH8-TH9 relative to the membrane plane. The most frequently observed membrane-bound conformation is stabilized by electrostatic interactions between the N-terminal segment of the protein and the membrane interface. The second membrane-bound conformation is stabilized by hydrophobic interactions between protein residues and lipid acyl chains, which facilitate deeper protein insertion in the membrane interface. A theoretical estimate of a free energy of binding of a membrane-competent T-domain to the membrane is provided.
Collapse
|
10
|
Ladokhin AS. Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2289-95. [PMID: 24593994 DOI: 10.1016/j.bbamem.2014.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Depth-dependent fluorescence quenching by lipid-attached quenchers (e.g., bromine atoms and doxyl groups) is an important tool for determining the penetration of proteins and peptides into lipid bilayers. Extracting quantitative information and accurate calculations of the depth of the fluorophore are complicated by thermal disorder, resulting in broad distributions of the transverse positions of both quenchers and fluorophores. Twenty-one years ago a methodology called distribution analysis (DA) was introduced, based on the emerging view of the complexity of the transverse organization of lipid bilayer structure. The method is aimed at extracting quantitative information on membrane penetration, such as position and width of fluorophore's distribution along the depth coordinate and its exposure to the lipid phase. Here we review recent progress in refining the DA method and illustrate its applications to protein-membrane interactions. We demonstrate how basic assumptions of the DA approach can be validated using molecular dynamics simulations and how the precision of depth determination is improved by applying a new protocol based on a combination of steady-state and time-resolved fluorescence quenching. Using the example of the MPER fragment of the membrane-spanning domain of the HIV-1 gp41 fusion protein, we illustrate how DA applications and computer simulations can be used together to reveal the molecular organization of a protein-membrane complex. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| |
Collapse
|
11
|
Kyrychenko A, Ladokhin AS. Refining membrane penetration by a combination of steady-state and time-resolved depth-dependent fluorescence quenching. Anal Biochem 2013; 446:19-21. [PMID: 24141077 DOI: 10.1016/j.ab.2013.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022]
Abstract
Accurate determination of the depth of membrane penetration of a fluorescent probe, attached to a lipid, protein, or other macromolecule of interest, using depth-dependent quenching methodology is complicated by thermal motion in the lipid bilayer. Here, we suggest that a combination of steady-state and time-resolved measurements can be used to generate a static quenching profile that reduces the contribution from transverse diffusion occurring during the excited-state lifetime. This procedure results in narrower quenching profiles, compared with those obtained by traditional measurements, and thus improves precision in determination of the underlying depth distribution of the probe.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Toxins (Basel) 2013; 5:1362-80. [PMID: 23925141 PMCID: PMC3760040 DOI: 10.3390/toxins5081362] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022] Open
Abstract
The translocation (T)-domain plays a key role in the action of diphtheria toxin and is responsible for transferring the catalytic domain across the endosomal membrane into the cytosol in response to acidification. Deciphering the molecular mechanism of pH-dependent refolding and membrane insertion of the T-domain, which is considered to be a paradigm for cell entry of other bacterial toxins, reveals general physicochemical principles underlying membrane protein assembly and signaling on membrane interfaces. Structure-function studies along the T-domain insertion pathway have been affected by the presence of multiple conformations at the same time, which hinders the application of high-resolution structural techniques. Here, we review recent progress in structural, functional and thermodynamic studies of the T-domain archived using a combination of site-selective fluorescence labeling with an array of spectroscopic techniques and computer simulations. We also discuss the principles of conformational switching along the insertion pathway revealed by studies of a series of T-domain mutants with substitutions of histidine residues.
Collapse
|
13
|
Ho D, Lugo MR, Merrill AR. Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6, 7, and 10. J Biol Chem 2012; 288:5136-48. [PMID: 23264635 DOI: 10.1074/jbc.m112.436303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pre-channel state of helices 6, 7, and 10 (Val(447)-Gly(475) and Ile(508)-Ile(522)) of colicin E1 was investigated by a site-directed fluorescence labeling technique. A total of 44 cysteine variants were purified and covalently labeled with monobromobimane fluorescent probe. A variety of fluorescence properties of the bimane fluorophore were measured for both the soluble and membrane-bound states of the channel peptide, including the fluorescence emission maximum, fluorescence anisotropy, and membrane bilayer penetration depth. Using site-directed fluorescence labeling combined with our novel helical periodicity analysis method, the data revealed that helices 6, 7, and 10 are separate amphipathic α-helices with a calculated periodicity of T = 3.34 ± 0.08 for helix 6, T = 3.56 ± 0.03 for helix 7, and T = 2.99 ± 0.12 for helix 10 in the soluble state. In the membrane-bound state, the helical periodicity was determined to be T = 3.00 ± 0.15 for helix 6, T = 3.68 ± 0.03 for helix 7, and T = 3.47 ± 0.04 for helix 10. Dual fluorescence quencher analysis showed that both helices 6 and 7 adopt a tilted topology that correlates well with the analysis based on the fluorescence anisotropy profile. These data provide further support for the umbrella model of the colicin E1 channel domain.
Collapse
Affiliation(s)
- Derek Ho
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
14
|
Abstract
Annexins are multifunctional lipid-binding proteins. Plant annexins are expressed throughout the life cycle and are under environmental control. Their association or insertion into membranes may be governed by a range of local conditions (Ca(2+), pH, voltage or lipid identity) and nonclassical sorting motifs. Protein functions include exocytosis, actin binding, peroxidase activity, callose synthase regulation and ion transport. As such, annexins appear capable of linking Ca(2+), redox and lipid signalling to coordinate development with responses to the biotic and abiotic environment. Significant advances in plant annexin research have been made in the past 2 yr. Here, we review the basis of annexin multifunctionality and suggest how these proteins may operate in the life and death of a plant cell.
Collapse
|
15
|
Kraft CA, Garrido JL, Leiva-Vega L, Romero G. Quantitative analysis of protein-lipid interactions using tryptophan fluorescence. Sci Signal 2009; 2:pl4. [PMID: 19952370 DOI: 10.1126/scisignal.299pl4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The fluorescent properties of the amino acid tryptophan make it a useful tool for fluorometric assays. Because tryptophan fluorescence is remarkably sensitive to the polarity of the environment, it can be used to determine the affinity of tryptophan-containing peptides for phospholipid vesicles of varying compositions. Here, we describe a method for using tryptophan fluorescence to determine the binding affinities of peptides derived from the proteins Raf-1 and KSR-1 to small unilamellar vesicles containing phosphatidic acid. The method can be extrapolated to measure the binding of other tryptophan-containing peptides or proteins to lipid vesicles.
Collapse
Affiliation(s)
- Catherine A Kraft
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
16
|
Ladokhin AS. Fluorescence spectroscopy in thermodynamic and kinetic analysis of pH-dependent membrane protein insertion. Methods Enzymol 2009; 466:19-42. [PMID: 21609856 DOI: 10.1016/s0076-6879(09)66002-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Experimental determination of the free energy stabilizing the structure of membrane proteins in their native lipid environment is undermined by a lack of appropriate methods and suitable model systems. Here, we demonstrate how fluorescence correlation spectroscopy can be used to characterize thermodynamics of pH-triggered bilayer insertion of nonconstitutive membrane proteins (e.g., bacterial toxins, colicins). The experimental design is guided by the appropriate thermodynamic scheme which considers two independent processes: pH-dependent formation of a membrane-competent form and its insertion into the lipid bilayer. Measurements of a model protein annexin B12 under conditions of lipid saturation demonstrate that protonation leading to the formation of the membrane-competent state occurs near membrane interface. Lipid titration experiments demonstrate that the free energy of transfer to the intermediate interfacial state is especially favorable, while the free energy of final insertion is modulated by interplay of hydrophobic and electrostatic interactions on the bilayer interface. The general principles of kinetic measurements along the insertion pathway containing interfacial intermediate are discussed and practical examples emphasizing appropriate fitting and normalization procedures are presented.
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
17
|
Kyrychenko A, Posokhov YO, Rodnin MV, Ladokhin AS. Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain. Biochemistry 2009; 48:7584-94. [PMID: 19588969 DOI: 10.1021/bi9009264] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pH-triggered membrane insertion pathway of the T-domain of diphtheria toxin was studied using site-selective fluorescence labeling with subsequent application of several spectroscopic techniques (e.g., fluorescence correlation spectroscopy, FRET, lifetime quenching, and kinetic fluorescence). FCS measurements indicate that pH-dependent formation of the membrane-competent form depends only slightly on the amount of anionic lipids in the membrane. The subsequent transbilayer insertion, however, is strongly favored by anionic lipids. Kinetic FRET measurements between the donor-labeled T-domain and acceptor-labeled lipid vesicles demonstrate rapid membrane association at all pH values for which binding occurs. In contrast, the transmembrane insertion kinetics is significantly slower and is also both pH- and lipid-dependent. Analysis of kinetic behavior of binding and insertion indicates the presence of several interfacial intermediates on the insertion pathway of the T-domain, from soluble W-state to transmembrane T-state. Intermediate interfacial I-state can be trapped in membranes with low content of anionic lipids (10%). In membranes of greater anionic lipid content, another pH-dependent transition results in the formation of the insertion-competent state and subsequent transmembrane insertion. Comparison of the results of various kinetic and equilibrium experiments suggests that the pH dependences determining membrane association and transbilayer insertion transitions are different but staggered. Anionic lipids not only assist in formation of the insertion-competent form but also lower the kinetic barrier for the final insertion.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|
18
|
Sasaki H, White SH. A novel fluorescent probe that senses the physical state of lipid bilayers. Biophys J 2009; 96:4631-41. [PMID: 19486685 DOI: 10.1016/j.bpj.2009.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/27/2022] Open
Abstract
Cell membrane lipids and proteins are heterogeneously distributed in the membrane plane. In recent years, much attention has been paid to the heterogeneous distribution of the lipid components, particularly the formation of cholesterol-rich domains that are thought to be important in signaling processes. This has led to renewed interest in the phase diagrams of complex lipid mixtures, such as three-component mixtures containing phospholipids and cholesterol. We report here a novel fluorescent probe (NBD-R595) that is useful for exploring the phase behaviors of one-, two-, and three-component large unilamellar vesicles. In one-component fluid-phase membranes, the probe has the expected spectral characteristic of monomeric 7-nitrobenzo-2-oxa-1,3-diazol, with a fluorescence maximum of 540 nm when excited at 470 nm. But below the gel-to-liquid crystalline phase transition temperature, an additional emission peak appears at approximately 610 nm, because of Förster resonance energy transfer from NBD-R595 monomers to NBD-R595 Jelley aggregates of limited size formed by the association of 7-nitrobenzo-2-oxa-1,3-diazol moieties. This may be the first report of Förster resonance energy transfer from a single fluorophore in two different physical states. In a test of the probe, we found NBD-R595 to be remarkably sensitive to the molar composition of large unilamellar vesicles formed from cholesterol, distearoylphosphatidylcholine, and dioleoylphosphatidylcholine.
Collapse
Affiliation(s)
- Hirotaka Sasaki
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California, USA
| | | |
Collapse
|
19
|
Ho D, Merrill AR. Evidence for the Amphipathic Nature and Tilted Topology of Helices 4 and 5 in the Closed State of the Colicin E1 Channel. Biochemistry 2009; 48:1369-80. [DOI: 10.1021/bi801906v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Derek Ho
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
20
|
FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants. Biophys J 2008; 95:L54-6. [PMID: 18708456 DOI: 10.1529/biophysj.108.141002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental determination of the free energy (DeltaG) stabilizing the structure of membrane proteins (MPs) in their native environment has been hampered by the aggregation and precipitation of MPs outside the lipid bilayer. We recently demonstrated that the latter process can be prevented by the use of fluorinated surfactants, FTACs, that act as chaperones for MP insertion without partitioning in the membrane themselves. Here we combine the advantages of the chaperone-like ability of FTACs with the sensitivity of fluorescence correlation spectroscopy measurements to determine DeltaG of bilayer insertion of model MPs. First, we calibrate our approach by examining the effects of chaperoned insertion on DeltaG of transmembrane insertion of Annexin B12. We find that a shorter-chained surfactant, FTAC-C6, for which the working concentration range of 0.05-0.2 mM falls below CMC = 0.33 mM, has a mild effect on an apparent DeltaG. In contrast, additions of a longer-chained FTAC-C8 (CMC = 0.03 mM) result in a steep and nonlinear concentration dependence of DeltaG. We then apply the same methodology to the pH-triggered insertion of diphtheria toxin T-domain, which is known to be affected by nonproductive aggregation in solution. We find that the correction of the DeltaG value needed to compensate for unchaperoned insertion of the T-domain exceeds 3 kcal/mole. A relatively shallow and linear dependence of the DeltaG for Annexin B12 and T-domain insertion on FTAC-C6 concentration is encouraging for future applications of this surfactant in thermodynamic studies of the stability of other MPs.
Collapse
|
21
|
Posokhov YO, Rodnin MV, Lu L, Ladokhin AS. Membrane Insertion Pathway of Annexin B12: Thermodynamic and Kinetic Characterization by Fluorescence Correlation Spectroscopy and Fluorescence Quenching. Biochemistry 2008; 47:5078-87. [DOI: 10.1021/bi702223c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yevgen O. Posokhov
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Mykola V. Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Lucy Lu
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| |
Collapse
|
22
|
Ladokhin AS. Insertion intermediate of annexin B12 is prone to aggregation on membrane interfaces. ACTA ACUST UNITED AC 2008. [DOI: 10.7124/bc.000796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. S. Ladokhin
- Kansas University Medical Center
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
23
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
24
|
Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 2007; 374:671-87. [PMID: 17950311 DOI: 10.1016/j.jmb.2007.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to approximately 11-12 A (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 A (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
25
|
London E. Using model membrane-inserted hydrophobic helices to study the equilibrium between transmembrane and nontransmembrane states. ACTA ACUST UNITED AC 2007; 130:229-32. [PMID: 17635963 PMCID: PMC2151635 DOI: 10.1085/jgp.200709842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Fischer T, Lu L, Haigler HT, Langen R. Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J Biol Chem 2007; 282:9996-10004. [PMID: 17267400 DOI: 10.1074/jbc.m611180200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.
Collapse
Affiliation(s)
- Torsten Fischer
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033
| | - Lucy Lu
- Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Harry T Haigler
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
27
|
Jurkiewicz P, Olzyńska A, Langner M, Hof M. Headgroup hydration and mobility of DOTAP/DOPC bilayers: a fluorescence solvent relaxation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8741-9. [PMID: 17014112 DOI: 10.1021/la061597k] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biophysical properties of liposome surfaces are critical for interactions between lipid aggregates and macromolecules. Liposomes formed from cationic lipids, commonly used to deliver genes into cells in vitro and in vivo, are an example of such a system. We apply the fluorescence solvent relaxation technique to study the structure and dynamics of fully hydrated liquid crystalline lipid bilayers composed of mixtures of cationic dioleoyltrimethylammoniumpropane (DOTAP) and neutral dioleoylphosphatidylcholine (DOPC). Using three different naphthalene derivatives as fluorescent dyes (Patman, Laurdan and Prodan) allowed different parts of the headgroup region to be probed. Wavelength-dependent parallax quenching measurements resulted in the precise determination of Laurdan and Patman locations within the DOPC bilayer. Acrylamide quenching experiments were used to examine DOTAP-induced dye relocalization. The nonmonotonic dependence of dipolar relaxation kinetics (occurring exclusively on the nanosecond time scale) on DOTAP content in the membrane was found to exhibit a maximum mean solvent relaxation time at 30 mol % of DOTAP. Up to 30 mol %, addition of DOTAP does not influence the amount of bound water at the level of the sn(1) carbonyls, but leads to an increased packing of phospholipid headgroups. Above this concentration, elevated lipid bilayer water penetration was observed.
Collapse
Affiliation(s)
- Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague 8, Czech Republic
| | | | | | | |
Collapse
|
28
|
White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. J Biol Chem 2006; 281:32375-84. [PMID: 16854987 DOI: 10.1074/jbc.m605880200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound closed state of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane fluorophore attached to each single cysteine residue within helix 2 of each mutant protein. The fluorescence properties of the bimane fluorophore were measured for the membrane-associated form of the closed channel and included fluorescence emission maximum, fluorescence anisotropy, apparent polarity, surface accessibility, and membrane bilayer penetration depth. The fluorescence data show that helix 2 is an amphipathic alpha-helix that is situated parallel to the membrane surface, but it is less deeply embedded within the bilayer interfacial region than is helix 1 in the closed channel. A least squares fit of the various data sets to a harmonic wave function indicated that the periodicity and angular frequency for helix 2 in the membrane-bound state are typical for an amphipathic alpha-helix (3.8 +/- 0.1 residues per turn and 94 +/- 4 degrees, respectively) that is located at an interfacial region of a membrane bilayer. Dual quencher analysis also revealed that helix 2 is peripherally membrane associated, with one face of the helix dipping into the interfacial region of the lipid bilayer and the other face projecting outwardly into the aqueous solvent. Finally, our data show that helices 1 and 2 remain independent helices upon membrane association with a short connector link (Tyr(363)-Gly(364)) and that short amphipathic alpha-helices participate in the formation of a lipid-dependent, toroidal pore for this colicin.
Collapse
Affiliation(s)
- Dawn White
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
29
|
Reshetnyak YK, Andreev OA, Lehnert U, Engelman DM. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proc Natl Acad Sci U S A 2006; 103:6460-5. [PMID: 16608910 PMCID: PMC1435408 DOI: 10.1073/pnas.0601463103] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously observed the spontaneous, pH-dependent insertion of a water-soluble peptide to form a helix across lipid bilayers [Hunt, J. F., Rath, P., Rothschild, K. J. & Engelman, D. M. (1997) Biochemistry 36, 15177-15192]. We now use a related peptide, pH (low) insertion peptide, to translocate cargo molecules attached to its C terminus across the plasma membranes of living cells. Translocation is selective for low pH, and various types of cargo molecules attached by disulfides can be released by reduction in the cytoplasm, including peptide nucleic acids, a cyclic peptide (phalloidin), and organic compounds. Because a high extracellular acidity is characteristic of a variety of pathological conditions (such as tumors, infarcts, stroke-afflicted tissue, atherosclerotic lesions, sites of inflammation or infection, or damaged tissue resulting from trauma) or might be created artificially, pH (low) insertion peptide may prove a useful tool for selective delivery of agents for drug therapy, diagnostic imaging, genetic control, or cell regulation.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- *Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; and
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881
- To whom correspondence may be addressed. E-mail:
or
| | - Oleg A. Andreev
- *Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; and
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881
| | - Ursula Lehnert
- *Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; and
| | - Donald M. Engelman
- *Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
30
|
Posokhov YO, Ladokhin AS. Lifetime fluorescence method for determining membrane topology of proteins. Anal Biochem 2006; 348:87-93. [PMID: 16298322 DOI: 10.1016/j.ab.2005.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
Recently, we introduced a sensitive method for determining the bilayer topology (cis- or trans-leaflet location) of single-site cysteine-linked 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) fluorescent labels on membrane proteins. It uses a novel quencher, LysoUB, composed of a single acyl chain attached to a UniBlue chromophore. In its original version, the method relied on the comparison of steady-state fluorescence measurements of membrane-inserted proteins in samples with different distributions of the LysoUB in cis- and trans-leaflets of the lipid bilayer. Here we modify the method to take advantage of the fluorescence lifetime methodology, which allows us to simplify sample manipulation and, as a result, increase the reliability of topology determination. We tested the method using three model systems with artificially created all-cis, all-trans, and isotropic distribution of NBD. Because the quenching efficiency is higher when LysoUB and NBD are in the same leaflet, introduction of the quencher into the cis-leaflet results in a predictably different amount of quenching for these three model systems. Indeed, the addition of 2% LysoUB into the all-cis NBD model system causes strong reduction of the longest lifetime (from 8.1 to 4.9 ns), whereas the same addition of LysoUB results in marginal quenching (from 8.7 to 8.5 ns) in the case of all-trans NBD. This difference provides a good basis for topology determination using time-resolved fluorescence quenching.
Collapse
Affiliation(s)
- Yevgen O Posokhov
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
31
|
Kim YE, Isas JM, Haigler HT, Langen R. A helical hairpin region of soluble annexin B12 refolds and forms a continuous transmembrane helix at mildly acidic pH. J Biol Chem 2005; 280:32398-404. [PMID: 15975928 DOI: 10.1074/jbc.m505017200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Annexins are soluble proteins that are best known for their ability to undergo reversible Ca(2+)-dependent binding to the surface of phospholipid bilayers. Recent studies, however, have shown that annexins also reversibly bind to membranes in a Ca(2+)-independent manner at mildly acidic pH. We investigated the structural changes that occur upon pH-dependent membrane binding by performing a nitroxide scan on the helical hairpin encompassing helices A and B in the fourth repeat of annexin B12. Residues 251-273 of annexin B12 were replaced, one at a time, with cysteine and then labeled with a nitroxide spin label. Electron paramagnetic resonance (EPR) mobility and accessibility analyses of soluble annexin B12 derivatives were in excellent agreement with the known crystal structure of annexin B12. However, EPR studies of annexin B12 derivatives bound to membranes at pH 4.0 indicated major structural changes in the scanned region. The helix-loop-helix structure present in the soluble protein was converted into a continuous transmembrane alpha-helix that was exposed to the hydrophobic core of the bilayer on one side and exposed to an aqueous pore on the other side. Asp-264 was on the hydrophobic membrane-exposed face of the amphipathic transmembrane helix, thereby suggesting that protonation of its carboxylate group stabilized the transmembrane form. Inspection of the amino acid sequence of annexin B12 revealed several other helical hairpin regions that might refold and form continuous amphipathic transmembrane helices in response to protonation of Asp or Glu switch residues on or near the hydrophobic face of the helix.
Collapse
Affiliation(s)
- Yujin E Kim
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA
| | | | | | | |
Collapse
|
32
|
Golczak M, Kirilenko A, Bandorowicz-Pikula J, Desbat B, Pikula S. Structure of human annexin a6 at the air-water interface and in a membrane-bound state. Biophys J 2005; 87:1215-26. [PMID: 15298924 PMCID: PMC1304460 DOI: 10.1529/biophysj.103.038240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We postulate the existence of a pH-sensitive domain in annexin A6 (AnxA6), on the basis of our observation of pH-dependent conformational and orientation changes of this protein and its N- (AnxA6a) and C-terminal (AnxA6b) halves in the presence of lipids. Brewster angle microscopy shows that AnxA6, AnxA6a, and AnxA6b in the absence of lipids accumulate at the air-water interface and form a stable, homogeneous layer at pH below 6.0. Under these conditions polarization modulation IR absorption spectroscopy reveals significant conformational changes of AnxA6a whereas AnxA6b preserves its alpha-helical structure. The orientation of protein alpha-helices is parallel with respect to the interface. In the presence of lipids, polarization modulation IR reflection absorption spectroscopy experiments suggest that AnxA6a incorporates into the lipid/air interface, whereas AnxA6b is adsorbed under the lipid monolayer. In this case AnxA6a regains its alpha-helical structures. At a higher pressure of the lipid monolayer the average orientation of the alpha-helices of AnxA6a changes from flat to tilted by 45 degrees with respect to normal to the membrane interface. For AnxA6b no such changes are detected, even at a high pressure of the lipid monolayer-suggesting that the putative pH-sensitive domain of AnxA6 is localized in the N-terminal half of the protein.
Collapse
Affiliation(s)
- Marcin Golczak
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
33
|
Freites JA, Ali S, Rosengarth A, Luecke H, Dennin MB. Annexin A1 interaction with a zwitterionic phospholipid monolayer: a fluorescence microscopy study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11674-11683. [PMID: 15595797 DOI: 10.1021/la049713b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present the results of a fluorescence microscopy study of the interaction of annexin A1 with dipalmitoylphosphatidylcholine (DPPC) monolayers as a function of the lipid monolayer phase and the pH of the aqueous subphase. We show that annexin A1-DPPC interaction depends strongly on the domain structure of the DPPC monolayer and only weakly on the subphase pH. Annexin A1 is found to be line active, with preferential adsorption at phase boundaries. Also, annexin A1 is found to form networks in the presence of a domain structure in the monolayer. Our results point toward an important contribution of the unique N-terminal domain to the organization of the protein at the interface.
Collapse
Affiliation(s)
- J Alfredo Freites
- Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California, Irvine, California 92697-4575, USA
| | | | | | | | | |
Collapse
|
34
|
Isas JM, Langen R, Hubbell WL, Haigler HT. Structure and Dynamics of a Helical Hairpin that Mediates Calcium-dependent Membrane Binding of Annexin B12. J Biol Chem 2004; 279:32492-8. [PMID: 15143059 DOI: 10.1074/jbc.m402568200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A wealth of high-resolution structural data has accumulated for soluble annexins, but only limited information is available for the biologically important membrane-bound proteins. To investigate the structural and dynamic changes that occur upon membrane binding, we analyzed the electron paramagnetic resonance (EPR) mobility and accessibility parameters of a continuous 30-residue nitroxide scan encompassing helices D and E in repeat 2 of annexin B12 (residues 134-163) while the protein was bound to phospholipid vesicles in the presence of Ca(2+). A comparison of these data to those from a previously published study of the protein in solution (Isas, J. M., Langen, R., Haigler, H. T., and Hubbell, W. L. (2002) Biochemistry 41, 1464-1473) showed that the overall backbone fold for the scanned region did not change upon membrane binding. However, side-chains in the loop between the D and E helices were highly dynamic in solution but became essentially frozen in the EPR time scale upon binding to membranes. Accessibility measurements clearly established that side-chains in this loop were exposed to the hydrophobic core of the bilayer and provide the first evidence that a D-E loop directly participates in the Ca(2+)-dependent binding of annexins to membranes. Other localized changes showed that the D-helix became much less dynamic after membrane binding and identified quaternary contact sites in the membrane-bound homo-trimer. Finally, immobilization of the D-E loop upon contact with phospholipid suggests that the bilayer, which is normally very mobile on the EPR time scale, is immobilized in the head-group region by the annexin B12. This suggests that annexin B12 alters membrane structure in a manner that may be biologically significant.
Collapse
Affiliation(s)
- J Mario Isas
- Department of Physiology and Biophysics, University of California, Irvine, 92697, USA
| | | | | | | |
Collapse
|