1
|
O'Connell AA, Hanson JA, McCaskill DC, Moore ET, Lewis DC, Grover N. Thermodynamic examination of pH and magnesium effect on U6 RNA internal loop. RNA (NEW YORK, N.Y.) 2019; 25:1779-1792. [PMID: 31548339 PMCID: PMC6859860 DOI: 10.1261/rna.070466.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
U6 RNA contains a 1 × 2-nt internal loop that folds and unfold during spliceosomal assembly and activation. The 1 × 2 loop consists of a C67•A79 base pair that forms an additional hydrogen bond upon protonation, C67•A+79, and uracil (U80) that coordinates the catalytically essential magnesium ions. We designed a series of RNA and DNA constructs with a 1 × 2 loop sequence contained in the ISL, and its modifications, to measure the thermodynamic effects of protonation and magnesium binding using UV-visible thermal denaturation experiments. We show that the wild-type RNA construct gains 0.43 kcal/mol in 1 M KCl upon lowering the pH from 7.5 to 5.5; the presence of magnesium ions increases its stability by 2.17 kcal/mol at pH 7.5 over 1 M KCl. Modifications of the helix closing base pairs from C-G to U•G causes a loss in protonation-dependent stability and a decrease in stability in the presence of magnesium ions, especially in the C68U construct. A79G single-nucleotide bulge loop construct showed the largest gain in stability in the presence of magnesium ions. The DNA wild-type construct shows a smaller effect on stability upon lowering the pH and in the presence of magnesium ions, highlighting differences in RNA and DNA structures. A U6 RNA 1 × 2 loop sequence is rare in the databases examined.
Collapse
Affiliation(s)
- Allison A O'Connell
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Jared A Hanson
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Darryl C McCaskill
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Ethan T Moore
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Daniel C Lewis
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Neena Grover
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| |
Collapse
|
2
|
Eysmont K, Matylla-Kulińska K, Jaskulska A, Magnus M, Konarska MM. Rearrangements within the U6 snRNA Core during the Transition between the Two Catalytic Steps of Splicing. Mol Cell 2019; 75:538-548.e3. [PMID: 31229405 DOI: 10.1016/j.molcel.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
The RNA catalytic core of spliceosomes as visualized by cryoelectron microscopy (cryo-EM) remains unchanged at different stages of splicing. However, we demonstrate that mutations within the core of yeast U6 snRNA modulate conformational changes between the two catalytic steps. We propose that the intramolecular stem-loop (ISL) of U6 exists in two competing states, changing between a default, non-catalytic conformation and a transient, catalytic conformation. Whereas stable interactions in the catalytic triplex promote catalysis and their disruptions favor exit from the catalytic conformation, destabilization of the lower ISL stem promotes catalysis and its stabilization supports exit from the catalytic conformation. Thus, in addition to the catalytic triplex, U6-ISL acts as an important dynamic component of the catalytic center. The relative flexibility of the lower U6-ISL stem is conserved across eukaryotes. Similar features are found in U6atac and domain V of group II introns, arguing for the generality of the proposed mechanism.
Collapse
Affiliation(s)
- Katarzyna Eysmont
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Agata Jaskulska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Magnus
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Maria M Konarska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
DeHaven AC, Norden IS, Hoskins AA. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2016; 7:683-701. [PMID: 27198613 PMCID: PMC4990488 DOI: 10.1002/wrna.1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The process of removing intronic sequences from a precursor to messenger RNA (pre-mRNA) to yield a mature mRNA transcript via splicing is an integral step in eukaryotic gene expression. Splicing is carried out by a cellular nanomachine called the spliceosome that is composed of RNA components and dozens of proteins. Despite decades of study, many fundamentals of spliceosome function have remained elusive. Recent developments in single-molecule fluorescence microscopy have afforded new tools to better probe the spliceosome and the complex, dynamic process of splicing by direct observation of single molecules. These cutting-edge technologies enable investigators to monitor the dynamics of specific splicing components, whole spliceosomes, and even cotranscriptional splicing within living cells. WIREs RNA 2016, 7:683-701. doi: 10.1002/wrna.1358 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexander C. DeHaven
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Ian S. Norden
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
5
|
Didychuk AL, Montemayor EJ, Brow DA, Butcher SE. Structural requirements for protein-catalyzed annealing of U4 and U6 RNAs during di-snRNP assembly. Nucleic Acids Res 2015; 44:1398-410. [PMID: 26673715 PMCID: PMC4756825 DOI: 10.1093/nar/gkv1374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/26/2015] [Indexed: 01/01/2023] Open
Abstract
Base-pairing of U4 and U6 snRNAs during di-snRNP assembly requires large-scale remodeling of RNA structure that is chaperoned by the U6 snRNP protein Prp24. We investigated the mechanism of U4/U6 annealing in vitro using an assay that enables visualization of ribonucleoprotein complexes and faithfully recapitulates known in vivo determinants for the process. We find that annealing, but not U6 RNA binding, is highly dependent on the electropositive character of a 20 Å-wide groove on the surface of Prp24. During annealing, we observe the formation of a stable ternary complex between U4 and U6 RNAs and Prp24, indicating that displacement of Prp24 in vivo requires additional factors. Mutations that stabilize the U6 ‘telestem’ helix increase annealing rates by up to 15-fold, suggesting that telestem formation is rate-limiting for U4/U6 pairing. The Lsm2–8 complex, which binds adjacent to the telestem at the 3′ end of U6, provides a comparable rate enhancement. Collectively, these data identify domains of the U6 snRNP that are critical for one of the first steps in assembly of the megaDalton U4/U6.U5 tri-snRNP complex, and lead to a dynamic model for U4/U6 pairing that involves a striking degree of evolved cooperativity between protein and RNA.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
6
|
Abstract
![]()
Influenza A is an RNA virus with
a genome of eight negative sense
segments. Segment 7 mRNA contains a 3′ splice site for alternative
splicing to encode the essential M2 protein. On the basis of sequence
alignment and chemical mapping experiments, the secondary structure
surrounding the 3′ splice site has an internal loop, adenine
bulge, and hairpin loop when it is in the hairpin conformation that
exposes the 3′ splice site. We report structural features of
a three-dimensional model of the hairpin derived from nuclear magnetic
resonance spectra and simulated annealing with restrained molecular
dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′
splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge
also appears to be dynamic with the A either stacked in the stem or
forming a base triple with a Watson–Crick GC pair. The hairpin
loop is a GAAA tetraloop closed by an AC pair.
Collapse
Affiliation(s)
- Jonathan L Chen
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D Kennedy
- ‡Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Douglas H Turner
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,§Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Dishler AL, McMichael EL, Serra MJ. Determination of the secondary structure of group II bulge loops using the fluorescent probe 2-aminopurine. RNA (NEW YORK, N.Y.) 2015; 21:975-984. [PMID: 25805856 PMCID: PMC4408803 DOI: 10.1261/rna.048306.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5' or 3' position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5' or 3' side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures.
Collapse
Affiliation(s)
- Abigael L Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| | | | - Martin J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, USA
| |
Collapse
|
8
|
Burke JE, Sashital DG, Zuo X, Wang YX, Butcher SE. Structure of the yeast U2/U6 snRNA complex. RNA (NEW YORK, N.Y.) 2012; 18:673-83. [PMID: 22328579 PMCID: PMC3312555 DOI: 10.1261/rna.031138.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The U2/U6 snRNA complex is a conserved and essential component of the active spliceosome that interacts with the pre-mRNA substrate and essential protein splicing factors to promote splicing catalysis. Here we have elucidated the solution structure of a 111-nucleotide U2/U6 complex using an approach that integrates SAXS, NMR, and molecular modeling. The U2/U6 structure contains a three-helix junction that forms an extended "Y" shape. The U6 internal stem-loop (ISL) forms a continuous stack with U2/U6 Helices Ib, Ia, and III. The coaxial stacking of Helix Ib on the U6 ISL is a configuration that is similar to the Domain V structure in group II introns. Interestingly, essential features of the complex--including the U80 metal binding site, AGC triad, and pre-mRNA recognition sites--localize to one face of the molecule. This observation suggests that the U2/U6 structure is well-suited for orienting substrate and cofactors during splicing catalysis.
Collapse
Affiliation(s)
- Jordan E. Burke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Dipali G. Sashital
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois 60437, USA
| | - Yun-Xing Wang
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
- Corresponding author.E-mail .
| |
Collapse
|
9
|
Abstract
The spliceosome is a massive complex of 5 RNAs and many proteins that associate to catalyze precursor messenger RNA splicing. The process of splicing involves two phosphoryl transfer reactions that result in intron excision and ligation of the flanking exons. Since it is required for normal protein production in eukaryotic cells, pre-mRNA splicing is an essential step in gene expression. Although high resolution structural views of the spliceosome do not yet exist, a growing body of evidence indicates that the spliceosome is a magnesium-dependent enzyme that utilizes catalytic metal ions to stabilize both transition states during the two phosphoryl transfer steps of splicing. A wealth of data also indicate that the core of the spliceosome is comprised of RNA, and suggest that the spliceosome may be a ribozyme. This chapter presents the evidence for metal ion catalysis by the spliceosome, draws comparisons to similar RNA enzymes, and discusses the future directions for research into the mechanism of pre-mRNA splicing.
Collapse
Affiliation(s)
- Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| |
Collapse
|
10
|
Single-molecule analysis of protein-free U2-U6 snRNAs. Nat Struct Mol Biol 2009; 16:1154-9. [PMID: 19881500 PMCID: PMC2784090 DOI: 10.1038/nsmb.1672] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/17/2009] [Indexed: 02/06/2023]
Abstract
Spliceosomes catalyze the maturation of precursor mRNAs from yeast to humans. Their catalytic core comprises three small nuclear RNAs (U2, U5 and U6) involved in substrate positioning and catalysis. It has been postulated, but never shown experimentally, that the U2/U6 complex adopts at least two conformations that reflect different activation states. We have used single-molecule fluorescence to probe the structural dynamics of a protein-free RNA complex modeling U2/U6 from yeast and mutants of highly conserved regions. Our data show the presence of at least three distinct conformations in equilibrium. The minimal folding pathway consists of a two-step process with an obligatory intermediate. The first step is strongly magnesium dependent and we provide evidence suggesting the second corresponds to the formation of the genetically conserved helix IB. Site-specific mutations in the highly conserved AGC triad and the U80 base in U6 suggest that the observed conformational dynamics correlate with residues that play an important role in splicing.
Collapse
|
11
|
Venditti V, Clos L, Niccolai N, Butcher SE. Minimum-energy path for a u6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. J Mol Biol 2009; 391:894-905. [PMID: 19591840 DOI: 10.1016/j.jmb.2009.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022]
Abstract
The U6 RNA internal stem-loop (U6 ISL) is a highly conserved domain of the spliceosome that is important for pre-mRNA splicing. The U6 ISL contains an internal loop that is in equilibrium between two conformations controlled by the protonation state of an adenine (pK(a)=6.5). Lower pH favors formation of a protonated C-A(+) wobble pair and base flipping of the adjacent uracil. Higher pH favors stacking of the uracil and allows an essential metal ion to bind at this position. Here, we define the minimal-energy path for this conformational transition. To do this, we solved the U6 ISL structure at higher pH (8.0) in order to eliminate interference from the low-pH conformer. This structure reveals disruption of the protonated C-A(+) pair and formation of a new C-U pair, which explains the preference for a stacked uracil at higher pH. Next, we used nudged elastic band molecular dynamics simulations to calculate the minimum-energy path between the two conformations. Our results indicate that the C-U pair is dynamic, which allows formation of the more stable C-A(+) pair upon adenine protonation. After formation of the C-A(+) pair, the unpaired uracil follows a minor-groove base-flipping pathway. Molecular dynamics simulations suggest that the extrahelical uracil is stabilized by contacts with the adjacent helix.
Collapse
Affiliation(s)
- Vincenzo Venditti
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, Italy
| | | | | | | |
Collapse
|
12
|
Chen XS, White WTJ, Collins LJ, Penny D. Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis. PLoS One 2008; 3:e3106. [PMID: 18769729 PMCID: PMC2518118 DOI: 10.1371/journal.pone.0003106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/11/2008] [Indexed: 11/23/2022] Open
Abstract
RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear RNAs (U-snRNAs) and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in Giardia; one Giardia U-snRNA (U5) and a number of spliceosomal proteins have also been identified. However, because of the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal small-nuclear RNAs existed in the last common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Allan Wilson Centre for Molecular Ecology and Evolution, IMBS, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
13
|
Popenda L, Adamiak RW, Gdaniec Z. Bulged Adenosine Influence on the RNA Duplex Conformation in Solution. Biochemistry 2008; 47:5059-67. [DOI: 10.1021/bi7024904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Ryszard W. Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
14
|
Staple DW, Venditti V, Niccolai N, Elson-Schwab L, Tor Y, Butcher SE. Guanidinoneomycin B recognition of an HIV-1 RNA helix. Chembiochem 2008; 9:93-102. [PMID: 18058789 PMCID: PMC2782590 DOI: 10.1002/cbic.200700251] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Indexed: 01/16/2023]
Abstract
Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (T(m)) of the frameshift-site RNA by at least 10 degrees C, to a point at which a melting transition is not even observed in 2 M urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson-Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site.
Collapse
Affiliation(s)
- David W. Staple
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| | - Vincenzo Venditti
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Neri Niccolai
- Biomolecular Structure Research Center and Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena (Italy)
| | - Lev Elson-Schwab
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (USA)
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706 (USA)
| |
Collapse
|
15
|
McManus CJ, Schwartz ML, Butcher SE, Brow DA. A dynamic bulge in the U6 RNA internal stem-loop functions in spliceosome assembly and activation. RNA (NEW YORK, N.Y.) 2007; 13:2252-65. [PMID: 17925343 PMCID: PMC2080595 DOI: 10.1261/rna.699907] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/15/2007] [Indexed: 05/20/2023]
Abstract
The highly conserved internal stem-loop (ISL) of U6 spliceosomal RNA is unwound for U4/U6 complex formation during spliceosome assembly and reformed upon U4 release during spliceosome activation. The U6 ISL is structurally similar to Domain 5 of group II self-splicing introns, and contains a dynamic bulge that coordinates a Mg++ ion essential for the first catalytic step of splicing. We have analyzed the causes of growth defects resulting from mutations in the Saccharomyces cerevisiae U6 ISL-bulged nucleotide U80 and the adjacent C67-A79 base pair. Intragenic suppressors and enhancers of the cold-sensitive A79G mutation, which replaces the C-A pair with a C-G pair, suggest that it stabilizes the ISL, inhibits U4/U6 assembly, and may also disrupt spliceosome activation. The lethality of mutations C67A and C67G results from disruption of base-pairing potential between U4 and U6, as these mutations are fully suppressed by compensatory mutations in U4 RNA. Strikingly, suppressor analysis shows that the lethality of the U80G mutation is due not only to formation of a stable base pair with C67, as previously proposed, but also another defect. A U6-U80G strain in which mispairing with position 67 is prevented grows poorly and assembles aberrant spliceosomes that retain U1 snRNP and fail to fully unwind the U4/U6 complex at elevated temperatures. Our data suggest that the U6 ISL bulge is important for coupling U1 snRNP release with U4/U6 unwinding during spliceosome activation.
Collapse
Affiliation(s)
- C Joel McManus
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
16
|
Wu B, Petersen M, Girard F, Tessari M, Wijmenga SS. Prediction of molecular alignment of nucleic acids in aligned media. JOURNAL OF BIOMOLECULAR NMR 2006; 35:103-15. [PMID: 16718586 DOI: 10.1007/s10858-006-9004-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/04/2006] [Accepted: 03/14/2006] [Indexed: 05/09/2023]
Abstract
We demonstrate--using the data base of all deposited DNA and RNA structures aligned in Pf1-medium and RDC refined--that for nucleic acids in a Pf1-medium the electrostatic alignment tensor can be predicted reliably and accurately via a simple and fast calculation based on the gyration tensor spanned out by the phosphodiester atoms. The rhombicity is well predicted over its full range from 0 to 0.66, while the alignment tensor orientation is predicted correctly for rhombicities up to ca. 0.4, for larger rhombicities it appears to deviate somewhat more than expected based on structural noise and measurement error. This simple analytical approach is based on the Debye-Huckel approximation for the electrostatic interaction potential, valid at distances sufficiently far away from a poly-ionic charged surface, a condition naturally enforced when the charge of alignment medium and solute are of equal sign, as for nucleic acids in a Pf1-phage medium. For the usual salt strengths and nucleic acid sizes, the Debye-Huckel screening length is smaller than the nucleic acid size, but large enough for the collective of Debye-Huckel spheres to encompass the whole molecule. The molecular alignment is then purely electrostatic, but it's functional form is under these conditions similar to that for steric alignment. The proposed analytical expression allows for very fast calculation of the alignment tensor and hence RDCs from the conformation of the nucleic acid molecule. This information provides opportunities for improved structure determination of nucleic acids, including better assessment of dynamics in (multi-domain) nucleic acids and the possibility to incorporate alignment tensor prediction from shape directly into the structure calculation process. The procedures are incorporated into MATLAB scripts, which are available on request.
Collapse
Affiliation(s)
- Bin Wu
- Laboratory of Physical Chemistry-Biophysical Chemistry, Institute of Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6225ED, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Abstract
Internal loops in RNA are important for folding and function. Consecutive noncanonical pairs can form in internal loops having at least two nucleotides on each side. Thermodynamic and structural insights into such internal loops should improve approximations for their stabilities and predictions of secondary and three-dimensional structures. Most natural internal loops are purine rich. A series of oligoribonucleotides that form purine-rich internal loops of 5-10 nucleotides, including kink-turn loops, were studied by UV melting, exchangeable proton and phosphorus NMR. Three consecutive GA pairs with the motif 5' Y GGA/3' R AAG or GGA R 3'/AAG Y 5' (i.e., 5' GGA 3'/3' AAG 5' closed on at least one side with a CG, UA, or UG pair with Y representing C or U and R representing A or G) stabilize internal loops having 6-10 nucleotides. Certain motifs with two consecutive GA pairs are also stabilizing. In internal loops with three or more nucleotides on each side, the motif 5' U G/3' G A has stability similar to 5' C G/3' G A. A revised model for predicting stabilities of internal loops with 6-10 nucleotides is derived by multiple linear regression. Loops with 2 x 3 nucleotides are predicted well by a previous thermodynamic model.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, Rochester, NY 14627
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627
- Center for Pediatric Biomedical Research and Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| |
Collapse
|
18
|
Richards RJ, Theimer CA, Finger LD, Feigon J. Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. Nucleic Acids Res 2006; 34:816-25. [PMID: 16452301 PMCID: PMC1360744 DOI: 10.1093/nar/gkj481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Telomere addition by telomerase requires an internal templating sequence located in the RNA subunit of telomerase. The correct boundary definition of this template sequence is essential for the proper addition of the nucleotide repeats. Incorporation of incorrect telomeric repeats onto the ends of chromosomes has been shown to induce chromosomal instability in ciliate, yeast and human cells. A 5′ template boundary defining element (TBE) has been identified in human, yeast and ciliate telomerase RNAs. Here, we report the solution structure of the TBE element (helix II) from Tetrahymena thermophila telomerase RNA. Our results indicate that helix II and its capping pentaloop form a well-defined structure including unpaired, stacked adenine nucleotides in the stem and an unusual syn adenine nucleotide in the loop. A comparison of the T.thermophila helix II pentaloop with a pentaloop of the same sequence found in the 23S rRNA of the Haloarcula marismortui ribosome suggests possible RNA and/or protein interactions for the helix II loop within the Tetrahymena telomerase holoenzyme.
Collapse
Affiliation(s)
- Rebecca J. Richards
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - Carla A. Theimer
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - L. David Finger
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
- Molecular Biology Institute, University of CaliforniaLos Angeles, CA 90095-1569, USA
- To whom correspondence should be addressed. Tel: +1 310 206 6922; Fax: +1 310 825 0982;
| |
Collapse
|
19
|
Valadkhan S. snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 2005; 9:603-8. [PMID: 16242989 DOI: 10.1016/j.cbpa.2005.10.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/07/2005] [Indexed: 11/15/2022]
Abstract
The spliceosome, the gigantic molecular machine that performs pre-mRNA splicing in eukaryotes, contains over 200 different proteins and five RNA molecules. The central role played by the spliceosomal RNAs in splicing has led to the hypothesis that, like the ribosome, the spliceosome is an RNA-centric enzyme and a relic from the RNA world. Recent structural studies have provided the first glimpses of the structural features of spliceosomal RNAs, and mutational analyses in vivo and in vitro have uncovered new functional roles for a catalytically essential domain. An emerging model for the active site of group II introns, a closely related class of natural ribozymes, is likely to provide a wealth of insights on structure and function of the active site of the spliceosome.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
20
|
Davis JH, Tonelli M, Scott LG, Jaeger L, Williamson JR, Butcher SE. RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 2005; 351:371-82. [PMID: 16002091 DOI: 10.1016/j.jmb.2005.05.069] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 05/25/2005] [Indexed: 11/21/2022]
Abstract
Tertiary interactions are critical for proper RNA folding and ribozyme catalysis. RNA tertiary structure is often condensed through long-range helical packing interactions mediated by loop-receptor motifs. RNA structures displaying helical packing by loop-receptor interactions have been solved by X-ray crystallography, but not by NMR. Here, we report the NMR structure of a 30 kDa GAAA tetraloop-receptor RNA complex. In order to stabilize the complex, we used a modular design in which the RNA was engineered to form a homodimer, with each subunit containing a GAAA tetraloop phased one helical turn apart from its cognate 11-nucleotide receptor domain. The structure determination utilized specific isotopic labeling patterns (2H, 13C and 15N) and refinement against residual dipolar couplings. We observe a unique and highly unusual chemical shift pattern for an adenosine platform interaction that reveals a spectroscopic fingerprint for this motif. The structure of the GAAA tetraloop-receptor interaction is well defined solely from experimental NMR data, shows minor deviations from previously solved crystal structures, and verifies the previously inferred hydrogen bonding patterns within this motif. This work demonstrates the feasibility of using engineered homodimers as modular systems for the determination of RNA tertiary interactions by NMR.
Collapse
Affiliation(s)
- Jared H Davis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr. Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kwan SS, Brow DA. The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 RNA binding. RNA (NEW YORK, N.Y.) 2005; 11:808-20. [PMID: 15811912 PMCID: PMC1370765 DOI: 10.1261/rna.2010905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.
Collapse
Affiliation(s)
- Sharon S Kwan
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Ave, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
22
|
Staple DW, Butcher SE. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 2005; 349:1011-23. [PMID: 15927637 DOI: 10.1016/j.jmb.2005.03.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/10/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Expression of the HIV reverse transcriptase and other essential viral enzymes requires a -1 translational frameshift. The frameshift event is induced by two highly conserved RNA elements within the HIV-1 mRNA: a UUUUUUA heptamer known as the slippery sequence, and a downstream RNA structure. Here, we report structural and thermodynamic evidence that the HIV-1 frameshift site RNA forms a stem-loop and lower helix separated by a three-purine bulge. We have determined the structure of the 45 nucleotide frameshift site RNA using multidimensional heteronuclear nuclear magnetic resonance (NMR) methods. The upper helix is highly thermostable (T(m)>90 degrees C), forming 11 Watson-Crick base-pairs capped by a stable ACAA tetraloop. The eight base-pair lower helix was found to be only moderately stable (T(m)=47 degrees C). A three-purine bulge separates the highly stable upper helix from the lower helix. Base stacking in the bulge forms a wedge, introducing a 60 degrees bend between the helices. Interestingly, this bend is similar to those seen in a number of frameshift inducing pseudoknots for which structures have been solved. The lower helix must denature to allow the ribosome access to the slippery site, but likely functions as a positioning element that enhances frameshift efficiency.
Collapse
Affiliation(s)
- David W Staple
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Abstract
The application of techniques based on magnetic resonance, specifically electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR), has provided a wealth of new information on RNA structures, as well as insights into the dynamics and function of these important biomolecules. NMR spectroscopy is very successful for determining the solution structures of small RNA domains, aptamers and ribozymes, and exploring their intramolecular dynamics and interactions with ligands. EPR-based methods have been used to map local dynamic and structural features of RNA, to explore different modes of RNA-ligand interaction, to obtain long-range structural restraints and to probe metal-ion-binding sites.
Collapse
Affiliation(s)
- Peter Z Qin
- Department of Chemistry, University of Southern California, LJS-251, 840 Downey Way, Los Angeles, California 90089-0744, USA.
| | | |
Collapse
|
24
|
Sashital DG, Cornilescu G, McManus CJ, Brow DA, Butcher SE. U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 2004; 11:1237-42. [PMID: 15543154 DOI: 10.1038/nsmb863] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/30/2004] [Indexed: 11/10/2022]
Abstract
Intron removal in nuclear precursor mRNA is catalyzed through two transesterification reactions by a multi-megaDalton ribonucleoprotein machine called the spliceosome. A complex between U2 and U6 small nuclear RNAs is a core component of the spliceosome. Here we present an NMR structural analysis of a protein-free U2-U6 complex from Saccharomyces cerevisiae. The observed folding of the U2-U6 complex is a four-helix junction, in which the catalytically important AGC triad base-pairs only within U6 and not with U2. The base-pairing of the AGC triad extends the U6 intramolecular stem-loop (U6 ISL), and the NMR structure of this extended U6 ISL reveals structural similarities with domain 5 of group II self-splicing introns. The observed conformation of the four-helix junction could be relevant to the first, but not the second, step of splicing and may help to position the U6 ISL adjacent to the 5' splice site.
Collapse
Affiliation(s)
- Dipali G Sashital
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Hinse C, Richter C, Provenzani A, Stöckigt J. In vivo monitoring of alkaloid metabolism in hybrid plant cell cultures by 2D cryo-NMR without labelling. Bioorg Med Chem 2003; 11:3913-9. [PMID: 12927851 DOI: 10.1016/s0968-0896(03)00430-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-invasive measurements of alkaloid metabolism in plant cell suspension cultures of a somatic hybrid from Rauvolfia serpentina Benth. ex Kurz and Rhazya stricta Decaisne were carried out. When cell samples were taken sequentially from a stock feeding experiment, measuring times for in vivo NMR of 40 min were sufficient for following conversions of alkaloids at the natural abundance of 13C. Degradation of ajmaline added to the cells at 1.6 mM concentration to raumacline could be monitored after 96 h on a standard 800 MHz NMR instrument (Avance 800). Feeding vinorine an intermediate of ajmaline biosynthesis at 1.8 mM showed with a 500 MHz CryoProbe that the alkaloid enters two metabolic routes. Vinorine is intracellularly transformed on route I through vellosimine and 10-deoxysarpagine into sarpagine. On route II, the alkaloid is converted by hydroxylation through vomilenine into the glucoside raucaffricine. Intracellular alkaloid concentrations of approximately 500 microM are measurable in vivo with cryogenic NMR technology.
Collapse
Affiliation(s)
- Christiane Hinse
- Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
26
|
Staple DW, Butcher SE. Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Res 2003; 31:4326-31. [PMID: 12888491 PMCID: PMC169958 DOI: 10.1093/nar/gkg654] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The translation of reverse transcriptase and other essential viral proteins from the HIV-1 Pol mRNA requires a programmed -1 ribosomal frameshift. This frameshift is induced by two highly conserved elements within the HIV-1 mRNA: a slippery sequence comprised of a UUUUUUA heptamer, and a downstream stem-loop structure. We have determined the structure of the HIV-1 frameshift inducing RNA stem-loop, using multidimensional heteronuclear nuclear magnetic resonance (NMR) methods. The 22 nucleotide RNA solution structure [root mean squared deviation (r.m.s.d.) = 1.2 A] was determined from 475 nuclear Overhauser effect (NOE)-derived distance restrains, 20 residual dipolar couplings and direct detection of hydrogen bonds via scalar couplings. We find that the frameshift inducing stem-loop is an A-form helix capped by a structured ACAA tetraloop. The ACAA tetraloop is stabilized by an equilateral 5' and 3' stacking pattern, a sheared A-A pair and a cross-strand hydrogen bond. Unexpectedly, the ACAA tetraloop structure is nearly identical to a known tetraloop fold, previously identified in the RNase III recognition site from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- David W Staple
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|