1
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
2
|
Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol J 2014; 11:152. [PMID: 25163480 PMCID: PMC4163169 DOI: 10.1186/1743-422x-11-152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Background The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Results Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Conclusions Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-152) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Turan S, Qiao J, Madden S, Benham C, Kotz M, Schambach A, Bode J. Expanding Flp-RMCE options: the potential of Recombinase Mediated Twin-Site Targeting (RMTT). Gene 2014; 546:135-44. [DOI: 10.1016/j.gene.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023]
|
4
|
Gluch A, Vidakovic M, Bode J. Scaffold/matrix attachment regions (S/MARs): relevance for disease and therapy. Handb Exp Pharmacol 2008:67-103. [PMID: 18491049 DOI: 10.1007/978-3-540-72843-6_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is increasing awareness that processes, such as development, aging and cancer, are governed, to a considerable extent, by epigenetic processes, such as DNA and histone modifications. The sites of these modifications in turn reflect their position and role in the nuclear architecture. Since epigenetic changes are easier to reverse than mutations, drugs that remove or add the chemical tags are at the forefront of research for the treatment of cancerous and inflammatory diseases. This review will use selected examples to develop a unified view that might assist the systematic development of novel therapeutic regimens.
Collapse
Affiliation(s)
- A Gluch
- Helmholtz-Zentrum für Infektionsforschung MBIO/Epigenetic Regulation, Inhoffenstrasse 7, Braunschweig, Germany
| | | | | |
Collapse
|
5
|
Nagel S, Scherr M, Kel A, Hornischer K, Crawford GE, Kaufmann M, Meyer C, Drexler HG, MacLeod RAF. Activation of TLX3 and NKX2-5 in t(5;14)(q35;q32) T-cell acute lymphoblastic leukemia by remote 3'-BCL11B enhancers and coregulation by PU.1 and HMGA1. Cancer Res 2007; 67:1461-71. [PMID: 17308084 DOI: 10.1158/0008-5472.can-06-2615] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In T-cell acute lymphoblastic leukemia, alternative t(5;14)(q35;q32.2) forms effect dysregulation of either TLX3 or NKX2-5 homeobox genes at 5q35 by juxtaposition with 14q32.2 breakpoints dispersed across the BCL11B downstream genomic desert. Leukemic gene dysregulation by t(5;14) was investigated by DNA inhibitory treatments with 26-mer double-stranded DNA oligonucleotides directed against candidate enhancers at, or near, orphan T-cell DNase I hypersensitive sites located between 3'-BCL11B and VRK1. NKX2-5 down-regulation in t(5;14) PEER cells was almost entirely restricted to DNA inhibitory treatment targeting enhancers within the distal breakpoint cluster region and was dose and sequence dependent, whereas enhancers near 3'-BCL11B regulated that gene only. Chromatin immunoprecipitation assays showed that the four most effectual NKX2-5 ectopic enhancers were hyperacetylated. These enhancers clustered approximately 1 Mbp downstream of BCL11B, within a region displaying multiple regulatory stigmata, including a TCRA enhancer motif, deep sequence conservation, and tight nuclear matrix attachment relaxed by trichostatin A treatment. Intriguingly, although TLX3/NKX2-5 promoter/exon 1 regions were hypoacetylated, their expression was trichostatin A sensitive, implying extrinsic regulation by factor(s) under acetylation control. Knockdown of PU.1, known to be trichostatin A responsive and which potentially binds TLX3/NKX2-5 promoters, effected down-regulation of both homeobox genes. Moreover, genomic analysis showed preferential enrichment near ectopic enhancers of binding sites for the PU.1 cofactor HMGA1, the knockdown of which also inhibited NKX2-5. We suggest that HMGA1 and PU.1 coregulate ectopic homeobox gene expression in t(5;14) T-cell acute lymphoblastic leukemia by interactions mediated at the nuclear matrix. Our data document homeobox gene dysregulation by a novel regulatory region at 3'-BCL11B responsive to histone deacetylase inhibition and highlight a novel class of potential therapeutic target amid noncoding DNA.
Collapse
MESH Headings
- Acetylation
- Chromosome Breakage
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 5
- DNA-Binding Proteins/genetics
- Deoxyribonuclease I/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Leukemic
- HMGA Proteins/genetics
- Histones/metabolism
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/genetics
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Multigene Family
- Nuclear Matrix/metabolism
- Oligonucleotides/genetics
- Oncogene Proteins/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Proto-Oncogene Proteins/genetics
- RNA, Small Interfering/genetics
- Repressor Proteins/genetics
- Trans-Activators/genetics
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Stefan Nagel
- German Collection of Microorganisms and Cell Cultures, Department of Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. PLANT METHODS 2006; 2:18. [PMID: 17081287 PMCID: PMC1635696 DOI: 10.1186/1746-4811-2-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 11/02/2006] [Indexed: 05/08/2023]
Abstract
Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH) is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene) expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes) and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.
Collapse
Affiliation(s)
- Ana Paula Santos
- Plant Genetic Engineering Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| | - Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - George C Allen
- Plant Transformation Laboratory (PTL), Departments of Crop Science and Horticultural Science, Campus Box 7550, North Carolina State University, Raleigh, NC 27695, USA
| | - William F Thompson
- Plant Gene Expression Laboratory, Campus Box 7550, North Carolina State University Raleigh, NC 27695, USA
| | - Eva Stoger
- Institute for Molecular Biotechnology, RWTH Aachen, 52074 Aachen, Germany
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, UNL, Av. República, 2781-901 Oeiras, Portugal
| |
Collapse
|
7
|
Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology. Cytotechnology 2006; 50:93-108. [PMID: 19003073 DOI: 10.1007/s10616-006-6550-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 01/26/2023] Open
Abstract
The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like PhiC31, which recombine attP and attB target sites in a one-way reaction - at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and PhiC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is 'clean' in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.
Collapse
|
8
|
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17:253-63. [PMID: 16544975 DOI: 10.1089/hum.2006.17.253] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence reveals that random insertion of gene transfer vectors into the genome of repopulating hematopoietic cells may alter their fate in vivo. Although most insertional mutations are expected to have few if any consequences for cellular survival, clonal dominance caused by retroviral vector insertions in (or in the vicinity of) proto-oncogenes or other signaling genes has been described for both normal and malignant hematopoiesis. Important insights into these side effects were initially obtained in murine models. Results from ongoing clinical studies have revealed that similar adverse events may also occur in human gene therapy. However, it remains unknown to what extent the outcome of insertional mutagenesis induced by gene vectors is related to (1) the architecture and type of vector used, (2) intrinsic properties of the target cell, and (3) extrinsic and potentially disease-specific factors influencing clonal competition in vivo. This review discusses reports addressing these questions, underlining the need for models that demonstrate and quantify the functional consequences of insertional mutagenesis. Improving vector design appears to be the most straightforward approach to increase safety, provided all relevant cofactors are considered.
Collapse
Affiliation(s)
- Christopher Baum
- Experimental Cell Therapy, Department of Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
9
|
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Johnson CN, Levy LS. Matrix attachment regions as targets for retroviral integration. Virol J 2005; 2:68. [PMID: 16111492 PMCID: PMC1198263 DOI: 10.1186/1743-422x-2-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 08/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The randomness of retroviral integration has been debated for many years. Recent evidence indicates that integration site selection is not random, and that it is influenced by both viral and cellular factors. To study the role of DNA structure in site selection, retroviral integration near matrix attachment regions (MARs) was analyzed for three different groups of retroviruses. The objective was to assess whether integration near MARs may be a factor for integration site selection. RESULTS Results indicated that MLV, SL3-3 MuLV, HIV-1 and HTLV-1 integrate preferentially near MARs, specifically within 2-kilobases (kb). In addition, a preferential position and orientation relative to the adjacent MAR was observed for each virus. Further analysis of SL3-3 MuLV insertions in common integration sites (CISs) demonstrated a higher frequency of integration near MARs and an orientation preference that was not observed for integrations outside CISs. CONCLUSION These findings contribute to a growing body of evidence indicating that retroviral integration is not random, that MARs influence integration site selection for some retroviruses, and that integration near MARs may have a role in the insertional activation of oncogenes by gammaretroviruses.
Collapse
Affiliation(s)
- Chassidy N Johnson
- Department of Microbiology & Immunology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Laura S Levy
- Department of Microbiology & Immunology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
12
|
Goetze S, Baer A, Winkelmann S, Nehlsen K, Seibler J, Maass K, Bode J. Performance of genomic bordering elements at predefined genomic loci. Mol Cell Biol 2005; 25:2260-72. [PMID: 15743822 PMCID: PMC1061597 DOI: 10.1128/mcb.25.6.2260-2272.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eukaryotic DNA is organized into chromatin domains that regulate gene expression and chromosome behavior. Insulators and/or scaffold-matrix attachment regions (S/MARs) mark the boundaries of these chromatin domains where they delimit enhancing and silencing effects from the outside. By recombinase-mediated cassette exchange (RMCE), we were able to compare these two types of bordering elements at a number of predefined genomic loci. Flanking an expression vector with either S/MARs or two copies of the non-S/MAR chicken hypersensitive site 4 insulator demonstrates that while these borders confer related expression characteristics at most loci, their effect on chromatin organization is clearly distinct. Our results suggest that the activity of bordering elements is most pronounced for the abundant class of loci with a low but negligible expression potential in the case of highly expressed sites. By the RMCE procedure, we demonstrate that expression parameters are not due to a potential targeting action of bordering elements, in the sense that a linked transgene is directed into a special class of loci. Instead, we can relate the observed transcriptional augmentation phenomena to their function as genomic insulators.
Collapse
Affiliation(s)
- Sandra Goetze
- German Research Centre for Biotechnology (GBF), RDIF/Epigenetic Regulation, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Vidaković M, Koester M, Goetze S, Winkelmann S, Klar M, Poznanović G, Bode J. Co-localization of PARP-1 and lamin B in the nuclear architecture: A halo-fluorescence- and confocal-microscopy study. J Cell Biochem 2005; 96:555-68. [PMID: 16052477 DOI: 10.1002/jcb.20516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A functional interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and lamin B has recently been proposed by nuclear fractionation, crosslinking, and immunoprecipitation experiments. Here we use fluorescence microscopy to verify and extend these findings. We analyze nuclear halo preparations by fluorescence in situ immuno staining (FISIS), which shares attributes with traditional nuclear fractionation techniques, and by confocal laser scanning microscopy (CLSM). The results agree in that a major part of the enzyme co-localizes with lamin B under physiological conditions, where PARP-1 only has basal activity. After DNA damage and the associated activation of PARP-1, and during the subsequent entry into apoptosis, dramatic changes occur: a gradual release of the enzyme from the lamina, accompanied by its accumulation in nucleoli. Our observations are in line with biochemical evidence for lamin B-PARP-1 interactions under physiological conditions and suggest ways by which these interactions are modified to support PARP-functions in damage and its fate in apoptosis.
Collapse
Affiliation(s)
- Melita Vidaković
- Molecular Biology Laboratory, Institute for Biological Research, Despot Sephen Blvd. 142, 11060 Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
14
|
Heng HHQ, Goetze S, Ye CJ, Liu G, Stevens JB, Bremer SW, Wykes SM, Bode J, Krawetz SA. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 2004; 117:999-1008. [PMID: 14996931 DOI: 10.1242/jcs.00976] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological significance of nuclear scaffold/matrix-attachment regions (S/MARs) remains a topic of long-standing interest. The key to understanding S/MAR behavior relies on determining the physical attributes of in vivo S/MARs and whether they serve as rigid or flexible chromatin loop anchors. To analyze S/MAR behavior, single and multiple copies of the S/MAR-containing constructs were introduced into various host genomes of transgenic mice and transfected cell lines. These in vivo integration events provided a system to study the association and integration patterns of each introduced S/MAR. By utilizing FISH to visualize directly the localization of S/MARs on the nuclear matrix or chromatin loop, we were able to assign specific attributes to the S/MAR. Surprisingly, when multiple-copy S/MARs were introduced they were selected and used as nuclear matrix anchors in a discriminatory manner, even though they all contained identical primary sequences. This selection process was probably mediated by S/MAR availability including binding strength and copy number, as reflected by the expression profiles and association of multi-copy tandem inserted constructs. Whereas S/MARs functioned as the mediators of loop attachment, they were used in a selective and dynamic fashion. Consequently, S/MAR anchors were necessary but not sufficient for chromatin loops to form. These observations reconcile many seemingly contradictory attributes previously associated with S/MARs.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Architecture and utilization of highly expressed genomic sites. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|