1
|
Klem H, Alegre-Requena JV, Paton RS. Catalytic Effects of Active Site Conformational Change in the Allosteric Activation of Imidazole Glycerol Phosphate Synthase. ACS Catal 2023; 13:16249-16257. [PMID: 38125975 PMCID: PMC10729027 DOI: 10.1021/acscatal.3c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a class-I glutamine amidotransferase (GAT) that hydrolyzes glutamine. Ammonia is produced and transferred to a second active site, where it reacts with N1-(5'-phosphoribosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) to form precursors to purine and histidine biosynthesis. Binding of PrFAR over 25 Å away from the active site increases glutaminase efficiency by ∼4500-fold, primarily altering the glutamine turnover number. IGPS has been the focus of many studies on allosteric communication; however, atomic details for how the glutamine hydrolysis rate increases in the presence of PrFAR are lacking. We present a density functional theory study on 237-atom active site cluster models of IGPS based on crystallized structures representing the inactive and allosterically active conformations and investigate the multistep reaction leading to thioester formation and ammonia production. The proposed mechanism is supported by similar, well-studied enzyme mechanisms, and the corresponding energy profile is consistent with steady-state kinetic studies of PrFAR + IGPS. Additional active site models are constructed to examine the relationship between active site structural change and transition-state stabilization via energy decomposition schemes. The results reveal that the inactive IGPS conformation does not provide an adequately formed oxyanion hole structure and that repositioning of the oxyanion strand relative to the substrate is vital for a catalysis-competent oxyanion hole, with or without the hVal51 dihedral flip. These findings are valuable for future endeavors in modeling the IGPS allosteric mechanism by providing insight into the atomistic changes required for rate enhancement that can inform suitable reaction coordinates for subsequent investigations.
Collapse
Affiliation(s)
- Heidi Klem
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Juan V Alegre-Requena
- Dpto.de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
GTP-Dependent Regulation of CTP Synthase: Evolving Insights into Allosteric Activation and NH3 Translocation. Biomolecules 2022; 12:biom12050647. [PMID: 35625575 PMCID: PMC9138612 DOI: 10.3390/biom12050647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cytidine-5′-triphosphate (CTP) synthase (CTPS) is the class I glutamine-dependent amidotransferase (GAT) that catalyzes the last step in the de novo biosynthesis of CTP. Glutamine hydrolysis is catalyzed in the GAT domain and the liberated ammonia is transferred via an intramolecular tunnel to the synthase domain where the ATP-dependent amination of UTP occurs to form CTP. CTPS is unique among the glutamine-dependent amidotransferases, requiring an allosteric effector (GTP) to activate the GAT domain for efficient glutamine hydrolysis. Recently, the first cryo-electron microscopy structure of Drosophila CTPS was solved with bound ATP, UTP, and, notably, GTP, as well as the covalent adduct with 6-diazo-5-oxo-l-norleucine. This structural information, along with the numerous site-directed mutagenesis, kinetics, and structural studies conducted over the past 50 years, provide more detailed insights into the elaborate conformational changes that accompany GTP binding at the GAT domain and their contribution to catalysis. Interactions between GTP and the L2 loop, the L4 loop from an adjacent protomer, the L11 lid, and the L13 loop (or unique flexible “wing” region), induce conformational changes that promote the hydrolysis of glutamine at the GAT domain; however, direct experimental evidence on the specific mechanism by which these conformational changes facilitate catalysis at the GAT domain is still lacking. Significantly, the conformational changes induced by GTP binding also affect the assembly and maintenance of the NH3 tunnel. Hence, in addition to promoting glutamine hydrolysis, the allosteric effector plays an important role in coordinating the reactions catalyzed by the GAT and synthase domains of CTPS.
Collapse
|
3
|
Yao XQ, Hamelberg D. Residue–Residue Contact Changes during Functional Processes Define Allosteric Communication Pathways. J Chem Theory Comput 2022; 18:1173-1187. [DOI: 10.1021/acs.jctc.1c00669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
4
|
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 2021; 65:165-186. [DOI: 10.1007/s11244-021-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Wurm JP, Sung S, Kneuttinger AC, Hupfeld E, Sterner R, Wilmanns M, Sprangers R. Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nat Commun 2021; 12:2748. [PMID: 33980881 PMCID: PMC8115485 DOI: 10.1038/s41467-021-22968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Imidazole glycerol phosphate synthase (HisFH) is a heterodimeric bienzyme complex operating at a central branch point of metabolism. HisFH is responsible for the HisH-catalyzed hydrolysis of glutamine to glutamate and ammonia, which is then used for a cyclase reaction by HisF. The HisFH complex is allosterically regulated but the underlying mechanism is not well understood. Here, we elucidate the molecular basis of the long range, allosteric activation of HisFH. We establish that the catalytically active HisFH conformation is only formed when the substrates of both HisH and HisF are bound. We show that in this conformation an oxyanion hole in the HisH active site is established, which rationalizes the observed 4500-fold allosteric activation compared to the inactive conformation. In solution, the inactive and active conformations are in a dynamic equilibrium and the HisFH turnover rates correlate with the population of the active conformation, which is in accordance with the ensemble model of allostery. The allosteric regulation of the bienzyme complex imidazole glycerol phosphate synthase (HisFH) remains to be elucidated. Here, the authors provide structural insights into the dynamic allosteric mechanism by which ligand binding to the cyclase and glutaminase active sites of HisFH regulate enzyme activation.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sihyun Sung
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Andrea Christa Kneuttinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Enrico Hupfeld
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany. .,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Abstract
Community network analysis (CNA) of correlated protein motions allows modeling of signals propagation in allosteric proteic systems. From standard classical molecular dynamics (MD) simulations, protein motions can be analysed by means of mutual information between pairs of amino acid residues, providing dynamical weighted networks that contains fundamental information of the communication among amino acids. The CNA method has been successfully applied to a variety of allosteric systems including an enzyme, a nuclear receptor and a bacterial adaptive immune system, providing characterization of the allosteric pathways. This method is complementary to network analyses based on different metrics and it is particularly powerful for studying large proteic systems, as it provides a coarse-grained view of the communication flows within large and complex networks.
Collapse
Affiliation(s)
- Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Italy.
- Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Lake PT, Davidson RB, Klem H, Hocky GM, McCullagh M. Residue-Level Allostery Propagates through the Effective Coarse-Grained Hessian. J Chem Theory Comput 2020; 16:3385-3395. [PMID: 32251581 DOI: 10.1021/acs.jctc.9b01149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The long-ranged coupling between residues that gives rise to allostery in a protein is built up from short-ranged physical interactions. Computational tools used to predict this coupling and its functional relevance have relied on the application of graph theoretical metrics to residue-level correlations measured from all-atom molecular dynamics simulations. The short-ranged interactions that yield these long-ranged residue-level correlations are quantified by the effective coarse-grained Hessian. Here we compute an effective harmonic coarse-grained Hessian from simulations of a benchmark allosteric protein, IGPS, and demonstrate the improved locality of this graph Laplacian over two other connectivity matrices. Additionally, two centrality metrics are developed that indicate the direct and indirect importance of each residue at producing the covariance between the effector binding pocket and the active site. The residue importance indicated by these two metrics is corroborated by previous mutagenesis experiments and leads to unique functional insights; in contrast to previous computational analyses, our results suggest that fP76-hK181 is the most important contact for conveying direct allosteric paths across the HisF-HisH interface. The connectivity around fD98 is found to be important at affecting allostery through indirect means.
Collapse
Affiliation(s)
- Peter T Lake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Russell B Davidson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Heidi Klem
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Martin McCullagh
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Martínez-Guitián M, Vázquez-Ucha JC, Álvarez-Fraga L, Conde-Pérez K, Lasarte-Monterrubio C, Vallejo JA, Bou G, Poza M, Beceiro A. Involvement of HisF in the Persistence of Acinetobacter baumannii During a Pneumonia Infection. Front Cell Infect Microbiol 2019; 9:310. [PMID: 31555607 PMCID: PMC6727670 DOI: 10.3389/fcimb.2019.00310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii is currently considered one of the most problematic nosocomial microorganisms. In the present work the hisF gene from the ATCC 17978 strain and the AbH12O-A2 clinical isolate of A. baumannii was found over-expressed during the course of murine pneumonia infections. The study demonstrated that the A. baumannii ATCC 17978 mutant strain lacking the hisF gene induces a sub-lethal pneumonia infection in mice, while the complemented mutant strain increased its virulence. This histidine auxotroph mutant showed an increase on IL-6 secretion and leukocytes recruitment during infections. Furthermore, data revealed that the hisF gene, implicated in the innate immunity and inflammation, is involved in virulence during a pneumonia infection, which may partly explain the ability of this strain to persist in the lung. We suggest that HisF, essential for full virulence in this pathogen, should be considered a potential target for developing new antimicrobial therapies against A. baumannii. Importance Nosocomial pathogens such as A. baumannii are able to acquire and develop multi-drug resistance and represent an important clinical and economic problem. There is therefore an urgent need to find new therapeutic targets to fight against A. baumannii. In the present work, the potential of HisF from A. baumannii as a therapeutic target has been addressed since this protein is involved in the innate inmunity and the inflamatory response and seems essential to develop a pneumonia in mice. This work lays the groundwork for designing antimicrobial therapies that block the activity of HisF.
Collapse
Affiliation(s)
- Marta Martínez-Guitián
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Kelly Conde-Pérez
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Juan Andrés Vallejo
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología Do Complexo Hospitalario Universitario da Coruña (CHUAC), Instituto de Investigación Biomédica da Coruña (INIBIC), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
9
|
Gheeraert A, Pacini L, Batista VS, Vuillon L, Lesieur C, Rivalta I. Exploring Allosteric Pathways of a V-Type Enzyme with Dynamical Perturbation Networks. J Phys Chem B 2019; 123:3452-3461. [PMID: 30943726 DOI: 10.1021/acs.jpcb.9b01294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Elucidation of the allosteric pathways in proteins is a computational challenge that strongly benefits from combination of atomistic molecular dynamics (MD) simulations and coarse-grained analysis of the complex dynamical network of chemical interactions based on graph theory. Here, we introduce and assess the performances of the dynamical perturbation network analysis of allosteric pathways in a prototypical V-type allosteric enzyme. Dynamical atomic contacts obtained from MD simulations are used to weight the allosteric protein graph, which involves an extended network of contacts perturbed by the effector binding in the allosteric site. The outcome showed good agreement with previously reported theoretical and experimental extended studies and it provided recognition of new potential allosteric spots that can be exploited in future mutagenesis experiments. Overall, the dynamical perturbation network analysis proved to be a powerful computational tool, complementary to other network-based approaches that can assist the full exploitation of allosteric phenomena for advances in protein engineering and rational drug design.
Collapse
Affiliation(s)
- Aria Gheeraert
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie , F69342 Lyon , France
| | - Lorenza Pacini
- Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon , 69007 Lyon , France.,LAMA , Univ. Savoie Mont Blanc, CNRS, LAMA , 73376 Le Bourget du Lac , France.,AMPERE, CNRS, Univ. Lyon , 69622 Lyon , France
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Laurent Vuillon
- LAMA , Univ. Savoie Mont Blanc, CNRS, LAMA , 73376 Le Bourget du Lac , France
| | - Claire Lesieur
- Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon , 69007 Lyon , France.,AMPERE, CNRS, Univ. Lyon , 69622 Lyon , France
| | - Ivan Rivalta
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie , F69342 Lyon , France.,Dipartimento di Chimica Industriale "Toso Montanari" , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
10
|
Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, Rivalta I, Ho J, Batista VS. Eigenvector centrality for characterization of protein allosteric pathways. Proc Natl Acad Sci U S A 2018; 115:E12201-E12208. [PMID: 30530700 PMCID: PMC6310864 DOI: 10.1073/pnas.1810452115] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Heidi P Hendrickson
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
- Department of Chemistry, Lafayette College, Easton, PA 18042
| | - Rhitankar Pal
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France;
- Dipartimento di Chimica Industriale "Toso Montanari," Università degli Studi di Bologna, Viale del Risorgimento, 4I-40136 Bologna, Italy
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| |
Collapse
|
11
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
12
|
Lisi GP, Loria JP. Allostery in enzyme catalysis. Curr Opin Struct Biol 2017; 47:123-130. [DOI: 10.1016/j.sbi.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 01/29/2023]
|
13
|
Altering the allosteric pathway in IGPS suppresses millisecond motions and catalytic activity. Proc Natl Acad Sci U S A 2017; 114:E3414-E3423. [PMID: 28396388 DOI: 10.1073/pnas.1700448114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, meaning that its catalytic rate is critically dependent on activation by its allosteric ligand, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). The allosteric mechanism of IGPS is reliant on millisecond conformational motions for efficient catalysis. We engineered four mutants of IGPS designed to disrupt millisecond motions and allosteric coupling to identify regions that are critical to IGPS function. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments and NMR chemical shift titrations reveal diminished enzyme flexibility and a reshaping of the allosteric connectivity in each mutant construct, respectively. The functional relevance of the observed motional quenching is confirmed by significant reductions in glutaminase kinetic activity and allosteric ligand binding affinity. This work presents relevant conclusions toward the control of protein allostery and design of unique allosteric sites for potential enzyme inhibitors with regulatory or therapeutic benefit.
Collapse
|
14
|
Holinski A, Heyn K, Merkl R, Sterner R. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins 2017; 85:312-321. [PMID: 27936490 DOI: 10.1002/prot.25225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
It is important to identify hotspot residues that determine protein-protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA-HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site-directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high-affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312-321. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Holinski
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| |
Collapse
|
15
|
Lisi GP, Manley GA, Hendrickson H, Rivalta I, Batista VS, Loria JP. Dissecting Dynamic Allosteric Pathways Using Chemically Related Small-Molecule Activators. Structure 2016; 24:1155-66. [PMID: 27238967 PMCID: PMC4938718 DOI: 10.1016/j.str.2016.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/26/2023]
Abstract
The allosteric mechanism of the heterodimeric enzyme imidazole glycerol phosphate synthase was studied in detail with solution nuclear magnetic resonance spectroscopy and molecular dynamics simulations. We studied IGPS in complex with a series of allosteric activators corresponding to a large range of catalytic rate enhancements (26- to 4,900-fold), in which ligand binding is entropically driven. Conformational flexibility on the millisecond timescale plays a crucial role in intersubunit communication. Carr-Purcell-Meiboom-Gill relaxation dispersion experiments probing Ile, Leu, and Val methyl groups reveal that the apo- and glutamine-mimicked complexes are static on the millisecond timescale. Domain-wide motions are stimulated in the presence of the allosteric activators. These studies, in conjunction with ligand titrations, demonstrate that the allosteric network is widely dispersed and varies with the identity of the effector. Furthermore, we find that stronger allosteric ligands create more conformational flexibility on the millisecond timescale throughout HisF. This domain-wide loosening leads to maximum catalytic activity.
Collapse
Affiliation(s)
- George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Gregory A Manley
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Ivan Rivalta
- École Normale Supérieure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, People's Republic of China
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
17
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
18
|
Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Arch Biochem Biophys 2014; 545:22-32. [PMID: 24434004 DOI: 10.1016/j.abb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Ravidra Gudihal
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - John W Burgner
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Anthony M Pedley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander T Zwierko
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Rebecca S Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States.
| |
Collapse
|
19
|
Reisinger B, Sperl J, Holinski A, Schmid V, Rajendran C, Carstensen L, Schlee S, Blanquart S, Merkl R, Sterner R. Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. J Am Chem Soc 2013; 136:122-9. [DOI: 10.1021/ja4115677] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bernd Reisinger
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Josef Sperl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Alexandra Holinski
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Veronika Schmid
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Linn Carstensen
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sandra Schlee
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Samuel Blanquart
- Equipe
Bonsai,
Institut National de Recherche en Informatique et en Automatique, INRIA Lille Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France
| | - Rainer Merkl
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
21
|
Manley G, Rivalta I, Loria JP. Solution NMR and computational methods for understanding protein allostery. J Phys Chem B 2013; 117:3063-73. [PMID: 23445323 DOI: 10.1021/jp312576v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Allosterism is an essential biological regulatory mechanism. In enzymes, allosteric regulation results in an activation or inhibition of catalytic turnover. The mechanisms by which this is accomplished are unclear and vary significantly depending on the enzyme. It is commonly the case that a metabolite binds to the enzyme at a site distant from the catalytic site, yet its binding is coupled to and sensed by the active site. This coupling can manifest in changes in structure, dynamics, or both at the active site. These interactions between the allosteric and active site, which are often quite distant from one another, involve numerous atoms as well as complex conformational rearrangements of the protein secondary and tertiary structure. Interrogation of this complex biological phenomenon necessitates multiple experimental approaches. In this article, we outline a combined solution NMR spectroscopic and computational approach using molecular dynamics and network models to uncover mechanistic aspects of allostery in the enzyme imidazole glycerol phosphate synthase.
Collapse
Affiliation(s)
- Gregory Manley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
22
|
List F, Vega M, Razeto A, Häger M, Sterner R, Wilmanns M. Catalysis Uncoupling in a Glutamine Amidotransferase Bienzyme by Unblocking the Glutaminase Active Site. ACTA ACUST UNITED AC 2012; 19:1589-99. [DOI: 10.1016/j.chembiol.2012.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/02/2012] [Accepted: 10/11/2012] [Indexed: 11/30/2022]
|
23
|
Vanwart AT, Eargle J, Luthey-Schulten Z, Amaro RE. Exploring residue component contributions to dynamical network models of allostery. J Chem Theory Comput 2012; 8:2949-2961. [PMID: 23139645 DOI: 10.1021/ct300377a] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allosteric regulation in biological systems is of considerable interest given the vast number of proteins that exhibit such behavior. Network models obtained from molecular dynamics simulations have been shown to be powerful tools for the analysis of allostery. In this work, different coarse-grain residue representations (nodes) are used together with a dynamical network model to investigate models of allosteric regulation. This model assumes that allosteric signals are dependent on positional correlations of protein substituents, as determined through molecular dynamics simulations, and uses correlated motion to generate a signaling weight between two given nodes. We examine four types of network models using different node representations in Cartesian coordinates: the (i) residue alpha-carbons, (ii) sidechain center of mass, (iii) backbone center of mass, and the entire (iv) residue center of mass. All correlations are filtered by a dynamic contact map that defines the allowable interactions between nodes based on physical proximity. We apply the four models to imidazole glycerol phosphate synthase (IGPS), which provides a well-studied experimental framework in which allosteric communication is known to persist across disparate protein domains (e.g. a protein dimer interface). IGPS is modeled as a network of nodes and weighted edges. Optimal allosteric pathways are traced using the Floyd Warshall algorithm for weighted networks, and community analysis (a form of hierarchical clustering) is performed using the Girvan-Newman algorithm. Our results show that dynamical information encoded in the residue center of mass must be included in order to detect residues that are experimentally known to play a role in allosteric communication for IGPS. More broadly, this new method may be useful for predicting pathways of allosteric communication for any biomolecular system in atomic detail.
Collapse
Affiliation(s)
- Adam T Vanwart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | | | | | | |
Collapse
|
24
|
Tanwar AS, Morar M, Panjikar S, Anand R. Formylglycinamide ribonucleotide amidotransferase from Salmonella typhimurium: role of ATP complexation and the glutaminase domain in catalytic coupling. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:627-36. [PMID: 22683785 DOI: 10.1107/s0907444912006543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
Abstract
Formylglycinamide ribonucleotide (FGAR) amidotransferase (FGAR-AT) takes part in purine biosynthesis and is a multidomain enzyme with multiple spatially separated active sites. FGAR-AT contains a glutaminase domain that is responsible for the generation of ammonia from glutamine. Ammonia is then transferred via a channel to a second active site located in the synthetase domain and utilized to convert FGAR to formylglycinamidine ribonucleotide (FGAM) in an adenosine triphosphate (ATP) dependent reaction. In some ammonia-channelling enzymes ligand binding triggers interdomain signalling between the two diverse active centres and also assists in formation of the ammonia channel. Previously, the structure of FGAR-AT from Salmonella typhimurium containing a glutamyl thioester intermediate covalently bound in the glutaminase active site was determined. In this work, the roles played by various ligands of FGAR-AT in inducing catalytic coupling are investigated. Structures of FGAR-AT from S. typhimurium were determined in two different states: the unliganded form and the binary complex with an ATP analogue in the presence of the glutamyl thioester intermediate. The structures were compared in order to decipher the roles of these two states in interdomain communication. Using a process of elimination, the results indicated that binding of FGAR is most likely to be the major mechanism by which catalytic coupling occurs. This is because conformational changes do not occur either upon formation of the glutamyl thioester intermediate or upon subsequent ATP complexation. A model of the FGAR-bound form of the enzyme suggested that the loop in the synthetase domain may be responsible for initiating catalytic coupling via its interaction with the N-terminal domain.
Collapse
Affiliation(s)
- Ajay Singh Tanwar
- Department of Chemistry, Indian Institute of Technology, IIT-Bombay, Mumbai 400 076, India
| | | | | | | |
Collapse
|
25
|
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase. Biochem J 2012; 443:417-26. [PMID: 22280445 DOI: 10.1042/bj20112210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.
Collapse
|
26
|
Abstract
Protein allosteric pathways are investigated in the imidazole glycerol phosphate synthase heterodimer in an effort to elucidate how the effector (PRFAR, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) activates glutaminase catalysis at a distance of 25 Å from the glutamine-binding site. We apply solution NMR techniques and community analysis of dynamical networks, based on mutual information of correlated protein motions in the active and inactive enzymes. We find evidence that the allosteric pathways in the PRFAR bound enzyme involve conserved residues that correlate motion of the PRFAR binding loop to motion at the protein-protein interface, and ultimately at the glutaminase active site. The imidazole glycerol phosphate synthase bienzyme is an important branch point for the histidine and nucleotide biosynthetic pathways and represents a potential therapeutic target against microbes. The proposed allosteric mechanism and the underlying allosteric pathways provide fundamental insights for the design of new allosteric drugs and/or alternative herbicides.
Collapse
|
27
|
Manley G, Loria JP. NMR insights into protein allostery. Arch Biochem Biophys 2011; 519:223-31. [PMID: 22198279 DOI: 10.1016/j.abb.2011.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022]
Abstract
Allosterism is one of nature's principal methods for regulating protein function. Allosterism utilizes ligand binding at one site to regulate the function of the protein by modulating the structure and dynamics of a distant binding site. In this review, we first survey solution NMR techniques and how they may be applied to the study of allostery. Subsequently, we describe several examples of application of NMR to protein allostery and highlight the unique insight provided by this experimental technique.
Collapse
Affiliation(s)
- Gregory Manley
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
28
|
Bhat JY, Venkatachala R, Singh K, Gupta K, Sarma SP, Balaram H. Ammonia Channeling in Plasmodium falciparum GMP Synthetase: Investigation by NMR Spectroscopy and Biochemical Assays. Biochemistry 2011; 50:3346-56. [DOI: 10.1021/bi1017057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javaid Yousuf Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Roopa Venkatachala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kavita Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
29
|
Nanometer propagation of millisecond motions in V-type allostery. Structure 2011; 18:1596-607. [PMID: 21134639 DOI: 10.1016/j.str.2010.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, which is catalytically inactive for glutamine hydrolysis until the allosteric effector, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binds 30 Å away. In the apo state, NMR relaxation dispersion experiments indicate the absence of millisecond (ms) timescale motions. Binding of the PRFAR to form the active ternary complex is endothermic with a large positive entropy change. In addition, there is a protein wide enhancement of conformational motions in the ternary complex, which connect the two active sites. NMR chemical shift changes and acrylamide quenching experiments suggest that little in the way of structural changes accompany these motions. The data indicate that enzyme activation in the ternary complex is primarily due to an enhancement of ms motions that allows formation of a population of enzymatically active conformers.
Collapse
|
30
|
Lipchock J, Loria JP. Millisecond dynamics in the allosteric enzyme imidazole glycerol phosphate synthase (IGPS) from Thermotoga maritima. JOURNAL OF BIOMOLECULAR NMR 2009; 45:73-84. [PMID: 19565337 PMCID: PMC2918893 DOI: 10.1007/s10858-009-9337-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/03/2009] [Indexed: 05/08/2023]
Abstract
IGPS is a 51 kDa heterodimeric enzyme comprised of two proteins, HisH and HisF, that catalyze the hydrolysis of glutamine to produce NH(3) in the HisH active site and the cyclization of ammonia with N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in HisF to produce imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). Binding of PRFAR and IGP stimulates glutaminase activity in the HisH enzyme over 5,000 and 100-fold, respectively, despite the active sites being >25 A apart. The details of this long-range protein communication process were investigated by solution NMR spectroscopy and CPMG relaxation dispersion experiments. Formation of the heterodimer enzyme results in a reduction in millisecond motions in HisF that extend throughout the protein. Binding of lGP results in an increase in protein-wide millisecond dynamics evidenced as severe NMR line broadening and elevated R (ex) values. Together, these data demonstrate a grouping of flexible residues that link the HisF active site with the protein interface to which HisH binds and provide a model for the path of communication between the IGPS active sites.
Collapse
Affiliation(s)
- James Lipchock
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- To whom correspondence should be addressed: ; phone 203-436-4847; fax 203-432-6144
| |
Collapse
|
31
|
Abstract
The biosynthesis of histidine in Escherichia coli and Salmonella typhimurium has been an important model system for the study of relationships between the flow of intermediates through a biosynthetic pathway and the control of the genes encoding the enzymes that catalyze the steps in a pathway. This article provides a comprehensive review of the histidine biosynthetic pathway and enzymes, including regulation of the flow of intermediates through the pathway and mechanisms that regulate the amounts of the histidine biosynthetic enzymes. In addition, this article reviews the structure and regulation of the histidine (his) biosynthetic operon, including transcript processing, Rho-factor-dependent "classical" polarity, and the current model of his operon attenuation control. Emphasis is placed on areas of recent progress. Notably, most of the enzymes that catalyze histidine biosynthesis have recently been crystallized, and their structures have been determined. Many of the histidine biosynthetic intermediates are unstable, and the histidine biosynthetic enzymes catalyze some chemically unusual reactions. Therefore, these studies have led to considerable mechanistic insight into the pathway itself and have provided deep biochemical understanding of several fundamental processes, such as feedback control, allosteric interactions, and metabolite channeling. Considerable recent progress has also been made on aspects of his operon regulation, including the mechanism of pp(p)Gpp stimulation of his operon transcription, the molecular basis for transcriptional pausing by RNA polymerase, and pathway evolution. The progress in these areas will continue as sophisticated new genomic, metabolomic, proteomic, and structural approaches converge in studies of the histidine biosynthetic pathway and mechanisms of control of his biosynthetic genes in other bacterial species.
Collapse
|
32
|
Tralau T, Lafite P, Levy C, Combe JP, Scrutton NS, Leys D. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J Biol Chem 2009; 284:17826-34. [PMID: 19369258 PMCID: PMC2719421 DOI: 10.1074/jbc.m109.006262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/09/2009] [Indexed: 11/06/2022] Open
Abstract
We report a synthetic biology approach to demonstrate substrate channeling in an unusual bifunctional flavoprotein dimethylglycine oxidase. The catabolism of dimethylglycine through methyl group oxidation can potentially liberate toxic formaldehyde, a problem common to many amine oxidases and dehydrogenases. Using a novel synthetic in vivo reporter system for cellular formaldehyde, we found that the oxidation of dimethylglycine is coupled to the synthesis of 5,10-methylenetetrahydrofolate through an unusual substrate channeling mechanism. We also showed that uncoupling of the active sites could be achieved by mutagenesis or deletion of the 5,10-methylenetetrahydrofolate synthase site and that this leads to accumulation of intracellular formaldehyde. Channeling occurs by nonbiased diffusion of the labile intermediate through a large solvent cavity connecting both active sites. This central "reaction chamber" is created by a modular protein architecture that appears primitive when compared with the sophisticated design of other paradigm substrate-channeling enzymes. The evolutionary origins of the latter were likely similar to dimethylglycine oxidase. This work demonstrates the utility of synthetic biology approaches to the study of enzyme mechanisms in vivo and points to novel channeling mechanisms that protect the cell milieu from potentially toxic reaction products.
Collapse
Affiliation(s)
- Tewes Tralau
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Pierre Lafite
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin Levy
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - John P. Combe
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David Leys
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
33
|
Lipchock JM, Loria JP. 1H, 15N and 13C resonance assignment of imidazole glycerol phosphate (IGP) synthase protein HisF from Thermotoga maritima. BIOMOLECULAR NMR ASSIGNMENTS 2008; 2:219-21. [PMID: 19636909 PMCID: PMC2907236 DOI: 10.1007/s12104-008-9125-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/17/2008] [Indexed: 05/24/2023]
Abstract
HisF comprises one half of the heterodimeric protein complex imidazole glycerol phosphate (IGP) synthase responsible for the fifth step of histidine biosynthesis. Here we report backbone and side chain assignments necessary for characterization of protein dynamics involved in the allosteric mechanism of IGP synthase.
Collapse
Affiliation(s)
- James M Lipchock
- Department of Chemistry, Yale University, Sterling Chemistry Laboratory, New Haven, CT, 06511, USA
| | | |
Collapse
|
34
|
Hart EJ, Powers-Lee SG. Mutation analysis of carbamoyl phosphate synthetase: does the structurally conserved glutamine amidotransferase triad act as a functional dyad? Protein Sci 2008; 17:1120-8. [PMID: 18458150 DOI: 10.1110/ps.073428008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective K(m) increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant k (cat) values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS.
Collapse
Affiliation(s)
- Emily J Hart
- Department of Biology, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | | |
Collapse
|
35
|
Durand P, Golinelli-Pimpaneau B, Mouilleron S, Badet B, Badet-Denisot MA. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 2008; 474:302-17. [PMID: 18279655 DOI: 10.1016/j.abb.2008.01.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
L-Glutamine:d-fructose-6-phosphate amidotransferase, also known as glucosamine-6-phosphate synthase (GlcN6P synthase), which catalyzes the first step in a pathway leading to the formation of uridine 5'-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), is a key point in the metabolic control of the biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of the reaction catalyzed by GlcN6P synthase is complex and involves amide bond cleavage followed by ammonia channeling and sugar isomerization. This article provides a comprehensive overview of the present knowledge on this multi-faceted enzyme emphasizing the progress made during the last five years.
Collapse
Affiliation(s)
- Philippe Durand
- Institut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
36
|
Bhat JY, Shastri BG, Balaram H. Kinetic and biochemical characterization of Plasmodium falciparum GMP synthetase. Biochem J 2008; 409:263-73. [PMID: 17868038 DOI: 10.1042/bj20070996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum, the causative agent of the fatal form of malaria, synthesizes GMP primarily from IMP and, hence, needs active GMPS (GMP synthetase) for its survival. GMPS, a G-type amidotransferase, catalyses the amination of XMP to GMP with the reaction occurring in two domains, the GAT (glutamine amidotransferase) and ATPPase (ATP pyrophosphatase). The GAT domain hydrolyses glutamine to glutamate and ammonia, while the ATPPase domain catalyses the formation of the intermediate AMP-XMP from ATP and XMP. Co-ordination of activity across the two domains, achieved through channelling of ammonia from GAT to the effector domain, is the hallmark of amidotransferases. Our studies aimed at understanding the kinetic mechanism of PfGMPS (Plasmodium falciparum GMPS) indicated steady-state ordered binding of ATP followed by XMP to the ATPPase domain with glutamine binding in a random manner to the GAT domain. We attribute the irreversible, Ping Pong step seen in initial velocity kinetics to the release of glutamate before the attack of the adenyl-XMP intermediate by ammonia. Specific aspects of the overall kinetic mechanism of PfGMPS are different from that reported for the human and Escherichia coli enzymes. Unlike human GMPS, absence of tight co-ordination of activity across the two domains was evident in the parasite enzyme. Variations seen in the inhibition by nucleosides and nucleotide analogues between human GMPS and PfGMPS highlighted differences in ligand specificity that could serve as a basis for the design of specific inhibitors. The present study represents the first report on recombinant His-tagged GMPS from parasitic protozoa.
Collapse
Affiliation(s)
- Javaid Yousuf Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | | | | |
Collapse
|
37
|
Mouilleron S, Golinelli-Pimpaneau B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 2007; 17:653-64. [PMID: 17951049 DOI: 10.1016/j.sbi.2007.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases (GATs), which catalyze the synthesis of different aminated products, channel ammonia over 10-40 A from a glutamine substrate at the glutaminase site to an acceptor substrate at the synthase site. Ammonia production usually uses a cysteine-histidine-glutamate triad or a N-terminal cysteine residue. Crystal structures of several amidotransferase ligand complexes, mimicking intermediates along the catalytic cycle, have now been determined. In most cases, acceptor binding triggers glutaminase activation through domain-hinged movements and other conformational changes. Structural information shows how flexible loops of the synthase and glutaminase domains move to shield the two catalytic sites and anchor the substrates, and how the ammonia channel forms and opens or closes.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie structurales, CNRS Bâtiment 34, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
38
|
Kino K, Kuratsu S, Noguchi A, Kokubo M, Nakazawa Y, Arai T, Yagasaki M, Kirimura K. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum. Biochem Biophys Res Commun 2006; 352:351-9. [PMID: 17123467 DOI: 10.1016/j.bbrc.2006.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/07/2006] [Indexed: 01/23/2023]
Abstract
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.
Collapse
Affiliation(s)
- Kuniki Kino
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vergauwen B, De Vos D, Van Beeumen JJ. Characterization of the Bifunctional γ-Glutamate-cysteine Ligase/Glutathione Synthetase (GshF) of Pasteurella multocida. J Biol Chem 2006; 281:4380-94. [PMID: 16339152 DOI: 10.1074/jbc.m509517200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-cysteine ligase (gamma-ECL) and glutathione synthetase (GS) are the two unrelated ligases that constitute the glutathione biosynthesis pathway in most eukaryotes, purple bacteria, and cyanobacteria. gamma-ECL is a member of the glutamine synthetase family, whereas GS enzymes group together with highly diverse carboxyl-to-amine/thiol ligases, all characterized by the so-called two-domain ATP-grasp fold. This generalized scheme toward the formation of glutathione, however, is incomplete, as functional steady-state levels of intracellular glutathione may also accumulate solely by import, as has been reported for the Pasteurellaceae member Haemophilus influenzae, as well as for certain Gram-positive enterococci and streptococci, or by the action of a bifunctional fusion protein (termed GshF), as has been reported recently for the Gram-positive firmicutes Streptococcus agalactiae and Listeria monocytogenes. Here, we show that yet another member of the Pasteurellaceae family, Pasteurella multocida, acquires glutathione both by import and GshF-driven biosynthesis. Domain architecture analysis shows that this P. multocida GshF bifunctional ligase contains an N-terminal gamma-proteobacterial gamma-ECL-like domain followed by a typical ATP-grasp domain, which most closely resembles that of cyanophycin synthetases, although it has no significant homology with known GS ligases. Recombinant P. multocida GshF overexpresses as an approximately 85-kDa protein, which, on the basis of gel-sizing chromatography, forms dimers in solution. The gamma-ECL activity of GshF is regulated by an allosteric type of glutathione feedback inhibition (K(i) = 13.6 mM). Furthermore, steady-state kinetics, on the basis of which we present a novel variant of half-of-the-sites reactivity, indicate intimate domain-domain interactions, which may explain the bifunctionality of GshF proteins.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | | | | |
Collapse
|
40
|
Abstract
Modern clinical treatments of childhood acute lymphoblastic leukemia (ALL) employ enzyme-based methods for depletion of blood asparagine in combination with standard chemotherapeutic agents. Significant side effects can arise in these protocols and, in many cases, patients develop drug-resistant forms of the disease that may be correlated with up-regulation of the enzyme glutamine-dependent asparagine synthetase (ASNS). Though the precise molecular mechanisms that result in the appearance of drug resistance are the subject of active study, potent ASNS inhibitors may have clinical utility in treating asparaginase-resistant forms of childhood ALL. This review provides an overview of recent developments in our understanding of (a) the structure and catalytic mechanism of ASNS, and (b) the role that ASNS may play in the onset of drug-resistant childhood ALL. In addition, the first successful, mechanism-based efforts to prepare and characterize nanomolar ASNS inhibitors are discussed, together with the implications of these studies for future efforts to develop useful drugs.
Collapse
Affiliation(s)
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
41
|
Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NGJ. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Arch Biochem Biophys 2005; 440:18-27. [PMID: 16023613 DOI: 10.1016/j.abb.2005.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
Several lines of evidence suggest that up-regulation of asparagine synthetase (AS) in human T-cells results in metabolic changes that underpin the appearance of asparaginase-resistant forms of acute lymphoblastic leukemia (ALL). Inhibitors of human AS therefore have potential as agents for treating leukemia and tools for investigating the cellular basis of AS expression and drug-resistance. A critical problem in developing and characterizing potent inhibitors has been a lack of routine access to sufficient quantities of purified, reproducibly active human AS. We now report an efficient protocol for preparing multi-milligram quantities of C-terminally tagged, wild type human AS in a baculovirus-based expression system. The recombinant enzyme is correctly processed and exhibits high catalytic activity. Not only do these studies offer the possibility for investigating the kinetic behavior of biochemically interesting mammalian AS mutants, but such ready access to large amounts of enzyme also represents a major step in the development and characterization of inhibitors that might have clinical utility in treating asparaginase-resistant ALL.
Collapse
Affiliation(s)
- Mihai Ciustea
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | |
Collapse
|
42
|
Amaro RE, Myers RS, Davisson VJ, Luthey-Schulten ZA. Structural elements in IGP synthase exclude water to optimize ammonia transfer. Biophys J 2005; 89:475-87. [PMID: 15849257 PMCID: PMC1366548 DOI: 10.1529/biophysj.104.058651] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the complex pathway of histidine biosynthesis, a key branch point linking amino acid and purine biosynthesis is catalyzed by the bifunctional enzyme imidazole glycerol phosphate (IGP) synthase. The first domain of IGP synthase, a triad glutamine amidotransferase, hydrolyzes glutamine to form glutamate and ammonia. Its activity is tightly regulated by the binding of the substrate PRFAR to its partner synthase domain. Recent crystal structures and molecular dynamics simulations strongly suggest that the synthase domain, a (beta/alpha)(8) barrel protein, mediates the insertion of ammonia and ring formation in IGP by channeling ammonia from one remote active site to the other. Here, we combine both mutagenesis experiments and computational investigations to gain insight into the transfer of ammonia and the mechanism of conduction. We discover an alternate route for the entrance of ammonia into the (beta/alpha)(8) barrel and argue that water acts as both agonist and antagonist to the enzymatic function. Our results indicate that the architecture of the two subdomains, most notably the strict conservation of key residues at the interface and within the (beta/alpha)(8) barrel, has been optimized to allow the efficient passage of ammonia, and not water, between the two remote active sites.
Collapse
Affiliation(s)
- Rommie E Amaro
- Department of Chemistry, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
43
|
Willemoës M, Mølgaard A, Johansson E, Martinussen J. Lid L11 of the glutamine amidotransferase domain of CTP synthase mediates allosteric GTP activation of glutaminase activity. FEBS J 2005; 272:856-64. [PMID: 15670165 DOI: 10.1111/j.1742-4658.2004.04525.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
GTP is an allosteric activator of CTP synthase and acts to increase the k(cat) for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain of CTP synthase. In the GATase domain of the recently published structures of the Escherichia coli and Thermus thermophilus CTP synthases a loop region immediately proceeding amino acid residues forming the oxy-anion hole and named lid L11 is shown for the latter enzyme to be flexible and change position depending on the presence or absence of glutamine in the glutamine binding site. Displacement or rearrangement of this loop may provide a means for the suggested role of allosteric activation by GTP to optimize the oxy-anion hole for glutamine hydrolysis. Arg359, Gly360 and Glu362 of the Lactococcus lactis enzyme are highly conserved residues in lid L11 and we have analyzed their possible role in GTP activation. Characterization of the mutant enzymes R359M, R359P, G360A and G360P indicated that both Arg359 and Gly360 are involved in the allosteric response to GTP binding whereas the E362Q enzyme behaved like wild-type enzyme. Apart from the G360A enzyme, the results from kinetic analysis of the enzymes altered at position 359 and 360 showed a 10- to 50-fold decrease in GTP activation of glutamine dependent CTP synthesis and concomitant four- to 10-fold increases in K(A) for GTP. The R359M, R359P and G360P also showed no GTP activation of the uncoupled glutaminase reaction whereas the G360A enzyme was about twofold more active than wild-type enzyme. The elevated K(A) for GTP and reduced GTP activation of CTP synthesis of the mutant enzymes are in agreement with a predicted interaction of bound GTP with lid L11 and indicate that the GTP activation of glutamine dependent CTP synthesis may be explained by structural rearrangements around the oxy-anion hole of the GATase domain.
Collapse
Affiliation(s)
- Martin Willemoës
- Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004; 44:913-6. [PMID: 15624227 DOI: 10.1002/anie.200461672] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justin M Wiseman
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
45
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200461672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Brilli M, Fani R. The origin and evolution of eucaryal HIS7 genes: from metabolon to bifunctional proteins? Gene 2004; 339:149-60. [PMID: 15363855 DOI: 10.1016/j.gene.2004.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 06/07/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
The fifth step of histidine biosynthesis is catalysed by an imidazole glycerol-phosphate (IGP) synthase. In Archaea and Bacteria, the active form of IGP synthase is a stable 1:1 dimeric complex constituted by a glutamine amidotransferase (GAT) and a cyclase, the products of hisH and hisF. In Eucarya, the two activities are associated with a single bifunctional polypeptide encoded by HIS7. In this work, we report a comparative analysis of the amino acid sequence of all the available HisH, HisF and HIS7 proteins, which allowed depicting a likely evolutionary pathway leading to the present-day bifunctional HIS7 genes. According to the model that we propose, the bifunctional HIS7 gene is the outcome of a gene fusion event between two independent ancestral cistrons encoding an amidotransferase and a cyclase, respectively. The phylogenetic distribution of the eucaryal HIS7 genes and the analysis of all the available prokaryotic counterparts (hisH and hisF) revealed the absence of such fusions in prokaryotes, suggesting that the fusion event very likely occurred in an early stage of eucaryal evolution and was fixed in the nucleated cells. The biological significance of this gene fusion is also discussed.
Collapse
Affiliation(s)
- Matteo Brilli
- Department of Animal Biology and Genetics, University of Florence, Via Romana 17-19, 50125 Firenze, Italy
| | | |
Collapse
|
47
|
Amaro R, Luthey-Schulten Z. Molecular dynamics simulations of substrate channeling through an α–β barrel protein. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|