1
|
Tomida S, Wada A, Furutani Y. Protonation of Asp116 and distortion of the all-trans retinal chromophore in Krokinobacter eikastus rhodopsin 2 causes a redshift in absorption maximum upon dehydration. Photochem Photobiol Sci 2023; 22:2499-2517. [PMID: 37498510 DOI: 10.1007/s43630-023-00464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Water is usually indispensable for protein function. For ion-pumping rhodopsins, water molecules inside the proteins play an important role in ion transportation. In addition to amino acid residues, water molecules regulate the colors of retinal proteins. It was reported that a sodium-pumping rhodopsin, Krokinobacter eikastus rhodopsin 2 (KR2), showed a color change from red to purple upon dehydration under crystalline conditions. Here, we applied comprehensive visible and IR absorption spectroscopy and resonance Raman spectroscopy to KR2 in liposomes under hydration-controlled conditions. A large increase in the hydrogen-out-of-plane (HOOP) vibration at 947 (H-C11=C12-H Au mode) and moderate increases at 893 (C7-H and C10-H) and 808 (C14-H) cm-1 were observed under dehydrated conditions, which were assigned by using systematically deuterated retinal. Moreover, the Asn variant at Asp116, which functions as a counter ion for the protonated retinal Schiff base (PRSB), caused a large redshift in the absorption maximum and constitutive increase in the HOOP modes under hydrated and dehydrated conditions. The protonation of a counter ion at Asp116 clearly causes a redshift in the absorption maximum as the all-trans retinal chromophore twists upon dehydration. Namely, the results strongly suggested that water molecules are important for maintaining the hydrogen-bonding network at the PRSB and deprotonation state of Asp116 in KR2.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
2
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Inukai S, Katayama K, Koyanagi M, Terakita A, Kandori H. Counterion at an atypical position: Investigating the mechanism of photoisomerization in jellyfish rhodopsin. J Biol Chem 2023; 299:104726. [PMID: 37094700 DOI: 10.1016/j.jbc.2023.104726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 (TM2) independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.
Collapse
Affiliation(s)
- Shino Inukai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
4
|
Hanai S, Nagata T, Katayama K, Inukai S, Koyanagi M, Inoue K, Terakita A, Kandori H. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Biochemistry 2023; 62:1347-1359. [PMID: 37001008 DOI: 10.1021/acs.biochem.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.
Collapse
|
5
|
Mizuno Y, Katayama K, Imai H, Kandori H. Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment. Biochemistry 2022; 61:2698-2708. [PMID: 36399519 PMCID: PMC9730847 DOI: 10.1021/acs.biochem.2c00483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Indexed: 11/19/2022]
Abstract
The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.
Collapse
Affiliation(s)
- Yosuke Mizuno
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kota Katayama
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan
Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroo Imai
- Center
for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Katayama K, Suzuki K, Suno R, Kise R, Tsujimoto H, Iwata S, Inoue A, Kobayashi T, Kandori H. Vibrational spectroscopy analysis of ligand efficacy in human M 2 muscarinic acetylcholine receptor (M 2R). Commun Biol 2021; 4:1321. [PMID: 34815515 PMCID: PMC8635417 DOI: 10.1038/s42003-021-02836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M2 muscarinic acetylcholine receptor (M2R). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in M2R. Notably, ATR-FTIR signals strongly correlated with G-protein activation levels in cells. Together, we propose that amide-I band serves as an infrared probe to distinguish the ligand efficacy in M2R and paves the path to rationally design ligands with varied efficacy towards the target GPCR.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Kohei Suzuki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
7
|
Katayama K, Takeyama Y, Enomoto A, Imai H, Kandori H. Disruption of Hydrogen-Bond Network in Rhodopsin Mutations Cause Night Blindness. J Mol Biol 2020; 432:5378-5389. [PMID: 32795534 DOI: 10.1016/j.jmb.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023]
Abstract
Rhodopsin is the photosensitive protein, which binds to 11-cis-retinal as its chromophore. In the dark, rhodopsin exists as a stable complex between the opsin moiety and 11-cis-retinal. The absorption of a light photon converts 11-cis-retinal to all-trans-retinal and initiates our vision. As a result, the increase in the rate of dark activation of rhodopsin reduces its photosensitivity resulting in night blindness. The mutations, G90D and T94I are night blindness-causing mutations that exhibit completely different physicochemical characteristics associated with the dark activation of rhodopsin, such as a high rate of thermal isomerization of 11-cis-retinal and a slow pigment regeneration. To elucidate the molecular mechanism by which G90D and T94I mutations affect rhodopsin dark activation and regeneration, we performed light-induced difference FTIR spectroscopy on dark and primary photo-intermediate states of G90D and T94I mutants. The FTIR spectra clearly show that both charged G90D and hydrophobic T94I mutants alter the H-bond network at the Schiff base region of the chromophore, which weakens the electrostatic interaction with Glu113 counterion. Our results further show an altered water-mediated H-bond network around the central transmembrane region of mutant rhodopsin, which is reminiscent of the active Meta-II state. This altered water-mediated H-bond network may cause thermal isomerization of the chromophore and facilitate rhodopsin dark activation.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yuri Takeyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Akiko Enomoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
8
|
Nikolaev DM, Shtyrov AA, Mereshchenko AS, Panov MS, Tveryanovich YS, Ryazantsev MN. An assessment of water placement algorithms in quantum mechanics/molecular mechanics modeling: the case of rhodopsins' first spectral absorption band maxima. Phys Chem Chem Phys 2020; 22:18114-18123. [PMID: 32761024 DOI: 10.1039/d0cp02638g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) models are a widely used tool to obtain detailed insight into the properties and functioning of proteins. The outcome of QM/MM studies heavily depends on the quality of the applied QM/MM model. Prediction and right placement of internal water molecules in protein cavities is one of the critical parts of any QM/MM model construction. Herein, we performed a systematic study of four protein hydration algorithms. We tested these algorithms for their ability to predict X-ray-resolved water molecules for a set of membrane photosensitive rhodopsin proteins, as well as the influence of the applied water placement algorithms on the QM/MM calculated absorption maxima (λmax) of these proteins. We used 49 rhodopsins and their intermediates with available X-ray structures as the test set. We found that a proper choice of hydration algorithms and setups is needed to predict functionally important water molecules in the chromophore-binding cavity of rhodopsins, such as the water cluster in the N-H region of bacteriorhodopsin or two water molecules in the binding pocket of bovine visual rhodopsin. The QM/MM calculated λmax of rhodopsins is also quite sensitive to the applied protein hydration protocols. The best methodology allows obtaining an 18.0 nm average value for the absolute deviation of the calculated λmax from the experimental λmax. Although the major effect of water molecules on λmax originates from the water molecules located in the binding pocket, the water molecules outside the binding pocket also affect the calculated λmax mainly by causing a reorganization of the protein structure. The results reported in this study can be used for the evaluation and further development of hydration methodologies, in general, and rhodopsin QM/MM models, in particular.
Collapse
Affiliation(s)
- Dmitrii M Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
10
|
Teng D, Chen J, Li D, Wu Z, Li W, Tang Y, Liu G. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model 2020; 60:3214-3230. [DOI: 10.1021/acs.jcim.0c00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhui Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Ehrenberg D, Varma N, Deupi X, Koyanagi M, Terakita A, Schertler GFX, Heberle J, Lesca E. The Two-Photon Reversible Reaction of the Bistable Jumping Spider Rhodopsin-1. Biophys J 2019; 116:1248-1258. [PMID: 30902364 PMCID: PMC6451042 DOI: 10.1016/j.bpj.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bistable opsins are photopigments expressed in both invertebrates and vertebrates. These light-sensitive G-protein-coupled receptors undergo a reversible reaction upon illumination. A first photon initiates the cis to trans isomerization of the retinal chromophore—attached to the protein through a protonated Schiff base—and a series of transition states that eventually results in the formation of the thermally stable and active Meta state. Excitation by a second photon reverts this process to recover the original ground state. On the other hand, monostable opsins (e.g., bovine rhodopsin) lose their chromophore during the decay of the Meta II state (i.e., they bleach). Spectroscopic studies on the molecular details of the two-photon cycle in bistable opsins are limited. Here, we describe the successful expression and purification of recombinant rhodopsin-1 from the jumping spider Hasarius adansoni (JSR1). In its natural configuration, spectroscopic characterization of JSR1 is hampered by the similar absorption spectra in the visible spectrum of the inactive and active states. We solved this issue by separating their absorption spectra by replacing the endogenous 11-cis retinal chromophore with the blue-shifted 9-cis JSiR1. With this system, we used time-resolved ultraviolet-visible spectroscopy after pulsed laser excitation to obtain kinetic details of the rise and decay of the photocycle intermediates. We also used resonance Raman spectroscopy to elucidate structural changes of the retinal chromophore upon illumination. Our data clearly indicate that the protonated Schiff base is stable throughout the entire photoreaction. We additionally show that the accompanying conformational changes in the protein are different from those of monostable rhodopsin, as recorded by light-induced FTIR difference spectroscopy. Thus, we envisage JSR1 as becoming a model system for future studies on the reaction mechanisms of bistable opsins, e.g., by time-resolved x-ray crystallography.
Collapse
Affiliation(s)
- David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Niranjan Varma
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Xavier Deupi
- Division of Neutrons and Muons-Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, Villigen, Switzerland
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Gebhard F X Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany.
| | - Elena Lesca
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Katayama K, Gulati S, Ortega JT, Alexander NS, Sun W, Shenouda MM, Palczewski K, Jastrzebska B. Specificity of the chromophore-binding site in human cone opsins. J Biol Chem 2019; 294:6082-6093. [PMID: 30770468 DOI: 10.1074/jbc.ra119.007587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.
Collapse
Affiliation(s)
- Kota Katayama
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Life Science and Applied Chemistry, Showa-ku, Nagoya 466-8555, Japan; OptoBio Technology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
| | - Joseph T Ortega
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Nathan S Alexander
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | - Marina M Shenouda
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697; Polgenix Inc., Cleveland, Ohio 44106.
| | - Beata Jastrzebska
- From the Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
13
|
Nomura Y, Ito S, Teranishi M, Ono H, Inoue K, Kandori H. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps. Phys Chem Chem Phys 2018; 20:3165-3171. [DOI: 10.1039/c7cp05674e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present FTIR study showed that eubacterial light-driven H+, Na+ and Cl− pump rhodopsins contain strongly hydrogen-bonded water molecule, the functional determinant of light-driven proton pump. This explains well the asymmetric functional conversions of light-driven ion pumps.
Collapse
Affiliation(s)
- Yurika Nomura
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Miwako Teranishi
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Hikaru Ono
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
14
|
Katayama K, Furutani Y, Iwaki M, Fukuda T, Imai H, Kandori H. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys Chem Chem Phys 2018; 20:3381-3387. [DOI: 10.1039/c7cp07277e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tetsuya Fukuda
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hiroo Imai
- Primate Research Institute
- Kyoto University
- Inuyama 484-8506
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBio Technology Research Center
| |
Collapse
|
15
|
Katayama K, Nonaka Y, Tsutsui K, Imai H, Kandori H. Spectral Tuning Mechanism of Primate Blue-sensitive Visual Pigment Elucidated by FTIR Spectroscopy. Sci Rep 2017; 7:4904. [PMID: 28687791 PMCID: PMC5501831 DOI: 10.1038/s41598-017-05177-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
Protein-bound water molecules are essential for the structure and function of many membrane proteins, including G-protein-coupled receptors (GPCRs). Our prior work focused on studying the primate green- (MG) and red- (MR) sensitive visual pigments using low-temperature Fourier transform infrared (FTIR) spectroscopy, which revealed protein-bound waters in both visual pigments. Although the internal waters are located in the vicinity of both the retinal Schiff base and retinal β-ionone ring, only the latter showed differences between MG and MR, which suggests their role in color tuning. Here, we report FTIR spectra of primate blue-sensitive pigment (MB) in the entire mid-IR region, which reveal the presence of internal waters that possess unique water vibrational signals that are reminiscent of a water cluster. These vibrational signals of the waters are influenced by mutations at position Glu113 and Trp265 in Rh, which suggest that these waters are situated between these two residues. Because Tyr265 is the key residue for achieving the spectral blue-shift in λmax of MB, we propose that these waters are responsible for the increase in polarity toward the retinal Schiff base, which leads to the localization of the positive charge in the Schiff base and consequently causes the blue-shift of λmax.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-855, Japan
| | - Yuki Nonaka
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kei Tsutsui
- Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-855, Japan.
| |
Collapse
|
16
|
Tomobe K, Yamamoto E, Kholmurodov K, Yasuoka K. Water permeation through the internal water pathway in activated GPCR rhodopsin. PLoS One 2017; 12:e0176876. [PMID: 28493967 PMCID: PMC5426653 DOI: 10.1371/journal.pone.0176876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Rhodopsin is a light-driven G-protein-coupled receptor that mediates signal transduction in eyes. Internal water molecules mediate activation of the receptor in a rhodopsin cascade reaction and contribute to conformational stability of the receptor. However, it remains unclear how internal water molecules exchange between the bulk and protein inside, in particular through a putative solvent pore on the cytoplasmic. Using all-atom molecular dynamics simulations, we identified the solvent pore on cytoplasmic side in both the Meta II state and the Opsin. On the other hand, the solvent pore does not exist in the dark-adapted rhodopsin. We revealed two characteristic narrow regions located within the solvent pore in the Meta II state. The narrow regions distinguish bulk and the internal hydration sites, one of which is adjacent to the conserved structural motif "NPxxY". Water molecules in the solvent pore diffuse by pushing or sometimes jumping a preceding water molecule due to the geometry of the solvent pore. These findings revealed a total water flux between the bulk and the protein inside in the Meta II state, and suggested that these pathways provide water molecules to the crucial sites of the activated rhodopsin.
Collapse
Affiliation(s)
- Katsufumi Tomobe
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kholmirzo Kholmurodov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russia
- Dubna State University, Dubna, 141980, Russia
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Kamiya M, Hayashi S. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation. J Phys Chem B 2017; 121:3842-3852. [PMID: 28240904 DOI: 10.1021/acs.jpcb.6b13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Fujimoto K, Hayashi S, Hasegawa JY, Nakatsuji H. Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins. J Chem Theory Comput 2015; 3:605-18. [PMID: 26637039 DOI: 10.1021/ct6002687] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excited states of the three retinal proteins, bovine rhodopsin (Rh), bacteriorhodopsin (bR), and sensory rhodopsin II (sRII) were studied using the symmetry-adapted cluster-configuration interaction (SAC-CI) and combined quantum mechanical and molecular mechanical (QM/MM) methods. The computed absorption energies are in good agreement with the experimental ones for all three proteins. The spectral tuning mechanism was analyzed in terms of three contributions: molecular structures of the chromophore in the binding pockets, electrostatic (ES) interaction of the chromophore with the surrounding protein environment, and quantum-mechanical effect between the chromophore and the counterion group. This analysis provided an insight into the mechanism of the large blue-shifts in the absorption peak position of Rh and sRII from that of bR. Protein ES effect is primarily important both in Rh and in sRII, and the structure effect is secondary important in Rh. The quantum-mechanical interaction between the chromophore and the counterion is very important for quantitative reproduction of the excitation energy. These results indicate that the present approach is useful for studying the absorption spectra and the mechanism of the color tuning in the retinal proteins.
Collapse
Affiliation(s)
- Kazuhiro Fujimoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan, and Quantum Chemistry Research Institute (QCRI), 58-8 Mikawa, Momoyama-cho, Fushimi-ku, Kyoto 612-8029, Japan
| | - Shigehiko Hayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan, and Quantum Chemistry Research Institute (QCRI), 58-8 Mikawa, Momoyama-cho, Fushimi-ku, Kyoto 612-8029, Japan
| | - Jun-Ya Hasegawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan, and Quantum Chemistry Research Institute (QCRI), 58-8 Mikawa, Momoyama-cho, Fushimi-ku, Kyoto 612-8029, Japan
| | - Hiroshi Nakatsuji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyou-ku, Kyoto 615-8510, Japan, PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606-8520, Japan, and Quantum Chemistry Research Institute (QCRI), 58-8 Mikawa, Momoyama-cho, Fushimi-ku, Kyoto 612-8029, Japan
| |
Collapse
|
20
|
Katayama K, Kandori H. FTIR study of primate color visual pigments. Biophysics (Nagoya-shi) 2015; 11:61-6. [PMID: 27493516 PMCID: PMC4736781 DOI: 10.2142/biophysics.11.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/25/2014] [Indexed: 12/01/2022] Open
Abstract
How do we distinguish colors? Humans possess three color pigments; red-, green-, and blue-sensitive proteins, which have maximum absorbance (λmax) at 560, 530, and 420 nm, respectively, and contribute to normal human trichromatic vision (RGB). Each color pigments consists of a different opsin protein bound to a common chromophore molecule, 11-cis-retinal, whereas different chromophore-protein interactions allow preferential absorption of different colors. However, detailed experimental structural data to explain the molecular basis of spectral tuning of color pigments are lacking, mainly because of the difficulty in sample preparation. We thus started structural studies of primate color visual pigments using low-temperature Fourier-transform infrared (FTIR) spectroscopy, which needs only 0.3 mg protein for a single measurement. Here we report the first structural data of monkey red- (MR) and green- (MG) sensitive pigments, in which the information about the protein, retinal chromophore, and internal water molecules is contained. Molecular mechanism of color discrimination between red and green pigments will be discussed based on the structural data by FTIR spectroscopy.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
21
|
Ito S, Kato HE, Taniguchi R, Iwata T, Nureki O, Kandori H. Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J Am Chem Soc 2014; 136:3475-82. [PMID: 24512107 DOI: 10.1021/ja410836g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel.
Collapse
Affiliation(s)
- Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS. Unifying family A GPCR theories of activation. Pharmacol Ther 2014; 143:51-60. [PMID: 24561131 DOI: 10.1016/j.pharmthera.2014.02.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Several new pairs of active and inactive GPCR structures have recently been solved enabling detailed structural insight into the activation process, not only of rhodopsin but now also of the β2 adrenergic, M2 muscarinic and adenosine A2A receptors. Combined with structural analyses they have enabled us to examine the different recent theories proposed for GPCR activation and show that they are all indeed parts of the same process, and are intrinsically related through their effect on the central hydrophobic core of GPCRs. This new unifying general process of activation is consistent with the identification of known constitutively active mutants and an in-depth conservational analysis of significant residues implicated in the process.
Collapse
Affiliation(s)
- Benjamin G Tehan
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom.
| | - Andrea Bortolato
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Frank E Blaney
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Malcolm P Weir
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Jonathan S Mason
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| |
Collapse
|
23
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 804] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
24
|
Furutani Y, Kandori H. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:598-605. [PMID: 24041645 DOI: 10.1016/j.bbabio.2013.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
25
|
Muroda K, Nakashima K, Shibata M, Demura M, Kandori H. Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 2012; 51:4677-84. [PMID: 22583333 DOI: 10.1021/bi300485r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteriorhodopsin (BR) and halorhodopsin (HR) are light-driven outward proton and inward chloride pumps, respectively. They have similar protein architecture, being composed of seven-transmembrane helices that bind an all-trans-retinal. BR can be converted into a chloride pump by a single amino acid replacement at position 85, suggesting that BR and HR share a common transport mechanism, and the ionic specificity is determined by the amino acid at that position. However, HR cannot be converted into a proton pump by the corresponding reverse mutation. Here we mutated 6 and 10 amino acids of HR into BR-like, whereas such multiple HR mutants never pump protons. Light-induced Fourier transform infrared spectroscopy revealed that hydrogen bonds of the retinal Schiff base and water are both strong for BR and both weak for HR. Multiple HR mutants exhibit strong hydrogen bonds of the Schiff base, but the hydrogen bond of water is still weak. We concluded that the cause of nonfunctional conversion of HR is the lack of strongly hydrogen-bonded water, the functional determinant of the proton pump.
Collapse
Affiliation(s)
- Kosuke Muroda
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
26
|
Katayama K, Furutani Y, Imai H, Kandori H. Protein-bound water molecules in primate red- and green-sensitive visual pigments. Biochemistry 2012; 51:1126-33. [PMID: 22260165 DOI: 10.1021/bi201676y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-bound water molecules play crucial roles in the structure and function of proteins. The functional role of water molecules has been discussed for rhodopsin, the light sensor for twilight vision, on the basis of X-ray crystallography, Fourier transform infrared (FTIR) spectroscopy, and a radiolytic labeling method, but nothing is known about the protein-bound waters in our color visual pigments. Here we apply low-temperature FTIR spectroscopy to monkey red (MR)- and green (MG)-sensitive color pigments at 77 K and successfully identify water vibrations using D(2)O and D(2)(18)O in the whole midinfrared region. The observed water vibrations are 6-8 for MR and MG, indicating that several water molecules are present near the retinal chromophore and change their hydrogen bonds upon retinal photoisomerization. In this sense, color visual pigments possess protein-bound water molecules essentially similar to those of rhodopsin. The absence of strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) is common between rhodopsin and color pigments, which greatly contrasts with the case of proton-pumping microbial rhodopsins. On the other hand, two important differences are observed in water signal between rhodopsin and color pigments. First, the water vibrations are identical between the 11-cis and 9-cis forms of rhodopsin, but different vibrational bands are observed at >2550 cm(-1) for both MR and MG. Second, strongly hydrogen-bonded water molecules (2303 cm(-1) for MR and 2308 cm(-1) for MG) are observed for the all-trans form after retinal photoisomerization, which is not the case for rhodopsin. These specific features of MR and MG can be explained by the presence of water molecules in the Cl(-)-biding site, which are located near positions C11 and C9 of the retinal chromophore. The averaged frequencies of the observed water O-D stretching vibrations for MR and MG are lower as the λ(max) is red-shifted, suggesting that water molecules are involved in the color tuning of our vision.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
27
|
Katayama K, Furutani Y, Kandori H. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine. J Phys Chem B 2010; 114:9039-46. [PMID: 20557105 DOI: 10.1021/jp102288c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In bovine rhodopsin, 11-cis-retinal forms a Schiff base linkage with Lys296. The Schiff base is not reactive to hydroxylamine in the dark, which is consistent with the well-protected retinal binding site. In contrast, under illumination it easily forms all-trans retinal oxime, resulting in the loss of color. This suggests that activation of rhodopsin creates a specific reaction channel for hydroxylamine or loosens the chromophore binding pocket. In the present study, to extract structural information on the Schiff base vicinity and to understand the changes upon activation of rhodopsin, we compared light-induced FTIR difference spectra of bovine rhodopsin in the presence and absence of hydroxylamine under physiological pH (approximately 7). Although the previous FTIR study did not observe the complex formation between rhodopsin and G-protein transducin in hydrated films, the present study clearly shows that hydrated films can be used for studies of the interaction between rhodopsin and hydroxylamine. Hydroxylamine does not react with the Schiff base of Meta-I intermediate trapped at 240 K, possibly because of decreased conformational motions under the frozen environment, while FTIR spectroscopy showed that hydroxylamine affects the hydrogen bonds of the Schiff base and water molecules in Meta-I. In contrast, formation of the retinal oxime was clearly observed at 280 K, the characteristic temperature of Meta-II accumulation in the absence of hydroxylamine, and time-dependent formation of retinal oxime was observed from Meta-II at 265 K as well. The obtained difference FTIR spectra of retinal oxime and opsin are different from that of Meta-II. It is likely that the antiparallel beta-sheet constituting a part of the retinal binding pocket at the extracellular surface is structurally disrupted in the presence of hydroxylamine, which allows the hydrolysis of the Schiff base into retinal oxime.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
28
|
Neri M, Vanni S, Tavernelli I, Rothlisberger U. Role of aggregation in rhodopsin signal transduction. Biochemistry 2010; 49:4827-32. [PMID: 20459069 DOI: 10.1021/bi100478j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many G protein-coupled receptors (GPCRs) are known to form dimers or even oligomers, and these aggregated states have been proposed as functional units responsible for signal transduction and G protein activation. However, the nature of their involvement has remained elusive. Here, we have investigated the role of aggregation in the signal transduction for dimeric forms of the prototypical GPCR rhodopsin using molecular dynamics simulations. The early steps after photoexcitation are characterized by a tandem mechanism in which one monomer is responsible for light detection while the other serves as the G protein activation site. Dimerization ensures efficient cross-talk between the two units within a few tens of nanoseconds following photoexcitation. This interface-mediated pathway suggests oligomerization-aided signal transduction as a crucial biological strategy to enhance activation efficiency across the entire family of GPCRs.
Collapse
Affiliation(s)
- Marilisa Neri
- Laboratory of Computational Chemistry, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | | | | | | |
Collapse
|
29
|
Lórenz-Fonfría VA, Furutani Y, Ota T, Ido K, Kandori H. Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark. J Am Chem Soc 2010; 132:5693-703. [PMID: 20356096 DOI: 10.1021/ja907756e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient retinal photoisomerization, signal transduction, and amplification contribute to single-photon electrical responses in vertebrates visual cells. However, spontaneous discrete electrical signals arising in the dark, with identical intensity and time profiles as those generated by genuine single photons (dark events), limit the potential capability of the rod visual system to discern single photons from thermal noise. It is accepted that the light and the thermal activation of the rod photoreceptor rhodopsin (Rho) triggers the light and the dark events, respectively. However the activation barrier for the dark events (80-110 kJ/mol) appears to be only half of the barrier for light-dependent activation of Rho (> or =180 kJ/mol). On the basis of these observations, it has been postulated that both processes should follow different pathways, but the molecular mechanism for the thermal activation process still remains an open question and subject of debate. Here, performing infrared difference spectroscopy measurements, we found that the -OH group of Thr118 from bovine Rho exhibits a slow but measurable hydrogen/deuterium exchange (HDX) under native conditions. Given the location of Thr118 in the X-ray structures, isolated from the aqueous phase and in steric contact with the buried retinal chromophore, we assume that a protein structural fluctuation must drive the retinal binding pocket (RBP) transiently open. We characterized the kinetics (rate and activation enthalpy) and thermodynamics (equilibrium constant and enthalpy) of this fluctuation from the global analysis of the HDX of Thr118-OH as a function of the temperature and pH. In parallel, using HPLC chromatography, we determined the kinetics of the thermal isomerization of the protonated 11-cis retinal in solution, as a model for retinal thermal isomerization in an open RBP. Finally, we propose a quantitative two-step model in which the dark activation of Rho is triggered by thermal isomerization of the retinal in a transiently opened RBP, which accurately reproduced both the experimental activation barrier and the rate of the dark events. We conclude that the absolute sensitivity threshold of our visual system is limited by structural fluctuations of the chromophore binding pocket rather than in the chromophore itself.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
30
|
Katayama K, Furutani Y, Imai H, Kandori H. An FTIR study of monkey green- and red-sensitive visual pigments. Angew Chem Int Ed Engl 2010; 49:891-4. [PMID: 20052695 DOI: 10.1002/anie.200903837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kota Katayama
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
31
|
Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H. Low-Temperature FTIR Study of Gloeobacter Rhodopsin: Presence of Strongly Hydrogen-Bonded Water and Long-Range Structural Protein Perturbation upon Retinal Photoisomerization. Biochemistry 2010; 49:3343-50. [DOI: 10.1021/bi100184k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyohei Hashimoto
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ah Reum Choi
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Yuji Furutani
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
32
|
Katayama K, Furutani Y, Imai H, Kandori H. An FTIR Study of Monkey Green- and Red-Sensitive Visual Pigments. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200903837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Photoreactions and structural changes of anabaena sensory rhodopsin. SENSORS 2009; 9:9741-804. [PMID: 22303148 PMCID: PMC3267196 DOI: 10.3390/s91209741] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 12/05/2022]
Abstract
Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer) which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. This article reviews the detailed photoreaction processes of ASR, which were studied by low-temperature Fourier-transform infrared (FTIR) and UV-visible spectroscopy. The former research reveals that the retinal isomerization is similar to bacteriorhodopsin (BR), but the hydrogen-bonding network around the Schiff base and cytoplasmic region is different. The latter study shows the stable photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100% all-trans. These results suggest that the structural changes of ASR in the cytoplasmic domain play important roles in the activation of the transducer protein, and photochromic reaction is optimized for its sensor function.
Collapse
|
34
|
Bondarenko VA, Hayashi F, Usukura J, Yamazaki A. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases. Mol Cell Biochem 2009; 334:125-39. [PMID: 19941040 DOI: 10.1007/s11010-009-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
Abstract
Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.
Collapse
|
35
|
Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc Natl Acad Sci U S A 2009; 106:8555-60. [PMID: 19433801 DOI: 10.1073/pnas.0903545106] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors with seven transmembrane alpha-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A(2A)-adenosine, beta(1)- and beta(2)-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.
Collapse
|
36
|
Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 2009; 16:168-75. [PMID: 19182802 PMCID: PMC2705779 DOI: 10.1038/nsmb.1549] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 01/02/2009] [Indexed: 11/30/2022]
Abstract
The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A critical question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Suzuki D, Sudo Y, Furutani Y, Takahashi H, Homma M, Kandori H. Structural Changes of Salinibacter Sensory Rhodopsin I upon Formation of the K and M Photointermediates. Biochemistry 2008; 47:12750-9. [DOI: 10.1021/bi801358b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuji Furutani
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hazuki Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan, and Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
38
|
Jezierska A, Panek JJ, Koll A. Spectroscopic properties of a strongly anharmonic Mannich base N-oxide. Chemphyschem 2008; 9:839-46. [PMID: 18338342 DOI: 10.1002/cphc.200700769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Car-Parrinello molecular dynamics simulations in vacuum and in the solid state are performed on a strongly anharmonic system, namely, 2-(N-diethylamino-N-oxymethyl)-4,6-dichlorophenol, to investigate its molecular and spectroscopic properties. The investigated compound contains two slightly different molecules in the crystal cell with very short intramolecular hydrogen bonds (of 2.400 and 2.423 A), as determined previously by neutron diffraction. The vibrational properties of the compound are studied on the basis of standard approaches, that is, Fourier transformation of the autocorrelation functions of the atomic velocities and dipole moments. Then, the trajectory obtained from ab initio molecular dynamics is sampled and the obtained snapshots are used to solve the vibrational Schrödinger equations and to calculate the O--H stretching envelope as a superposition of the 0-->1 transition. Using an envelope method, the a posteriori quantum effects are included in the O--H stretching. In addition, NMR spectra are calculated also using the obtained snapshots. One- and two-dimensional potentials of mean force (1D and 2D pmf) are derived to explain the details of the proton dynamics. The computational results are supported by NMR experimental data. In addition, the calculated results are compared with previously published X-ray, neutron diffraction, and spectroscopic descriptions. A detailed analysis of the bridged proton's dynamics is thus obtained. The application of 1D and 2D pmf in a system with a strong bridged-proton delocalization is also demonstrated.
Collapse
Affiliation(s)
- Aneta Jezierska
- University of Wrocław, Faculty of Chemistry, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | | | |
Collapse
|
39
|
Ito M, Sudo Y, Furutani Y, Okitsu T, Wada A, Homma M, Spudich JL, Kandori H. Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII. Biochemistry 2008; 47:6208-15. [PMID: 18479149 DOI: 10.1021/bi8003507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin, ppR) is responsible for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all- trans to 13- cis initiates conformational changes in the protein, leading to activation of the cognate transducer protein (HtrII). We previously observed enhancement of the C 14-D stretching vibration of the retinal chromophore at 2244 cm (-1) upon formation of the K state and interpreted that a steric constraint occurs at the C 14D group in SRII K. Here, we identify the counterpart of the C 14D group as Thr204, because the C 14-D stretching signal disappeared in T204A, T204S, and T204C mutants as well as a C 14-HOOP (hydrogen out-of-plane) vibration at 864 cm (-1). Although the K state of the wild-type bacteriorhodopsin (BR), a light-driven proton pump, possesses neither 2244 nor 864 cm (-1) bands, both signals appeared for the K state of a triple mutant of BR that functions as a light sensor (P200T/V210Y/A215T). We found a positive correlation between these vibrational amplitudes of the C 14 atom at 77 K and the physiological phototaxis response. These observations strongly suggest that the steric constraint between the C 14 group of retinal and Thr204 of the protein is a prerequisite for light-signal transduction by SRII.
Collapse
Affiliation(s)
- Motohiro Ito
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Coto PB, Strambi A, Ferré N, Olivucci M. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution. Proc Natl Acad Sci U S A 2006; 103:17154-9. [PMID: 17090682 PMCID: PMC1859901 DOI: 10.1073/pnas.0604048103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that "brute force" quantum-mechanics/molecular-mechanics computations based on ab initio (i.e., first principles) multiconfigurational perturbation theory can reproduce the absorption maxima of a set of modified bovine rhodopsins with an accuracy allowing for the analysis of the factors determining their colors. In particular, we show that the theory accounts for the changes in excitation energy even when the proteins display the same charge distribution. Three color-tuning mechanisms, leading to changes of close magnitude, are demonstrated to operate in these conditions. The first is based on the change of the conformation of the conjugated backbone of the retinal chromophore. The second operates through the control of the distance between the positive charge residing on the chromophore and the carboxylate counterion. Finally, the third mechanism operates through the changes in orientation of the chromophore relative to the protein. These results offer perspectives for the unbiased computational design of mutants or chemically modified proteins with wanted optical properties.
Collapse
Affiliation(s)
- Pedro B. Coto
- Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Angela Strambi
- Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Nicolas Ferré
- Laboratoire de Chimie Théorique et de Modélisation Moléculaire, Unite Mixte de Recherche 6517, Centre National de la Recherche Scientifique, Université de Provence, Case 521 Faculté de Saint-Jérôme, Avenue Esc. Normandie Niemen, 13397 Marseille Cedex 20, France; and
| | - Massimo Olivucci
- Dipartimento di Chimica, Università di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, OH 43403
| |
Collapse
|
41
|
Lüdeke S, Beck M, Yan ECY, Sakmar TP, Siebert F, Vogel R. The role of Glu181 in the photoactivation of rhodopsin. J Mol Biol 2005; 353:345-56. [PMID: 16169009 DOI: 10.1016/j.jmb.2005.08.039] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 02/04/2023]
Abstract
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Biophysics Group, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Fujimoto K, Hasegawa JY, Hayashi S, Kato S, Nakatsuji H. Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.04.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Nozaki D, Iwata T, Tokutomi S, Kandori H. Water structural changes in the activation process of the LOV2 domain of Adiantum phytochrome3. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2004.10.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Furutani Y, Shibata M, Kandori H. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Photochem Photobiol Sci 2005; 4:661-6. [PMID: 16121274 DOI: 10.1039/b416698a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In many rhodopsins, a positively charged retinal chromophore is stabilized by a negatively charged carboxylate, and the presence of bound water molecules has been found in the Schiff base region by X-ray crystallography of various rhodopsins. Low-temperature Fourier-transform infrared (FTIR) spectroscopy can directly monitor hydrogen-bonding alterations of internal water molecules of rhodopsins. In particular, we found that a bridged water molecule between the Schiff base and Asp 85 in bacteriorhodopsin (BR), a light-driven proton-pump protein, forms an extremely strong hydrogen bond. It is likely that a hydration switch of the water from Asp 85 to Asp 212 plays an important role in the proton transfer in the Schiff base region of BR. Comprehensive studies of archaeal and visual rhodopsins have revealed that strongly hydrogen-bonded water molecules are only found in the proteins exhibiting proton-pump activities. Strongly hydrogen-bonded water molecules and its transient weakening may be essential for the proton-pump function of rhodopsins.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
45
|
Kandori H. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:72-9. [PMID: 15282177 DOI: 10.1016/j.bbabio.2004.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/27/2022]
Abstract
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
46
|
Gascon JA, Batista VS. QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys J 2004; 87:2931-41. [PMID: 15339806 PMCID: PMC1304767 DOI: 10.1529/biophysj.104.048264] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The energy storage and the molecular rearrangements due to the primary photochemical event in rhodopsin are investigated by using quantum mechanics/molecular mechanics hybrid methods in conjunction with high-resolution structural data of bovine visual rhodopsin. The analysis of the reactant and product molecular structures reveals the energy storage mechanism as determined by the detailed molecular rearrangements of the retinyl chromophore, including rotation of the (C11-C12) dihedral angle from -11 degrees in the 11-cis isomer to -161 degrees in the all-trans product, where the preferential sense of rotation is determined by the steric interactions between Ala-117 and the polyene chain at the C13 position, torsion of the polyene chain due to steric constraints in the binding pocket, and stretching of the salt bridge between the protonated Schiff base and the Glu-113 counterion by reorientation of the polarized bonds that localize the net positive charge at the Schiff-base linkage. The energy storage, computed at the ONIOM electronic-embedding approach (B3LYP/6-31G*:AMBER) level of theory and the S0-->S1 electronic-excitation energies for the dark and product states, obtained at the ONIOM electronic-embedding approach (TD-B3LYP/6-31G*//B3LYP/6-31G*:AMBER) level of theory, are in very good agreement with experimental data. These results are particularly relevant to the development of a first-principles understanding of the structure-function relations in prototypical G-protein-coupled receptors.
Collapse
Affiliation(s)
- Jose A Gascon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
47
|
Stojanovic A, Stitham J, Hwa J. Critical role of transmembrane segment zinc binding in the structure and function of rhodopsin. J Biol Chem 2004; 279:35932-41. [PMID: 15194703 DOI: 10.1074/jbc.m403821200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc deficiency and retinitis pigmentosa are both important factors resulting in retinal dysfunction and night blindness. In this study, we address the critical biochemical and structural relevance of zinc ions in rhodopsin and examine whether zinc deficiency can lead to rhodopsin dysfunction. We report the identification of a high-affinity zinc coordination site within the transmembrane domain of rhodopsin, coordinated by the side chains of two highly conserved residues, Glu(122) in transmembrane helix III and His(211) in transmembrane helix V. We also demonstrate that this zinc coordination is critical for rhodopsin folding, 11-cis-retinal binding, and the stability of the chromophore-receptor interaction, defects of which are observed in retinitis pigmentosa. Furthermore, a cluster of retinitis pigmentosa mutations is localized within and around this zinc binding site. Based on these studies, we believe that improvement in zinc binding to rhodopsin at this site within the transmembrane domain may be a pharmacological approach for the treatment of select retinitis pigmentosa mutations. Transmembrane coordination of zinc may also be an important common principle across G-protein-coupled receptors.
Collapse
Affiliation(s)
- Aleksandar Stojanovic
- Department of Pharmacology & Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|