1
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
2
|
Jiang HW, Wu HY, Wang CH, Yang CH, Ko JT, Ho HC, Tsai MD, Bryant DA, Li FW, Ho MC, Ho MY. A structure of the relict phycobilisome from a thylakoid-free cyanobacterium. Nat Commun 2023; 14:8009. [PMID: 38049400 PMCID: PMC10696076 DOI: 10.1038/s41467-023-43646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.
Collapse
Affiliation(s)
- Han-Wei Jiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Tse Ko
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan.
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zheng L, Zhang Z, Wang H, Zheng Z, Wang J, Liu H, Chen H, Dong C, Wang G, Weng Y, Gao N, Zhao J. Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes. Nat Commun 2023; 14:3961. [PMID: 37407580 DOI: 10.1038/s41467-023-39689-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iβ822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.
Collapse
Affiliation(s)
- Lvqin Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Hongrui Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ning Gao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Liu H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023; 62:1307-1320. [PMID: 36943676 DOI: 10.1021/acs.biochem.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
6
|
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2022; 10:microorganisms10071313. [PMID: 35889032 PMCID: PMC9319322 DOI: 10.3390/microorganisms10071313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed.
Collapse
|
7
|
Hidalgo Martinez D, Betterle N, Melis A. Phycocyanin Fusion Constructs for Heterologous Protein Expression Accumulate as Functional Heterohexameric Complexes in Cyanobacteria. ACS Synth Biol 2022; 11:1152-1166. [PMID: 35257571 DOI: 10.1021/acssynbio.1c00449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overexpression of heterologous proteins from plants, bacteria, and human as fusion constructs in cyanobacteria has been documented in the literature. Typically, the heterologous protein "P" of interest is expressed as a fusion with the abundant CpcB β-subunit of phycocyanin (PC), which was placed in the leader sequence position. The working hypothesis for such overexpressions is that CpcB*P fusion proteins somehow accumulate in a soluble and stable form in the cytosol of the cyanobacteria, retaining the activity of the trailing heterologous "P" protein of interest. The present work revealed a substantially different and previously unobvious picture, comprising the following properties of the above-mentioned CpcB*P fusion constructs: (i) the CpcB*P proteins assemble as functional (α,β*P)3CpcG heterohexameric discs, where α is the CpcA α-subunit of PC, β*P is the CpcB*P fusion protein, the asterisk denotes fusion, and CpcG is the 28.9 kDa PC disc linker polypeptide CpcG1. (ii) The (α,β*P)3CpcG1 complexes covalently bind one open tetrapyrrole bilin co-factor per α-subunit and two bilins per β-subunit. (iii) The (α,β*P)3CpcG1 heterohexameric discs are functionally attached to the Synechocystis allophycocyanin (AP) core cylinders and efficiently transfer excitation energy from the assembled (α,β*P)3CpcG1 heterohexamer to the PSII reaction center, enhancing the rate of photochemical charge separation and electron transfer activity in this photosystem. (iv) In addition to the human interferon α-2 and tetanus toxin fragment C tested in this work, we have shown that enzymes such as the plant-origin isoprene synthase, β-phellandrene synthase, geranyl diphosphate synthase, and geranyl linalool synthase are also overexpressed, while retaining their catalytic activity in the respective fusion construct configuration. (v) Folding models for the (α,β*P)3CpcG1 heterohexameric discs showed the recombinant proteins P to be radially oriented with respect to the (α,β)3 compact disc. Elucidation of the fusion construct configuration and function will pave the way for the rational design of fusion constructs harboring and overexpressing multiple proteins of scientific and commercial interest.
Collapse
Affiliation(s)
- Diego Hidalgo Martinez
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Nico Betterle
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Anastasios Melis
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| |
Collapse
|
8
|
Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MY, Brudvig GW, Bryant DA. Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 2022; 298:101408. [PMID: 34793839 PMCID: PMC8689207 DOI: 10.1016/j.jbc.2021.101408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.
Collapse
Affiliation(s)
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
9
|
Zheng L, Zheng Z, Li X, Wang G, Zhang K, Wei P, Zhao J, Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nat Commun 2021; 12:5497. [PMID: 34535665 PMCID: PMC8448738 DOI: 10.1038/s41467-021-25813-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Phycobilisomes (PBS) are the major light-harvesting machineries for photosynthesis in cyanobacteria and red algae and they have a hierarchical structure of a core and peripheral rods, with both consisting of phycobiliproteins and linker proteins. Here we report the cryo-EM structures of PBS from two cyanobacterial species, Anabaena 7120 and Synechococcus 7002. Both PBS are hemidiscoidal in shape and share a common triangular core structure. While the Anabaena PBS has two additional hexamers in the core linked by the 4th linker domain of ApcE (LCM). The PBS structures predict that, compared with the PBS from red algae, the cyanobacterial PBS could have more direct routes for energy transfer to ApcD. Structure-based systematic mutagenesis analysis of the chromophore environment of ApcD and ApcF subunits reveals that aromatic residues are critical to excitation energy transfer (EET). The structures also suggest that the linker protein could actively participate in the process of EET in both rods and the cores. These results provide insights into the organization of chromophores and the mechanisms of EET within cyanobacterial PBS.
Collapse
Affiliation(s)
- Lvqin Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Zhenggao Zheng
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.410645.20000 0001 0455 0905College of Life Science, Qingdao University, 266071 Qingdao, China
| | - Xiying Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Guopeng Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Kun Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Peijun Wei
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, 100871 Beijing, China ,grid.429211.d0000 0004 1792 6029Key Laboratory of Phycology of CAS, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, Hubei China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| |
Collapse
|
10
|
Structural implications for a phycobilisome complex from the thermophilic cyanobacterium Thermosynechococcus vulcanus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148458. [PMID: 34062150 DOI: 10.1016/j.bbabio.2021.148458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022]
Abstract
Phycobilisomes (PBSs) are huge, water-soluble light-harvesting complexes used by oxygenic photosynthetic organisms. The structures of some subunits of the PBSs, including allophycocyanin (APC) and phycocyanin (PC), have been solved by X-ray crystallography previously. However, there are few reports on the overall structures of PBS complexes in photosynthetic organisms. Here, we report the overall structure of the PBS complex isolated from the cyanobacterium Thermosynechococcus vulcanus, determined by negative-staining electron microscopy (EM). Intact PBS complexes were purified by trehalose density gradient centrifugation with a high-concentration phosphate buffer and then subjected to a gradient-fixation preparation using glutaraldehyde. The final map constructed by the single-particle analysis of EM images showed a hemidiscoidal structure of the PBS, consisting of APC cores and peripheral PC rods. The APC cores are composed of five cylinders: A1, A2, B, C1, and C2. Each of the cylinders is composed of three (A1 and A2), four (B), or two (C1 and C2) APC trimers. In addition, there are eight PC rods in the PBS: one bottom pair (Rb and Rb'), one top pair (Rt and Rt'), and two side pairs (Rs1/Rs1' and Rs2/Rs2'). Comparison with the overall structures of PBSs from other organisms revealed structural characteristics of T. vulcanus PBS.
Collapse
|
11
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
12
|
Kannchen D, Zabret J, Oworah-Nkruma R, Dyczmons-Nowaczyk N, Wiegand K, Löbbert P, Frank A, Nowaczyk MM, Rexroth S, Rögner M. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148208. [PMID: 32339488 DOI: 10.1016/j.bbabio.2020.148208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP+ Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: "Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production". Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells - for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.
Collapse
Affiliation(s)
- Daniela Kannchen
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jure Zabret
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Regina Oworah-Nkruma
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nina Dyczmons-Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katrin Wiegand
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Pia Löbbert
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc Michael Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
13
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2019; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Liu H, Weisz DA, Zhang MM, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE. Phycobilisomes Harbor FNR L in Cyanobacteria. mBio 2019; 10:e00669-19. [PMID: 31015331 PMCID: PMC6479007 DOI: 10.1128/mbio.00669-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cyanobacterial phycobilisomes (PBSs) are photosynthetic antenna complexes that harvest light energy and supply it to two reaction centers (RCs) where photochemistry starts. PBSs can be classified into two types, depending on the presence of allophycocyanin (APC): CpcG-PBS and CpcL-PBS. Because the accurate protein composition of CpcL-PBS remains unclear, we describe here its isolation and characterization from the cyanobacterium Synechocystis sp. strain 6803. We found that ferredoxin-NADP+ oxidoreductase (or FNRL), an enzyme involved in both cyclic electron transport and the terminal step of the electron transport chain in oxygenic photosynthesis, is tightly associated with CpcL-PBS as well as with CpcG-PBS. Room temperature and low-temperature fluorescence analyses show a red-shifted emission at 669 nm in CpcL-PBS as a terminal energy emitter without APC. SDS-PAGE and quantitative mass spectrometry reveal an increased content of FNRL and CpcC2, a rod linker protein, in CpcL-PBS compared to that of CpcG-PBS rods, indicative of an elongated CpcL-PBS rod length and its potential functional differences from CpcG-PBS. Furthermore, we combined isotope-encoded cross-linking mass spectrometry with computational protein structure predictions and structural modeling to produce an FNRL-PBS binding model that is supported by two cross-links between K69 of FNRL and the N terminus of CpcB, one component in PBS, in both CpcG-PBS and CpcL-PBS (cross-link 1), and between the N termini of FNRL and CpcB (cross-link 2). Our data provide a novel functional assembly form of phycobiliproteins and a molecular-level description of the close association of FNRL with phycocyanin in both CpcG-PBS and CpcL-PBS.IMPORTANCE Cyanobacterial light-harvesting complex PBSs are essential for photochemistry in light reactions and for balancing energy flow to carbon fixation in the form of ATP and NADPH. We isolated a new type of PBS without an allophycocyanin core (i.e., CpcL-PBS). CpcL-PBS contains both a spectral red-shifted chromophore, enabling efficient energy transfer to chlorophyll molecules in the reaction centers, and an increased FNRL content with various rod lengths. Identification of a close association of FNRL with both CpcG-PBS and CpcL-PBS brings new insight to its regulatory role for fine-tuning light energy transfer and carbon fixation through both noncyclic and cyclic electron transport.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ming Cheng
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hao Zhang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary S Gerstenecker
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Barrera-Rojas J, de la Vara LG, Ríos-Castro E, Leyva-Castillo LE, Gómez-Lojero C. The distribution of divinyl chlorophylls a and b and the presence of ferredoxin-NADP + reductase in Prochlorococcus marinus MIT9313 thylakoid membranes. Heliyon 2018; 4:e01100. [PMID: 30627680 PMCID: PMC6312871 DOI: 10.1016/j.heliyon.2018.e01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022] Open
Abstract
The marine unicellular green cyanobacterium Prochlorococcus marinus MIT9313 belongs to the most abundant and photosynthetically productive genus of cyanobacteria in the oceans. This monophyletic genus use divinyl chlorophyll a (Chl a 2 ) and b (Chl b 2 ) to build the photosystems and the membrane-intrinsic Pcb-type antennae. We used the mild detergent n-dodecyl β D-maltopyranoside to solubilize the thylakoid membranes. Gel electrophoresis and sucrose gradient ultracentrifugation was then used to separate the complexes of the photosynthetic apparatus. The proteins and the pigments were identified by mass spectrometry. Protein complexes were characterized biochemically, and the distribution of Chl a 2 and Chl b 2 was determined. The photosynthetic apparatus was shown as supercomplexes formed by Photosystem II dimers with up to eight PcbB proteins; Photosystem I was present as trimers. A heterogeneous distribution of pigments was shown using sucrose gradient-enriched fractions with ratios of [Chl b 2 ]/[Chl a 2 ] of 2.16 ± 0.13, 1.86 ± 0.08, and 2.61 ± 0.07, for Photosystem I, Photosystem II, and PcbB, respectively. These ratios of Chl b/a are without precedent in organisms with oxygenic photosynthesis. Diaphorase activity was measured in the fractions of the sucrose gradient. Gel electrophoresis, immunodetection, and mass spectrometry were used to conclude that the commonly soluble protein ferredoxin-NADP+ reductase (FNR) is a membrane-anchored protein (probably associated to cytochrome b 6 f complex) in the low-light adapted Prochlorococcus marinus MIT9313.
Collapse
Affiliation(s)
- Jesús Barrera-Rojas
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| | | | | | | | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico
| |
Collapse
|
16
|
Herrera-Salgado P, Leyva-Castillo LE, Ríos-Castro E, Gómez-Lojero C. Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. PHOTOSYNTHESIS RESEARCH 2018; 138:39-56. [PMID: 29943359 DOI: 10.1007/s11120-018-0536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.
Collapse
Affiliation(s)
- Priscila Herrera-Salgado
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lourdes E Leyva-Castillo
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Emmanuel Ríos-Castro
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Mexico City, Mexico.
| |
Collapse
|
17
|
Elanskaya IV, Zlenko DV, Lukashev EP, Suzina NE, Kononova IA, Stadnichuk IN. Phycobilisomes from the mutant cyanobacterium Synechocystis sp. PCC 6803 missing chromophore domain of ApcE. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:280-291. [DOI: 10.1016/j.bbabio.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
|
18
|
Vorphal MA, Bruna C, Wandersleben T, Dagnino-Leone J, Lobos-González F, Uribe E, Martínez-Oyanedel J, Bunster M. Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from Gracilaria chilensis and its complex with ferredoxin. Biol Res 2017; 50:39. [PMID: 29221464 PMCID: PMC5723097 DOI: 10.1186/s40659-017-0144-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/04/2017] [Indexed: 12/18/2022] Open
Abstract
Backgroud Ferredoxin NADP(H) oxidoreductases (EC 1.18.1.2) (FNR) are flavoenzymes present in photosynthetic organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS soluble protein acceptor of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a structural analysis of the complex FNR/Fd. Methods The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phycobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5′RACE was used to confirm the absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by comparative modeling and a model for the complex FNR: Fd by docking. Results The kinetic analysis shows KMNADPH of 12.5 M and a kcat of 86 s−1, data consistent with the parameters determined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent. Transcriptome analysis of Gch revealed the presence of two Fd; FdL and FdS , sharing the motif CX5CX2CX29X. The analysis indicated that the most probable partner for FNR is FdS. Conclusion The interaction model produced, was consistent with functional properties reported for FNR in plants leaves, and opens the possibilities for research in other rhodophyta of commercial interest. Electronic supplementary material The online version of this article (10.1186/s40659-017-0144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Alejandra Vorphal
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Carola Bruna
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Traudy Wandersleben
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Jorge Dagnino-Leone
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Francisco Lobos-González
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - Elena Uribe
- Laboratorio de Enzimología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile
| | - José Martínez-Oyanedel
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile.
| | - Marta Bunster
- Laboratorio de Biofísica Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Casilla 160_C, Concepción, Chile.
| |
Collapse
|
19
|
Alcántara-Sánchez F, Leyva-Castillo LE, Chagolla-López A, González de la Vara L, Gómez-Lojero C. Distribution of isoforms of ferredoxin-NADP + reductase (FNR) in cyanobacteria in two growth conditions. Int J Biochem Cell Biol 2017; 85:123-134. [PMID: 28189842 DOI: 10.1016/j.biocel.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Ferredoxin-NADP+ reductase (FNR) transfers reducing equivalents between ferredoxin and NADP(H) in the photosynthetic electron transport chains of chloroplasts and cyanobacteria. In most cyanobacteria, FNR is coded by a single petH gene. The structure of FNR in photosynthetic organisms can be constituted by FAD-binding and NADPH-binding domains (FNR-2D), or by these and an additional N-terminal domain (FNR-3D). In this article, biochemical evidence is provided supporting the induction of FNR-2D by iron or combined nitrogen deficiency in the cyanobacteria Synechocystis PCC 6803 and Anabaena variabilis ATCC 29413. In cell extracts of these cyanobacteria, most of FNR was associated to phycobilisomes (PBS) or phycocyanin (PC), and the rest was found as free enzyme. Free FNR activity increased in both cyanobacteria under iron stress and during diazotrophic conditions in A. variabilis. Characterization of FNR from both cyanobacteria showed that the PBS-associated enzyme was FNR-3D and the free enzyme was mostly a FNR-2D isoform. Predominant isoforms in heterocysts of A. variabilis were FNR-2D; where its N-terminal sequence lacked an initial (formyl)methionine. This means that FNR-3D is targeted to thylakoid membrane, and anchored to PBS, and FNR-2D is found as a soluble protein in the cytoplasm, when iron or fixed nitrogen deficiencies prevail in the environment. Moreover, given that Synechocystis and Anabaena variabilis are dissimilar in genotype, phenotype and ecology, the presence of these two-domain proteins in these species suggests that the mechanism of FNR induction is common among cyanobacteria regardless of their habitat and morphotype.
Collapse
Affiliation(s)
- Felipe Alcántara-Sánchez
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| | - Lourdes Elizabeth Leyva-Castillo
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| | | | | | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Cd de México, Mexico.
| |
Collapse
|
20
|
Ho MY, Gan F, Shen G, Bryant DA. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light. PHOTOSYNTHESIS RESEARCH 2017; 131:187-202. [PMID: 27623780 DOI: 10.1007/s11120-016-0303-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.
Collapse
Affiliation(s)
- Ming-Yang Ho
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Gan
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- 403C Althouse Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
21
|
Mutoh R, Muraki N, Shinmura K, Kubota-Kawai H, Lee YH, Nowaczyk MM, Rögner M, Hase T, Ikegami T, Kurisu G. X-ray Structure and Nuclear Magnetic Resonance Analysis of the Interaction Sites of the Ga-Substituted Cyanobacterial Ferredoxin. Biochemistry 2015; 54:6052-61. [DOI: 10.1021/acs.biochem.5b00601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Risa Mutoh
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Norifumi Muraki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Kanako Shinmura
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Hisako Kubota-Kawai
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Young-Ho Lee
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Marc M. Nowaczyk
- Plant
Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant
Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Toshiharu Hase
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Takahisa Ikegami
- Department
of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Genji Kurisu
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
22
|
Bernstein HC, Konopka A, Melnicki MR, Hill EA, Kucek LA, Zhang S, Shen G, Bryant DA, Beliaev AS. Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front Microbiol 2014; 5:488. [PMID: 25285095 PMCID: PMC4168726 DOI: 10.3389/fmicb.2014.00488] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/30/2014] [Indexed: 01/30/2023] Open
Abstract
Synechococcus sp. PCC 7002 was grown to steady state in optically thin turbidostat cultures under conditions for which light quantity and quality was systematically varied by modulating the output of narrow-band LEDs. Cells were provided photons absorbed primarily by chlorophyll (680 nm) or phycocyanin (630 nm) as the organism was subjected to four distinct mono- and dichromatic regimes. During cultivation with dichromatic light, growth rates were generally proportional to the total incident irradiance at values <275 μmol photons m(-2) · s(-1) and were not affected by the ratio of 630:680 nm wavelengths. Notably, under monochromatic light conditions, cultures exhibited similar growth rates only when they were irradiated with 630 nm light; cultures irradiated with only 680 nm light grew at rates that were 60-70% of those under other light quality regimes at equivalent irradiances. The functionality of photosystem II and associated processes such as maximum rate of photosynthetic electron transport, rate of cyclic electron flow, and rate of dark respiration generally increased as a function of growth rate. Nonetheless, some of the photophysiological parameters measured here displayed distinct patterns with respect to growth rate of cultures adapted to a single wavelength including phycobiliprotein content, which increased under severely light-limited growth conditions. Additionally, the ratio of photosystem II to photosystem I increased ~40% over the range of growth rates, although cells grown with 680 nm light only had the highest ratios. These results suggest the presence of effective mechanisms which allow acclimation of Synechococcus sp. PCC 7002 acclimation to different irradiance conditions.
Collapse
Affiliation(s)
- Hans C. Bernstein
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
- Chemical and Biological Signature Science, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
- Department of Biological Sciences, Purdue UniversityW. Lafayette, IN, USA
| | - Matthew R. Melnicki
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Eric A. Hill
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Leo A. Kucek
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Shuyi Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Gaozhong Shen
- Department of Biological Sciences, Purdue UniversityW. Lafayette, IN, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| | - Alexander S. Beliaev
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| |
Collapse
|
23
|
Zhang P, Frankel LK, Bricker TM. Integration of apo-α-phycocyanin into phycobilisomes and its association with FNRL in the absence of the phycocyanin α-subunit lyase (CpcF) in Synechocystis sp. PCC 6803. PLoS One 2014; 9:e105952. [PMID: 25153076 PMCID: PMC4143364 DOI: 10.1371/journal.pone.0105952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022] Open
Abstract
Phycocyanin is an important component of the phycobilisome, which is the principal light-harvesting complex in cyanobacteria. The covalent attachment of the phycocyanobilin chromophore to phycocyanin is catalyzed by the enzyme phycocyanin lyase. The photosynthetic properties and phycobilisome assembly state were characterized in wild type and two mutants which lack holo-α-phycocyanin. Insertional inactivation of the phycocyanin α-subunit lyase (ΔcpcF mutant) prevents the ligation of phycocyanobilin to α-phycocyanin (CpcA), while disruption of the cpcB/A/C2/C1 operon in the CK mutant prevents synthesis of both apo-α-phycocyanin (apo-CpcA) and apo-β-phycocyanin (apo-CpcB). Both mutants exhibited similar light saturation curves under white actinic light illumination conditions, indicating the phycobilisomes in the ΔcpcF mutant are not fully functional in excitation energy transfer. Under red actinic light illumination, wild type and both phycocyanin mutant strains exhibited similar light saturation characteristics. This indicates that all three strains contain functional allophycocyanin cores associated with their phycobilisomes. Analysis of the phycobilisome content of these strains indicated that, as expected, wild type exhibited normal phycobilisome assembly and the CK mutant assembled only the allophycocyanin core. However, the ΔcpcF mutant assembled phycobilisomes which, while much larger than the allophycocyanin core observed in the CK mutant, were significantly smaller than phycobilisomes observed in wild type. Interestingly, the phycobilisomes from the ΔcpcF mutant contained holo-CpcB and apo-CpcA. Additionally, we found that the large form of FNR (FNRL) accumulated to normal levels in wild type and the ΔcpcF mutant. In the CK mutant, however, significantly less FNRL accumulated. FNRL has been reported to associate with the phycocyanin rods in phycobilisomes via its N-terminal domain, which shares sequence homology with a phycocyanin linker polypeptide. We suggest that the assembly of apo-CpcA in the phycobilisomes of ΔcpcF can stabilize FNRL and modulate its function. These phycobilisomes, however, inefficiently transfer excitation energy to Photosystem II.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laurie K. Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Terry M. Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Division, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Leganés F, Martínez-Granero F, Muñoz-Martín MÁ, Marco E, Jorge A, Carvajal L, Vida T, González-Pleiter M, Fernández-Piñas F. Characterization and responses to environmental cues of a photosynthetic antenna-deficient mutant of the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:915-926. [PMID: 24913049 DOI: 10.1016/j.jplph.2014.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
The cyanobacterial phycobilisome (PBS) is a giant pigment-protein complex which harvests light energy for photosynthesis and comprises two structures: a core and peripheral rods. Most studies on PBS structure and function are based on mutants of unicellular strains. In this report, we describe the phenotypic and genetic characterization of a transposon mutant of the filamentous Anabaena sp. strain PCC 7120, denoted LC1, which cannot synthesize the phycobiliprotein phycocyanin (PC), the main component of the rods; in this mutant, the transposon had inserted into the cpcB gene (orf alr0528) which putatively encodes PC-β chain. Mutant LC1 was able to synthesize phycoerythrocyanin (PEC), a phycobiliprotein (PBP) located at the terminal region of the rods; but in the absence of PC, PEC did not attach to the PBSs that only retained the allophycocyanin (APC) core; ferredoxin: NADP+-oxidoreductase (FNR) that is associated with the PBS in the wild type, was not found in isolated PBSs from LC1. The performance of the mutant exposed to different environmental conditions was evaluated. The mutant phenotype was successfully complemented by cloning and transfer of the wild type complete cpc operon to mutant LC1. Interestingly, LC1 compensated its mutation by significantly increasing the number of its core-PBS and the effective quantum yield of photosystem II (PSII) photochemistry; this feature suggests a more efficient energy conversion in the mutant which may be useful for biotechnological applications.
Collapse
Affiliation(s)
- Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Eduardo Marco
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alberto Jorge
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Laura Carvajal
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Teresa Vida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
25
|
Kauny J, Sétif P. NADPH fluorescence in the cyanobacterium Synechocystis sp. PCC 6803: a versatile probe for in vivo measurements of rates, yields and pools. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:792-801. [PMID: 24463053 DOI: 10.1016/j.bbabio.2014.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP(+) to NADPH by ferredoxin-NADP(+)-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP(+)+NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin-Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales.
Collapse
Affiliation(s)
- Jocelyn Kauny
- iBiTec-S, CNRS UMR 8221, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Pierre Sétif
- iBiTec-S, CNRS UMR 8221, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Pérez-Gómez B, Mendoza-Hernández G, Cabellos-Avelar T, Leyva-Castillo LE, Gutiérrez-Cirlos EB, Gómez-Lojero C. A proteomic approach to the analysis of the components of the phycobilisomes from two cyanobacteria with complementary chromatic adaptation: Fremyella diplosiphon UTEX B590 and Tolypothrix PCC 7601. PHOTOSYNTHESIS RESEARCH 2012; 114:43-58. [PMID: 22965313 DOI: 10.1007/s11120-012-9779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Tolypothrix PCC 7601 and Fremyella diplosiphon UTEX B590 can produce two alternative phycobilisome (PBS) rods. PE-PBSs with one phycocyanin (PC) disk and multiple phycoerythrin (PE) disks are found in cells grown under green light (GL). PC-PBSs with only PC disks are obtained from cells grown under red light (RL). In this manuscript, we show the localization of the linker proteins and ferredoxin-NADP(+) oxidoreductase (FNR) in the PC-PBS and of PE-PBS rods using visible spectroscopy and mass spectrometry. PE-PBSs with different [PE]/[PC] ratios and PC-PBSs with different [PC]/[AP] (AP, allophycocyanin) ratios were isolated. CpeC was the primary rod linker protein found in the PBSs with a [PE]/[PC] ratio of 1.1, which indicates that this is the rod linker at the interphase PC-PE. CpeC and CpeD were identified in the PBSs with a [PE]/[PC] ratio of 1.6, which indicates that CpcD is the linker between the first and the second PE hexamers. Finally, CpeC, CpeD, and CpeE were found in the PBSs with a [PE]/[PC] ratio of 2.9, indicating the position of CpeE between the second and third PE moieties. CpcI2 was identified in the two PC-PBSs obtained from cells grown under RL, which indicates that CpcI2 is the linker between the first and second PC hexamers. CpcH2 was identified only in the PC-PBSs from Tolypothrix with a high [PC]/[AP] ratio of 1.92, which indicates that CpcH2 is the linker between the second and third PC hexamers. The PC-PBSs contained the rod cap protein L(R)(10) (CpcD), but this protein was absent in the PE-PBSs. PE-PBSs (lacking L(R)(10)) incorporated exogenous rFNR in a stoichiometry of up to five FNRs per PBS. A maximum of two FNRs per PBS were found in PC-PBSs (with L(R)(10)). These observations support the hypothesis that FNR binds at the distal ends of the PBS rods in the vacant site of CpcD L(R)(10). Finally, the molecular mass of the core membrane linker (L(CM)) was determined to be 102 kDa from a mass spectrometry analysis.
Collapse
Affiliation(s)
- Bertha Pérez-Gómez
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados-IPN, Apartado Postal 14-740, 07000 Mexico, DF, Mexico
| | | | | | | | | | | |
Collapse
|
27
|
Liauw P, Mashiba T, Kopczak M, Wiegand K, Muraki N, Kubota H, Kawano Y, Ikeuchi M, Hase T, Rögner M, Kurisu G. Cloning, expression, crystallization and preliminary X-ray studies of the ferredoxin-NAD(P)+ reductase from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1048-51. [PMID: 22949191 DOI: 10.1107/s1744309112031910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022]
Abstract
Ferredoxin-NADP(+) reductase (FNR) is a flavoenzyme that catalyses the reduction of NADP(+) in the final step of the photosynthetic electron-transport chain. FNR from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TeFNR) contains an additional 9 kDa domain at its N-terminus relative to chloroplastic FNRs and is more thermostable than those from mesophilic cyanobacteria. With the aim of understanding the structural basis of the thermostability of TeFNR and assigning a structural role to the small additional domain, the gene encoding TeFNR with and without an additional domain was engineered for heterologous expression and the recombinant proteins were purified and crystallized. Crystals of TeFNR without the additional domain belonged to space group P2(1), with unit-cell parameters a = 55.05, b = 71.66, c = 89.73 Å, α = 90, β = 98.21, γ = 90°.
Collapse
Affiliation(s)
- Pasqual Liauw
- Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moal G, Lagoutte B. Photo-induced electron transfer from photosystem I to NADP(+): characterization and tentative simulation of the in vivo environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1635-45. [PMID: 22683536 DOI: 10.1016/j.bbabio.2012.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 12/01/2022]
Abstract
The photoproduction of NADPH in photosynthetic organisms requires the successive or concomitant interaction of at least three proteins: photosystem I (PSI), ferredoxin (Fd) and ferredoxin:NADP(+) oxidoreductase (FNR). These proteins and their surrounding medium have been carefully analysed in the cyanobacterium Synechocystis sp. PCC 6803. A high value of 550mg/ml was determined for the overall solute content of the cell soluble compartment. PSI and Fd are present at similar concentrations, around 500μM, whereas the FNR associated to phycobilisome is about 4 fold less concentrated. Membrane densities of FNR and trimeric PSI have been estimated to 2000 and 2550 per μm(2), respectively. An artificial confinement of Fd to PSI was designed using fused constructs between Fd and PsaE, a peripheral and stroma located PSI subunit. The best covalent system in terms of photocatalysed NADPH synthesis can be equivalent to the free system in a dilute medium. In a macrosolute crowded medium (375mg/ml), this optimized PSI/Fd covalent complex exhibited a huge superiority compared to the free system. This is a likely consequence of restrained diffusion constraints due to the vicinity of two out of the three protein partners. In vivo, Fd is the free partner, but the constant proximity between PSI and the phycobilisome associated FNR creates a similar situation, with two closely associated partners. This organization seems well adapted for an efficient in vivo production of the stable and fast diffusing NADPH.
Collapse
Affiliation(s)
- Gwenaëlle Moal
- Service de Bioenergetique, Biologie Structurale et Mecanismes, Gif sur Yvette, France
| | | |
Collapse
|
29
|
Yokono M, Uchida H, Suzawa Y, Akiomoto S, Murakami A. Stabilization and modulation of the phycobilisome by calcium in the calciphilic freshwater red alga Bangia atropurpurea. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:306-11. [PMID: 22093772 DOI: 10.1016/j.bbabio.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/17/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Makio Yokono
- Molecular Photoscience Research Center, Kobe University, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
30
|
Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, Schluchter WM. Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. J Biol Chem 2011; 286:35509-35521. [PMID: 21865169 PMCID: PMC3195565 DOI: 10.1074/jbc.m111.284281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/21/2011] [Indexed: 02/02/2023] Open
Abstract
When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages. Specific bilin lyases are hypothesized to catalyze each PEB ligation. Using a heterologous, coexpression system in Escherichia coli, the PEB ligation activities of putative lyase subunits CpeY, CpeZ, and CpeS were tested on the CpeA and CpeB subunits from F. diplosiphon. Purified His(6)-tagged CpeA, obtained by coexpressing cpeA, cpeYZ, and the genes for PEB synthesis, had absorbance and fluorescence emission maxima at 566 and 574 nm, respectively. CpeY alone, but not CpeZ, could ligate PEB to CpeA, but the yield of CpeA-PEB was lower than achieved with CpeY and CpeZ together. Studies with site-specific variants of CpeA(C82S and C139S), together with mass spectrometric analysis of trypsin-digested CpeA-PEB, revealed that CpeY/CpeZ attached PEB at Cys(82) of CpeA. The CpeS bilin lyase ligated PEB at both Cys(82) and Cys(139) of CpeA but very inefficiently; the yield of PEB ligated at Cys(82) was much lower than observed with CpeY or CpeY/CpeZ. However, CpeS efficiently attached PEB to Cys(80) of CpeB but neither CpeY, CpeZ, nor CpeY/CpeZ could ligate PEB to CpeB.
Collapse
Affiliation(s)
- Avijit Biswas
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - M Nazim Boutaghou
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Christina M Kronfel
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148
| | - Richard B Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Wendy M Schluchter
- Department of Biological Science, University of New Orleans, New Orleans, Louisiana 70148.
| |
Collapse
|
31
|
Mendoza-Hernández G, Pérez-Gómez B, Krogmann DW, Gutiérrez-Cirlos EB, Gómez-Lojero C. Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2010; 106:247-261. [PMID: 21136295 DOI: 10.1007/s11120-010-9601-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/17/2010] [Indexed: 05/30/2023]
Abstract
Gloeobacter violaceus PCC 7421 is a unicellular oxygenic photosynthetic organism, which precedes the diversification of cyanobacteria in the phylogenetic tree. It is the only cyanobacterium that does not contain internal membranes. The unique structure of the rods of the phycobilisome (PBS), grouped as one bundle of six parallel rods, distinguishes G. violaceus from the other PBS-containing cyanobacteria. It has been proposed that unique multidomain rod-linkers are responsible for this peculiarly organized shape. However, the localization of the multidomain linkers Glr1262 and Glr2806 in the PBS-rods remains controversial (Koyama et al. 2006, FEBS Lett 580:3457-3461; Krogmann et al. 2007, Photosynth Res 93:27-43). To further increase our understanding of the structure of the G. violaceus PBS, the identification of the proteins present in fractions obtained from sucrose gradient centrifugation and from native electrophoresis of partially dissociated PBS was conducted. The identification of the proteins, after electrophoresis, was done by spectrophotometry and mass spectrometry. The results support the localization of the multidomain linkers as previously proposed by us. The Glr1262 (92 kDa) linker protein was found to be the rod-core linker L(RC) (92), and Glr2806 (81 kDa), a special rod linker L(R) (81) that joins six disks of hexameric PC. Consequently, we propose to designate glr1262 as gene cpcGm (encoding L(RC) (92)) and glr2806 as gene cpcJm (encoding L(R) (81)). We also propose that the cpeC (glr1263) gene encoding L(R) (31.8) forms the interface that binds PC to PE.
Collapse
|
32
|
Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. PHOTOSYNTHESIS RESEARCH 2010; 106:73-87. [PMID: 20521115 DOI: 10.1007/s11120-010-9560-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.
Collapse
Affiliation(s)
- Hai-Nan Su
- The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Korn A, Ajlani G, Lagoutte B, Gall A, Sétif P. Ferredoxin:NADP+ oxidoreductase association with phycocyanin modulates its properties. J Biol Chem 2009; 284:31789-97. [PMID: 19759024 DOI: 10.1074/jbc.m109.024638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms, ferredoxin:NADP(+) oxidoreductase (FNR) is known to provide NADPH for CO(2) assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNR(S)) similar to the one found in plant plastids and a large one (FNR(L)) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNR(L) exhibits a higher NADP(+)/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNR(L,) named FNR(L)-PC. The enzymatic activities of FNR(L)-PC were compared with those of FNR(S). During NADPH oxidation, FNR(L)-PC exhibits a 30% decrease in the Michaelis constant K(m)((NADPH)), and a 70% increase in K(m)((ferredoxin)), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP(+) reduction, the FNR(L)-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP(+). The increase in K(m)((ferredoxin)) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNR(L)-PC. Both isoforms are capable of catalyzing the NADP(+) reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo.
Collapse
Affiliation(s)
- Anja Korn
- Institut de Biologie et de Technologie de Saclay, Commissariat à L'Energie Atomique, CNRS, F-91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
34
|
Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:272-9. [DOI: 10.1016/j.bbabio.2009.01.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/20/2022]
|
35
|
Bernát G, Waschewski N, Rögner M. Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. PHOTOSYNTHESIS RESEARCH 2009; 99:205-16. [PMID: 19137411 DOI: 10.1007/s11120-008-9398-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 12/23/2008] [Indexed: 05/12/2023]
Abstract
Three Synechocystis PCC 6803 strains with different levels of phycobilisome antenna-deficiency have been investigated for their impact on photosynthetic electron transport and response to environmental factors (i.e. light-quality, -quantity and composition of growth media). Oxygen yield and P(700) reduction kinetic measurements showed enhanced linear electron transport rates-especially under photoautotrophic conditions-with impaired antenna-size, starting from wild type (WT) (full antenna) over DeltaapcE- (phycobilisomes functionally dissociated) and Olive (lacking phycocyanin) up to the PAL mutant (lacking the whole phycobilisome). In contrast to mixotrophic conditions (up to 80% contribution), cyclic electron transport plays only a minor role (below 10%) under photoautotrophic conditions for all the strains, while linear electron transport increased up to 5.5-fold from WT to PAL mutant. The minor contribution of the cyclic electron transport was proportionally increased with the linear one in the DeltaapcE and Olive mutant, but was not altered in the PAL mutant, indicating that upregulation of the linear route does not have to be correlated with downregulation of the cyclic electron transport. Antenna-deficiency involves higher linear electron transport rates by tuning the PS2/PS1 ratio from 1:5 in WT up to 1:1 in the PAL mutant. While state transitions were observed only in the WT and Olive mutant, a further ~30% increase in the PS2/PS1 ratio was achieved in all the strains by long-term adaptation to far red light (720 nm). These results are discussed in the context of using these cells for future H(2) production in direct combination with the photosynthetic electron transport and suggest both Olive and PAL as potential candidates for future manipulations toward this goal. In conclusion, the highest rates can be expected if mutants deficient in phycobilisome antennas are grown under photoautotrophic conditions in combination with uncoupling of electron transport and an illumination which excites preferably PS1.
Collapse
Affiliation(s)
- Gábor Bernát
- Lehrstuhl für Biochemie der Pflanzen, Ruhr Universität Bochum, 44780, Bochum, Germany.
| | | | | |
Collapse
|
36
|
CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803. J Bacteriol 2008; 190:4808-17. [PMID: 18469097 DOI: 10.1128/jb.00436-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria produce phycobilisomes, which are macromolecular light-harvesting complexes mostly assembled from phycobiliproteins. Phycobiliprotein beta subunits contain a highly conserved gamma-N-methylasparagine residue, which results from the posttranslational modification of Asn71/72. Through comparative genomic analyses, we identified a gene, denoted cpcM, that (i) encodes a protein with sequence similarity to other S-adenosylmethionine-dependent methyltransferases, (ii) is found in all sequenced cyanobacterial genomes, and (iii) often occurs near genes encoding phycobiliproteins in cyanobacterial genomes. The cpcM genes of Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803 were insertionally inactivated. Mass spectrometric analyses of phycobiliproteins isolated from the mutants confirmed that the CpcB, ApcB, and ApcF were 14 Da lighter than their wild-type counterparts. Trypsin digestion and mass analyses of phycobiliproteins isolated from the mutants showed that tryptic peptides from phycocyanin that included Asn72 were also 14 Da lighter than the equivalent peptides from wild-type strains. Thus, CpcM is the methyltransferase that modifies the amide nitrogen of Asn71/72 of CpcB, ApcB, and ApcF. When cells were grown at low light intensity, the cpcM mutants were phenotypically similar to the wild-type strains. However, the mutants were sensitive to high-light stress, and the cpcM mutant of Synechocystis sp. strain PCC 6803 was unable to grow at moderately high light intensities. Fluorescence emission measurements showed that the ability to perform state transitions was impaired in the cpcM mutants and suggested that energy transfer from phycobiliproteins to the photosystems was also less efficient. The possible functions of asparagine N methylation of phycobiliproteins are discussed.
Collapse
|
37
|
Shen G, Schluchter WM, Bryant DA. Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 2008; 283:7503-12. [PMID: 18199754 DOI: 10.1074/jbc.m708164200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phycobilin lyases covalently attach phycobilin chromophores to apo-phycobiliproteins (PBPs). Genome analyses of the unicellular, marine cyanobacterium Synechococcus sp. PCC 7002 identified three genes, denoted cpcS-I, cpcU, and cpcV, that were possible candidates to encode phycocyanobilin (PCB) lyases. Single and double mutant strains for cpcS-I and cpcU exhibited slower growth rates, reduced PBP levels, and impaired assembly of phycobilisomes, but a cpcV mutant had no discernable phenotype. A cpcS-I cpcU cpcT triple mutant was nearly devoid of PBP. SDS-PAGE and mass spectrometry demonstrated that the cpcS-I and cpcU mutants produced an altered form of the phycocyanin (PC) beta subunit, which had a mass approximately 588 Da smaller than the wild-type protein. Some free PCB (mass = 588 Da) was tentatively detected in the phycobilisome fraction purified from the mutants. The modified PC from the cpcS-I, cpcU, and cpcS-I cpcU mutant strains was purified, and biochemical analyses showed that Cys-153 of CpcB carried a PCB chromophore but Cys-82 did not. These results show that both CpcS-I and CpcU are required for covalent attachment of PCB to Cys-82 of the PC beta subunit in this cyanobacterium. Suggesting that CpcS-I and CpcU are also required for attachment of PCB to allophycocyanin subunits in vivo, allophycocyanin levels were significantly reduced in all but the CpcV-less strain. These conclusions have been validated by in vitro experiments described in the accompanying report (Saunée, N. A., Williams, S. R., Bryant, D. A., and Schluchter, W. M. (2008) J. Biol. Chem. 283, 7513-7522). We conclude that the maturation of PBP in vivo depends on three PCB lyases: CpcE-CpcF, CpcS-I-CpcU, and CpcT.
Collapse
Affiliation(s)
- Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
38
|
Saunée NA, Williams SR, Bryant DA, Schluchter WM. Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 2008; 283:7513-22. [PMID: 18199753 DOI: 10.1074/jbc.m708165200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His(6)-tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nm and was highly fluorescent (lambda(max) = 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of approximately 27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
Collapse
Affiliation(s)
- Nicolle A Saunée
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
| | | | | | | |
Collapse
|
39
|
Morsy FM, Nakajima M, Yoshida T, Fujiwara T, Sakamoto T, Wada K. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms. PHOTOSYNTHESIS RESEARCH 2008; 95:73-85. [PMID: 17828614 DOI: 10.1007/s11120-007-9235-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/19/2007] [Indexed: 05/17/2023]
Abstract
Ferredoxin-NADP(+) oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP(+)-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP(+)-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.
Collapse
Affiliation(s)
- Fatthy Mohamed Morsy
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Guan X, Qin S, Zhao F, Zhang X, Tang X. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int J Biol Sci 2007; 3:434-45. [PMID: 18026567 PMCID: PMC2078611 DOI: 10.7150/ijbs.3.434] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 11/06/2007] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.
Collapse
Affiliation(s)
- Xiangyu Guan
- College of Marine Life Science, Faculty of Life Science, Technology, Ocean University of China, 266003, Qingdao, PR China
| | | | | | | | | |
Collapse
|
41
|
Krogmann DW, Pérez-Gómez B, Gutiérrez-Cirlos EB, Chagolla-López A, González de la Vara L, Gómez-Lojero C. The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. PHOTOSYNTHESIS RESEARCH 2007; 93:27-43. [PMID: 17310305 DOI: 10.1007/s11120-007-9133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 01/07/2007] [Indexed: 05/14/2023]
Abstract
The complete genome sequence of Gloeobacter violaceus [Nakamura et al. (2003a, b) DNA Res 10:37-45, 181-201] allows us to understand better the structure of the phycobilisomes (PBS) of this cyanobacterium. Genomic analysis revealed peculiarities in these PBS: the presence of genes for two multidomain linker proteins, a core membrane linker with four repetitive sequences (REP domains), the absence of rod core linkers, two sets of phycocyanin (PC) alpha and beta subunits, two copies of a rod PC associated linker (CpcC), and two rod cap associated linkers (CpcD). Also, there is one ferredoxin-NADP(+) oxidoreductase with only two domains. The PBS proteins were investigated by gel electrophoresis, amino acid sequencing and peptide mass fingerprinting (PMF). The two unique multidomain linkers contain three REP domains with high similarity and these were found to be in tandem and were separated by dissimilar Arms. One of these, with a mass of 81 kDa, is found in heavy PBS fragments rich in PC. We propose that it links six PC hexamers in two parallel rows in the rods. The other unique linker has a mass of 91 kDa and is easily released from the heavy fragments of PBS. We propose that this links the rods to the core. The presence of these multidomain linkers could explain the bundle shaped rods of the PBS. The presence of 4 REP domains in the core membrane linker protein (129 kDa) was established by PMF. This core linker may hold together 16 AP trimers of the pentacylindrical core, or alternatively, a tetracylindrical core of the PBS of G. violaceus.
Collapse
Affiliation(s)
- David W Krogmann
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1157, USA
| | | | | | | | | | | |
Collapse
|
42
|
Thomas JC, Ughy B, Lagoutte B, Ajlani G. A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation. Proc Natl Acad Sci U S A 2006; 103:18368-73. [PMID: 17116880 PMCID: PMC1838757 DOI: 10.1073/pnas.0607718103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyze the exchange of reducing equivalents between one-electron carriers and the two-electron-carrying NADP(H). The main role of FNRs in cyanobacteria and leaf plastids is to provide the NADPH for photoautotrophic metabolism. In root plastids, a distinct FNR isoform is found that has been postulated to function in the opposite direction, providing electrons for nitrogen assimilation at the expense of NADPH generated by heterotrophic metabolism. A multiple gene family encodes FNR isoenzymes in plants, whereas there is only one FNR gene (petH) in cyanobacteria. Nevertheless, we detected two FNR isoforms in the cyanobacterium Synechocystis sp. strain PCC6803. One of them (FNR(S) approximately 34 kDa) is similar in size to the plastid FNR and specifically accumulates under heterotrophic conditions, whereas the other one (FNR(L) approximately 46 kDa) contains an extra N-terminal domain that allows its association with the phycobilisome. Site-directed mutants allowed us to conclude that the smaller isoform, FNR(S), is produced from an internal ribosome entry site within the petH ORF. Thus we have uncovered a mechanism by which two isoforms are produced from a single gene, which is, to our knowledge, novel in photosynthetic bacteria. Our results strongly suggest that FNR(L) is an NADP(+) reductase, whereas FNR(S) is an NADPH oxidase.
Collapse
Affiliation(s)
- Jean-Claude Thomas
- *Département de Biologie, Ecole Normale Supérieure, F-75230 Paris, France
| | - Bettina Ughy
- Plant Biology Institute, Biological Research Center, H-6701, Szeged, Hungary; and
- Département de Biologie Joliot-Curie, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, F-91191 Gif-sur-Yvette, France
| | - Bernard Lagoutte
- Département de Biologie Joliot-Curie, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, F-91191 Gif-sur-Yvette, France
| | - Ghada Ajlani
- Département de Biologie Joliot-Curie, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, F-91191 Gif-sur-Yvette, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW, Gómez-Lojero C. The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:130-4. [PMID: 16617515 DOI: 10.1016/j.bbabio.2006.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gloeobacter violaceus PCC 7421 is a unique cyanobacterium that has no thylakoids and whose genome has been sequenced [Y. Nakamura, T. Kaneko, S. Sato, M. Mimuro, H. Miyashita, T. Tsuchiya, S. Sasamoto, A. Watanabe, K. Kawashima, Y. Kishida, C. Kiyokawa, M. Kohara, M. Matsumoto, A. Matsuno, N. Nakazaki, S. Shimpo, C. Takeuchi, M. Yamada, S. Tabata, Complete Genome Structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 10 (2003) 137-145]. Phycobilisomes of G. violaceus were isolated and analyzed by SDS-PAGE followed by N-terminal sequencing. Three rod-linker subunits (CpeC, CpeD and CpeE) were identified as predicted from the genome sequence. The cpcC1 and cpcC2 genes at order locus named (OLN) glr0950 and gll 3219 encoding phycocyanin-associated linker proteins from G. violaceus are 56 and 55 amino acids longer at the N-terminus than the open reading frame proposed in the genome. The two amino acid extensions showed a 66% identity to one another. Also, the N-terminal extensions of these sequences were similar to domains in both the rod-capping-linker protein CpcD2 and to the C-terminus domain of the phycoerythrin-associated linker protein CpeC. These domains are not only unusual in their N-terminal location, but are unusual in that they are more closely related in sequence similarity to the C-terminus domain of the phycoerythrin-associated linker, CpeC of G. violaceus, than to the C-terminus domain of phycocyanin-associated linker CpcC in other cyanobacteria. These linker proteins with unique special domains are indicators of the unusual structure of the phycobilisomes of G. violaceus.
Collapse
Affiliation(s)
- Emma Berta Gutiérrez-Cirlos
- Unidad de Biomedicina FES-Iztacala UNAM Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo de México 54090, México
| | | | | | | |
Collapse
|
44
|
Adir N, Dines M, Klartag M, McGregor A, Melamed-Frank M. Assembly and Disassembly of Phycobilisomes. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
45
|
Cassan N, Lagoutte B, Sétif P. Ferredoxin-NADP+ reductase. Kinetics of electron transfer, transient intermediates, and catalytic activities studied by flash-absorption spectroscopy with isolated photosystem I and ferredoxin. J Biol Chem 2005; 280:25960-72. [PMID: 15894798 DOI: 10.1074/jbc.m503742200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The electron transfer cascade from photosystem I to NADP+ was studied at physiological pH by flash-absorption spectroscopy in a Synechocystis PCC6803 reconstituted system comprised of purified photosystem I, ferredoxin, and ferredoxin-NADP+ reductase. Experiments were conducted with a 34-kDa ferredoxin-NADP+ reductase homologous to the chloroplast enzyme and a 38-kDa N-terminal extended form. Small differences in kinetic and catalytic properties were found for these two forms, although the largest one has a 3-fold decreased affinity for ferredoxin. The dissociation rate of reduced ferredoxin from photosystem I (800 s(-1)) and the redox potential of the first reduction of ferredoxin-NADP+ reductase (-380 mV) were determined. In the absence of NADP+, differential absorption spectra support the existence of a high affinity complex between oxidized ferredoxin and semireduced ferredoxin-NADP+ reductase. An effective rate of 140-170 s(-1) was also measured for the second reduction of ferredoxin-NADP+ reductase, this process having a rate constant similar to that of the first reduction. In the presence of NADP+, the second-order rate constant for the first reduction of ferredoxin-NADP+ reductase was 20% slower than in its absence, in line with the existence of ternary complexes (ferredoxin-NADP+ reductase)-NADP+-ferredoxin. A single catalytic turnover was monitored, with 50% NADP+ being reduced in 8-10 ms using 1.6 microM photosystem I. In conditions of multiple turnover, we determined initial rates of 360-410 electrons per s and per ferredox-in-NADP+ reductase for the reoxidation of 3.5 microM photoreduced ferredoxin. Identical rates were found with photosystem I lacking the PsaE subunit and wild type photosystem I. This suggests that, in contrast with previous proposals, the PsaE subunit is not involved in NADP+ photoreduction.
Collapse
Affiliation(s)
- Nicolas Cassan
- Service de Bioénergétique and CNRS URA 2096, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif sur Yvette, France
| | | | | |
Collapse
|
46
|
Six C, Thomas JC, Thion L, Lemoine Y, Zal F, Partensky F. Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. J Bacteriol 2005; 187:1685-94. [PMID: 15716439 PMCID: PMC1064003 DOI: 10.1128/jb.187.5.1685-1694.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent availability of the whole genome of Synechococcus sp. strain WH8102 allows us to have a global view of the complex structure of the phycobilisomes of this marine picocyanobacterium. Genomic analyses revealed several new characteristics of these phycobilisomes, consisting of an allophycocyanin core and rods made of one type of phycocyanin and two types of phycoerythrins (I and II). Although the allophycocyanin appears to be similar to that found commonly in freshwater cyanobacteria, the phycocyanin is simpler since it possesses only one complete set of alpha and beta subunits and two rod-core linkers (CpcG1 and CpcG2). It is therefore probably made of a single hexameric disk per rod. In contrast, we have found two novel putative phycoerythrin-associated linker polypeptides that appear to be specific for marine Synechococcus spp. The first one (SYNW2000) is unusually long (548 residues) and apparently results from the fusion of a paralog of MpeC, a phycoerythrin II linker, and of CpeD, a phycoerythrin-I linker. The second one (SYNW1989) has a more classical size (300 residues) and is also an MpeC paralog. A biochemical analysis revealed that, like MpeC, these two novel linkers were both chromophorylated with phycourobilin. Our data suggest that they are both associated (partly or totally) with phycoerythrin II, and we propose to name SYNW2000 and SYNW1989 MpeD and MpeE, respectively. We further show that acclimation of phycobilisomes to high light leads to a dramatic reduction of MpeC, whereas the two novel linkers are not significantly affected. Models for the organization of the rods are proposed.
Collapse
Affiliation(s)
- Christophe Six
- Département "Phytoplancton Océanique," Station Biologique, UMR 7127 CNRS & Université Pierre et Marie Curie, BP 74, 29682 Roscoff cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. PHOTOSYNTHESIS RESEARCH 2005; 85:15-32. [PMID: 15977057 DOI: 10.1007/s11120-004-2143-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 08/13/2004] [Indexed: 05/03/2023]
Abstract
The molecular architectures of photosynthetic complexes are rapidly becoming available through the power of X-ray crystallography. These complexes are comprised of antenna complexes, which absorb and transfer energy into photochemical reaction centers. Most reaction centers, found in both oxygenic and non-oxygenic species, are connected to transmembrane chlorophyll containing antennas, and the crystal structures of these antennas contain information on the structure of the entire complex as well as clear indications on their modes of functional association. In cyanobacteria and red alga, most of the Photosystem II associated light harvesting is performed by an enormous (3-7 MDa) membrane attached complex called the phycobilisome (PBS). While the crystal structures of many isolated components of different PBSs have been determined, the structure of the entire complex as well as its manner of association with Photosystem II can only be suggested. In this review, the structural information obtained on the isolated components will be described. The structural information obtained from the components provides the basis for the modeled reconstruction of this giant complex.
Collapse
Affiliation(s)
- Noam Adir
- Department of Chemistry and Institute of Catalysis Science and Technology, Institute of Technology, Technion, Haifa, 32000, Israel.
| |
Collapse
|