1
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
2
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
3
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
4
|
Kuo RC, Zhang H, Stuart JD, Provatas AA, Hannick L, Lin S. Abundant synthesis of long-chain polyunsaturated fatty acids in Eutreptiella sp. (Euglenozoa) revealed by chromatographic and transcriptomic analyses. JOURNAL OF PHYCOLOGY 2021; 57:577-591. [PMID: 33191494 DOI: 10.1111/jpy.13105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Algal lipids are important molecules to store energy in algae and transfer energy in the marine food chain, and are potential materials for high value nutraceuticals (e.g., omega-3 fatty acids) or biofuel production. However, how lipid biosynthesis is regulated is not well understood in many species including Eutreptiella from the phylum of Euglenozoa. Here, we characterized the fatty acid (FA) profile of an Eutreptiella species isolated from Long Island Sound, USA, using gas chromatography-tandem mass spectrometry (GC/MS/MS) and investigated their biosynthesis pathways by transcriptome sequencing. We discovered 24 types of FAs including a relatively high proportion of long-chain unsaturated FAs. The abundances of C16, C18, and saturated FAs decreased when phosphate in the culture medium was depleted. Among the 24 FAs, docosahexaenoic acid (C22:6∆4,7,10,13,16,19 ) was most abundant, suggesting that Eutreptiella sp. preferentially invests in the synthesis of long-chain polyunsaturated fatty acids (LC-PFAs). Further transcriptomic analysis revealed that Eutreptiella sp. likely synthesizes LC-PFAs via ∆8 pathway and uses type I and II fatty acid synthases. Using RT-qPCR, we found that some of the lipid synthesis genes, such as β-ketoacyl-ACP reductase, fatty acid desaturase, acetyl-CoA carboxylase, acyl carrier protein, ∆8 desaturase, and Acyl-ACP thioesterase, were more actively expressed during light period, and two carbon fixation genes were up-regulated in the high-lipid illuminated cultures, suggesting a linkage between photosynthesis and lipid production. The lipid profile renders Eutreptiella sp. a nutritional prey and valuable source for nutraceuticals, and the biosynthesis pathway documented here will be useful for future research and applications.
Collapse
Affiliation(s)
- Rita C Kuo
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - James D Stuart
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Anthony A Provatas
- Center of Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Linda Hannick
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Rockville, Maryland, 20852, USA
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| |
Collapse
|
5
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
6
|
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:108. [PMID: 31157220 PMCID: PMC6530250 DOI: 10.3389/fbioe.2019.00108] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Jang SH, Jeong HJ, Kwon JE. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Řezanka T, Vítová M, Kolouchová I, Nedbalová L, Doležalová J, Palyzová A, Sigler K. Polydatin and its derivatives inhibit fatty acid desaturases in microorganisms. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, CAS; Prague Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, CAS; Centre Algatech; Třeboň Czech Republic
| | - Irena Kolouchová
- Department of Biotechnology; University of Chemistry and Technology; Prague Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science; Charles University; Prague Czech Republic
| | - Jana Doležalová
- Department of Biotechnology; University of Chemistry and Technology; Prague Czech Republic
| | | | - Karel Sigler
- Institute of Microbiology, CAS; Prague Czech Republic
| |
Collapse
|
10
|
Dong Y, Wang S, Chen J, Zhang Q, Liu Y, You C, Monroig Ó, Tocher DR, Li Y. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus. PLoS One 2016; 11:e0160361. [PMID: 27472219 PMCID: PMC4966944 DOI: 10.1371/journal.pone.0160361] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis.
Collapse
Affiliation(s)
- Yewei Dong
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Shuqi Wang
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Junliang Chen
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Qinghao Zhang
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Yang Liu
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Cuihong You
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Óscar Monroig
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK94LA, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- * E-mail:
| |
Collapse
|
11
|
Hoang MH, Nguyen C, Pham HQ, Van Nguyen L, Hoang Duc L, Van Son L, Hai TN, Ha CH, Nhan LD, Anh HTL, Thom LT, Quynh HTH, Ha NC, Van Nhat P, Hong DD. Transcriptome sequencing and comparative analysis of Schizochytrium mangrovei PQ6 at different cultivation times. Biotechnol Lett 2016; 38:1781-9. [PMID: 27395062 DOI: 10.1007/s10529-016-2165-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The heterotrophic marine microalga, Schizochytrium mangrovei PQ6, synthesizes large amounts of polyunsaturated fatty acids (PUFAs) with possible nutritional applications. We characterized the transcriptome of S. mangrovei PQ6, focusing on lipid metabolism pathways throughout growth. RESULT Cell growth, total lipid, and docosahexaenoic acid (DHA, 22:6n-3) contents of S. mangrovei PQ6 in 500 ml batch cultures rapidly increased on day 1 in cultivation and reached their maximum levels on day 5. Maximum lipid accumulation in 500 ml batch cultures occurred on day 5, with total lipid and DHA contents reaching 33.2 ± 1.25% of dry cell weight (DCW) and 136 mg/g DCW, respectively. 11,025 unigenes, 28,617 unigenes and 18,480 unigenes from the transcriptomes of samples collected on day 1, 3, and 5 in cultivation were identified, respectively. These unigenes of the three samples were further assembled into 30,782 unigenes with an average size of 673 bp and N50 of 950 bp, and a total of 9,980 unigenes were annotated in public protein databases. 93 unigenes involved in lipid metabolism in which expression patterns corresponded with total lipid and DHA accumulation patterns were identified. CONCLUSION The possible roles of PUFAs pathways, such as those mediated by fatty acid synthase, polyketide synthase, and desaturase/elongase, co-exist in S. mangrovei PQ6.
Collapse
Affiliation(s)
- Minh Hien Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cuong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Huy Quang Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Lam Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Hoang Duc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Van Son
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Truong Nam Hai
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Lam Dai Nhan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang Thi Lan Anh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Thi Thom
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang Thi Huong Quynh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Cam Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Van Nhat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
12
|
The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Abstract
Microalgae present a huge and still insufficiently tapped resource of very long-chain omega-3 and omega-6 polyunsaturated fatty acids (VLC-PUFA) for human nutrition and medicinal applications. This chapter describes the diversity of unicellular eukaryotic microalgae in respect to VLC-PUFA biosynthesis. Then, we outline the major biosynthetic pathways mediating the formation of VLC-PUFA by sequential desaturation and elongation of C18-PUFA acyl groups. We address the aspects of spatial localization of those pathways and elaborate on the role for VLC-PUFA in microalgal cells. Recent progress in microalgal genetic transformation and molecular engineering has opened the way to increased production efficiencies for VLC-PUFA. The perspectives of photobiotechnology and metabolic engineering of microalgae for altered or enhanced VLC-PUFA production are also discussed.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| |
Collapse
|
14
|
Park HG, Park WJ, Kothapalli KSD, Brenna JT. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. FASEB J 2015; 29:3911-9. [PMID: 26065859 DOI: 10.1096/fj.15-271783] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/26/2015] [Indexed: 11/11/2022]
Abstract
Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of β-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.
Collapse
Affiliation(s)
- Hui Gyu Park
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - Woo Jung Park
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - Kumar S D Kothapalli
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| | - J Thomas Brenna
- *Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York, USA; and Department of Marine Food Science and Technology, Gangneung-Wonju National University, South Korea
| |
Collapse
|
15
|
Alvarenga TIRC, Chen Y, Furusho-Garcia IF, Perez JRO, Hopkins DL. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Compr Rev Food Sci Food Saf 2015; 14:189-204. [DOI: 10.1111/1541-4337.12131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Tharcilla Isabella Rodrigues Costa Alvarenga
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| | - Yizhou Chen
- NSW Dept. of Primary Industries; Elizabeth Macarthur Agricultural Inst; Menangle NSW 2568 Australia
| | - Iraides Ferreira Furusho-Garcia
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - Juan Ramon Olalquiaga Perez
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - David L. Hopkins
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| |
Collapse
|
16
|
Morais S, Mourente G, Martínez A, Gras N, Tocher DR. Docosahexaenoic acid biosynthesis via fatty acyl elongase and Δ4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:588-97. [PMID: 25660580 DOI: 10.1016/j.bbalip.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
The present study presents the first "in vivo" evidence of enzymatic activity and nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 18%, LL and HL) with either 100% fish oil (FO) or 75% of the FO replaced by vegetable oils (VOs). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities were measured in isolated enterocytes and hepatocytes incubated with radiolabeled α-linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue distributions of elovl5 and Δ4fad transcripts were also determined, and the transcriptional regulation of these genes in liver and intestine was assessed at fasting and postprandially. DHA biosynthesis from EPA occurred in both cell types, although Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad activity was detected on (14)C-ALA, which was only elongated to 20:3n-3. Enzymatic activities and gene transcription were modulated by dietary lipid level (LL>HL) and fatty acid (FA) composition (VO>FO), more significantly in the liver than in the intestine, which was reflected in tissue FA compositions. Dietary VO induced a significant up-regulation of Δ4fad transcripts in the liver 6h after feeding, whereas in fasting conditions the effect of lipid level possibly prevailed over or interacted with FA composition in regulating the expression of elovl5 and Δ4fad, which were down-regulated in the liver of fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 LC-PUFA biosynthesis pathway in S. senegalensis.
Collapse
Affiliation(s)
- Sofia Morais
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | - Almudena Martínez
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Noélia Gras
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
17
|
Ruiz-Lopez N, Usher S, Sayanova OV, Napier JA, Haslam RP. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol 2015; 99:143-54. [PMID: 25417743 PMCID: PMC4286622 DOI: 10.1007/s00253-014-6217-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/05/2023]
Abstract
Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids.
Collapse
Affiliation(s)
- Noemi Ruiz-Lopez
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Sarah Usher
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Olga V. Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Richard P. Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| |
Collapse
|
18
|
Krajčovič J, Schwartzbach SD. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol 2014; 202:135-45. [PMID: 25527385 DOI: 10.1016/j.jbiotec.2014.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023]
Abstract
Euglenoid flagellates are mainly fresh water protists growing in highly diverse environments making them well-suited for a multiplicity of biotechnology applications. Phototrophic euglenids possesses complex chloroplasts of green algal origin bounded by three membranes. Euglena nuclear and plastid genome organization, gene structure and gene expression are distinctly different from other organisms. Our observations on the model organism Euglena gracilis indicate that transcription of both the plastid and nuclear genome is insensitive to environmental changes and that gene expression is regulated mainly at the post-transcriptional level. Euglena plastids have been proposed as a site for the production of proteins and value added metabolites of biotechnological interest. Euglena has been shown to be a suitable protist species to be used for production of several compounds that are used in the production of cosmeceuticals and nutraceuticals, such as α-tocopherol, wax esters, polyunsaturated fatty acids, biotin and tyrosine. The storage polysaccharide, paramylon, has immunostimulatory properties and has shown a promise for biomaterials production. Euglena biomass can be used as a nutritional supplement in aquaculture and in animal feed. Diverse applications of Euglena in environmental biotechnology include ecotoxicological risk assessment, heavy metal bioremediation, bioremediation of industrial wastewater and contaminated water.
Collapse
Affiliation(s)
- Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia.
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152-3560, USA
| |
Collapse
|
19
|
Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2014; 2:443-63. [PMID: 25473503 PMCID: PMC4237475 DOI: 10.1002/fsn3.121] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms).
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran
| |
Collapse
|
20
|
Zhu G, Jiang X, Ou Q, Zhang T, Wang M, Sun G, Wang Z, Sun J, Ge T. Enhanced production of docosahexaenoic acid in mammalian cells. PLoS One 2014; 9:e96503. [PMID: 24788769 PMCID: PMC4008533 DOI: 10.1371/journal.pone.0096503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA.
Collapse
Affiliation(s)
- Guiming Zhu
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xudong Jiang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Qin Ou
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tao Zhang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mingfu Wang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guozhi Sun
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhao Wang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jie Sun
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tangdong Ge
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
21
|
Lim ZL, Senger T, Vrinten P. Four amino acid residues influence the substrate chain-length and regioselectivity of Siganus canaliculatus Δ4 and Δ5/6 desaturases. Lipids 2014; 49:357-67. [PMID: 24477708 DOI: 10.1007/s11745-014-3880-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Abstract
Although ω3- and ω6- desaturases have been well studied in terms of substrate preference and regiospecificity, relatively little is known about the membrane-bound, "front-end" long chain fatty acid desaturases, such as ∆4, Δ5 or Δ6 desaturases. The first vertebrate ∆4 desaturase was recently identified in the marine teleost fish Siganus canaliculatus (S. canaliculatus), which also possesses a bifunctional Δ5/6 desaturase. These two long chain polyunsaturated fatty acid desaturases are very different in terms of regiospecificity and substrate chain-length, but share an unusually high degree of amino acid identity (83 %). We took advantage of this similarity by constructing a series of chimeric enzymes, replacing regions of one enzyme with the corresponding sequence of the other. Heterologous expression of the chimeric series of enzymes in yeast indicated that the substitution of a four amino acid region was sufficient to convert a ∆4 desaturase to an enzyme with ∆6 desaturase activity, and convert a ∆5/6 desaturase to an enzyme with a low level of ∆4 desaturase activity. In addition, enzymes having both ∆4 and ∆6 desaturase activities were produced by single or double amino acid substitutions within this four-amino acid region.
Collapse
Affiliation(s)
- Ze Long Lim
- Bioriginal Food and Science Corporation, Saskatoon, SK, S7N 0W9, Canada
| | | | | |
Collapse
|
22
|
Zhu G, Ou Q, Zhang T, Jiang X, Sun G, Zhang N, Wang K, Fang H, Wang M, Sun J, Ge T. A more desirable balanced polyunsaturated fatty acid composition achieved by heterologous expression of Δ15/Δ4 desaturases in mammalian cells. PLoS One 2013; 8:e84871. [PMID: 24391980 PMCID: PMC3877351 DOI: 10.1371/journal.pone.0084871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023] Open
Abstract
Arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway--a further elongation step from docosapentaenoic acid (DPA), a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage), coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line). Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs) in transgenic HEK293 cells made a more desirable fatty acid composition--a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health.
Collapse
Affiliation(s)
- Guiming Zhu
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Qin Ou
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tao Zhang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xudong Jiang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guozhi Sun
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ning Zhang
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Kunfu Wang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Heng Fang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mingfu Wang
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jie Sun
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tangdong Ge
- Laboratory of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
23
|
Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 2013; 22:3-9. [PMID: 24333273 PMCID: PMC3985434 DOI: 10.1016/j.ymben.2013.12.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 12/01/2022]
Abstract
We have engineered the diatom Phaeodactylum tricornutum to accumulate the high value omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA). This was achieved by the generation of transgenic strains in which the Δ5-elongase from the picoalga Ostreococcus tauri was expressed to augment the endogenous fatty acid biosynthetic pathway. Expression of the heterologous elongase resulted in an eight-fold increase in docosahexaenoic acid content, representing a marked and valuable change in the fatty acid profile of this microalga. Importantly, DHA was shown to accumulate in triacylglycerols, with several novel triacylglycerol species being detected in the transgenic strains. In a second iteration, co-expression of an acyl-CoA-dependent Δ6-desaturase with the Δ5-elongase further increased DHA levels. Together, this demonstrates for the first time the potential of using iterative metabolic engineering to optimise omega-3 content in algae. First example of using metabolic engineering in microalgae to modify the accumulation of high value omega-3 long chain polyunsaturated fatty acids. First example of multigene expression in a diatom. Detailed lipidomic analysis of diatom Phaeodactylum tricornutum.
Collapse
Affiliation(s)
- Mary L Hamilton
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| | - Olga Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| |
Collapse
|
24
|
Sun Q, Hang M, Guo X, Shao W, Zeng G. Expression and significance of miRNA-21 and BTG2 in lung cancer. Tumour Biol 2013; 34:4017-26. [PMID: 23857284 DOI: 10.1007/s13277-013-0992-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/01/2013] [Indexed: 12/25/2022] Open
Abstract
This study investigates the expression of micro-ribonucleic acid-21 (miRNA-21) and B cell translocation gene 2 (BTG2) in lung cancer cells. We examined the impact of miRNA-21 on biological characteristics of lung cancer cells, such as growth, proliferation, apoptosis, and invasion. The expression of miRNA-21 and BTG2 protein in lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D) was examined using quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Subsequently, the regulatory role of miRNA-21 on BTG2 was explored by inhibiting miRNA-21 expression in 95-D cells using miRNA-21-antisense oligonucleotides (miRNA-21 ASO). The impact of miRNA-21 on the biological characteristics of 95-D cells was further studied using methylthiazol tetrazolium assays, flow cytometry, and Transwell invasion chamber assays. The impact of miRNA-21 on the expression of cyclin D1, caspase-3, and matrix metalloprotease-9 (MMP9) was also studied. miRNA-21 expression was significantly higher in lung cancer cell lines (A549, HCC827, NCI-H282, and 95-D) than that in normal human bronchial epithelial cells (HBE; p < 0.05). The pattern of BTG2 protein expression was exactly the opposite of miRNA-21 expression in lung cancer cells. BTG2 was highly expressed in HBE cells and was expressed at very low levels in lung cancer cell lines (A549, HCC827, NCI-H292, and 95-D). High miRNA-21 expression may inhibit BTG2 protein expression, whereas the inhibition of miRNA-21 expression may promote BTG2 protein expression in 95-D cells. Cell viability and invasion of 95-D cells were significantly lower in the miRNA-21 ASO-transfected group than that in the control ASO-transfected group and untransfected group (p < 0.05). The number of apoptotic cells was significantly higher in the miRNA-21 ASO-transfected group than that in the control ASO-transfected and untransfected groups (p < 0.05). The expression level of cyclin D1 and MMP9 in 95-D cells was significantly lower in the miRNA-21 ASO-transfected group than in the control ASO-transfected and untransfected groups (p < 0.05). Meanwhile, caspase-3 expression was significantly higher in the miRNA-21 ASO-transfected group than that in the control ASO-transfected and untransfected groups (p < 0.05). miRNA-21 overexpression may inhibit the BTG2 gene in lung cancer cells. miRNA-21 may promote cell proliferation and invasion and inhibit cell apoptosis in 95-D cells.
Collapse
Affiliation(s)
- Qing Sun
- Department of Medical Oncology, Wuxi 2nd People's Hospital, Nanjing Medical University, Wuxi, China,
| | | | | | | | | |
Collapse
|
25
|
Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnol Adv 2013; 31:129-39. [DOI: 10.1016/j.biotechadv.2012.08.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/20/2012] [Accepted: 08/25/2012] [Indexed: 11/21/2022]
|
26
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
27
|
Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA. The modification of plant oil composition via metabolic engineering--better nutrition by design. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:157-68. [PMID: 23066823 DOI: 10.1111/pbi.12012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 05/08/2023]
Abstract
This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).
Collapse
Affiliation(s)
- Richard P Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | | | | | |
Collapse
|
28
|
Shi T, Yu A, Li M, Ou X, Xing L, Li M. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae. Biotechnol Lett 2012; 34:2265-74. [PMID: 22941368 DOI: 10.1007/s10529-012-1028-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
Isochrysis galbana, produces long chain polyunsaturated fatty acids including docosahexaenoic acid (DHA, 22:6n-3). A novel gene (IgFAD4-2), encoding a C22-∆4 polyunsaturated fatty acid specific desaturase, has been isolated and characterized from I. galbana. A full-length cDNA of 1,302 bp was cloned by LA-PCR technique. The IgFAD4-2 encoded a protein of 433 amino acids that shares 78 % identity with a previously reported ∆4-desaturase (IgFAD4-1) from I. galbana. The function of IgFAD4-2 was deduced by its heterologous expression in Saccharomyces cerevisiae, which then desaturated docosapentaenoic acid (DPA, 22:5n-3) to DHA. The conversion ratio of DPA to DHA was 34 %, which is higher than other ∆4-desaturases cloned from algae. However, IgFAD4-2 did not catalyze the desaturation or elongation reactions with other fatty acids. These results confirm that IgFAD4-2 has C22-∆4-PUFAs-specific desaturase activity.
Collapse
Affiliation(s)
- Tonglei Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, China.
| | | | | | | | | | | |
Collapse
|
29
|
Walters Pollak D, Bostick MW, Yoon H, Wang J, Hollerbach DH, He H, Damude HG, Zhang H, Yadav NS, Hong SP, Sharpe P, Xue Z, Zhu Q. Isolation of a Δ5 desaturase gene from Euglena gracilis and functional dissection of its HPGG and HDASH motifs. Lipids 2012; 47:913-26. [PMID: 22729747 PMCID: PMC3423564 DOI: 10.1007/s11745-012-3690-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/18/2012] [Indexed: 11/30/2022]
Abstract
Delta (Δ) 5 desaturase is a key enzyme for the biosynthesis of health-beneficial long chain polyunsaturated fatty acids such as arachidonic acid (ARA, C20:4n-6), eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) via the “desaturation and elongation” pathways. A full length Δ5 desaturase gene from Euglena gracilis (EgΔ5D) was isolated by cloning the products of polymerase chain reaction with degenerate oligonucleotides as primers, followed by 5′ and 3′ rapid amplification of cDNA ends. The whole coding region of EgΔ5D was 1,350 nucleotides in length and encoded a polypeptide of 449 amino acids. BlastP search showed that EgΔ5D has about 39 % identity with a Δ5 desaturase of Phaeodactylum tricornutum. In a genetically modified dihomo-gamma-linoleic acid (DGLA, C20:3n-6) producing Yarrowia lipolytica strain, EgΔ5D had strong Δ5 desaturase activity with DGLA to ARA conversion of more than 24 %. Functional dissection of its HPGG and HDASH motifs demonstrated that both motifs were important, but not necessary in the exact form as encoded for the enzyme activity of EgΔ5D. A double mutant EgΔ5D-34G158G with altered sequences within both HPGG and HDASH motifs was generated and exhibited Δ5 desaturase activity similar to the wild type EgΔ5D. Codon optimization of the N-terminal region of EgΔ5D-34G158G and substitution of the arginine with serine at residue 347 improved substrate conversion to 27.6 %.
Collapse
Affiliation(s)
- Dana Walters Pollak
- Biochemical Sciences and Engineering, Central Research and Development, E. I. du Pont de Nemours and Company, Wilmington, DE 19880, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A cytochrome b5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. EUKARYOTIC CELL 2012; 11:856-63. [PMID: 22562471 DOI: 10.1128/ec.00079-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn-2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b(5) domain, distinguishing it from other known plastid desaturases. Cytochrome b(5) is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b(5) domain of CrΔ4FAD showed that it is functional in vitro. Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas. Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG.
Collapse
|
31
|
Morais S, Castanheira F, Martinez-Rubio L, Conceição LE, Tocher DR. Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: Ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:660-71. [DOI: 10.1016/j.bbalip.2011.12.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022]
|
32
|
The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 2011; 47:227-37. [PMID: 22009657 DOI: 10.1007/s11745-011-3617-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/26/2011] [Indexed: 10/16/2022]
Abstract
Very long chain polyunsaturated fatty acids such as arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are essential components of cell membranes, and are precursors for a group of hormone-like bioactive compounds (eicosanoids and docosanoids) involved in regulation of various physiological activities in animals and humans. The biosynthesis of these fatty acids involves an alternating process of fatty acid desaturation and elongation. The desaturation is catalyzed by a unique class of oxygenases called front-end desaturases that introduce double bonds between the pre-existing double bond and the carboxyl end of polyunsaturated fatty acids. The first gene encoding a front-end desaturase was cloned in 1993 from cyanobacteria. Since then, front-end desaturases have been identified and characterized from a wide range of eukaryotic species including algae, protozoa, fungi, plants and animals including humans. Unlike front-end desaturases from bacteria, those from eukaryotes are structurally characterized by the presence of an N-terminal cytochrome b₅-like domain fused to the main desaturation domain. Understanding the structure, function and evolution of front-end desaturases, as well as their roles in the biosynthesis of very long chain polyunsaturated fatty acids offers the opportunity to engineer production of these fatty acids in transgenic oilseed plants for nutraceutical markets.
Collapse
|
33
|
Analysis of expressed sequence tags from the marine microalga Pseudochattonella farcimen (Dictyochophyceae). Protist 2011; 163:143-61. [PMID: 21820956 DOI: 10.1016/j.protis.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/28/2011] [Indexed: 01/31/2023]
Abstract
Pseudochattonella farcimen (Eikrem, Edvardsen, et Throndsen) is a unicellular alga belonging to the Dictyochophyceae (Heterokonta). It forms recurring blooms in Scandinavian coastal waters, and has been associated to fish mortality. Here we report the sequencing and analysis of 10,368 expressed sequence tags (ESTs) corresponding to 8,149 unique gene models from this species. Compared to EST libraries from other heterokonts, P. farcimen contains a high number of genes with functions related to cell communication and signaling. We found several genes encoding proteins related to fatty acid metabolism, including eight fatty acid desaturases and two phospholipase A2 genes. Three desaturases are highly similar to Δ4-desaturases from haptophytes. P. farcimen also possesses three putative polyketide synthases (PKSs), belonging to two different families. Some of these genes may have been acquired via horizontal gene transfer by a common ancestor of brown algae and dictyochophytes, together with genes involved in mannitol metabolism, which are also present in P. farcimen. Our findings may explain the unusual fatty acid profile previously observed in P. farcimen, and are discussed from an evolutionary perspective and in relation to the ichthyotoxicity of this alga.
Collapse
|
34
|
LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 2011; 91:905-15. [PMID: 21720821 DOI: 10.1007/s00253-011-3441-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 01/31/2023]
Abstract
Microalgae offer potential for numerous commercial applications, among them the production of long-chain polyunsaturated fatty acids (LC-PUFAs). These valuable fatty acids are important for a variety of nutraceutical and pharmaceutical purposes, and the market for these products is continually growing. An appropriate ratio of LC-PUFA of the ω-3 and ω-6 groups is vital for "healthy" nutrition, and adequate dietary intake has strong health benefits in humans. Microalgae of diverse classes are primary natural producers of LC-PUFA. This mini-review presents an introductory overview of LC-PUFA-related health benefits in humans, describes LC-PUFA occurrence in diverse microalgal classes, depicts the major pathways of their biosynthesis in microalgae, and discusses the prospects for microalgal LC-PUFA production.
Collapse
|
35
|
Heterologous overexpression of a novel delta-4 desaturase gene from the marine microalga Pavlova viridis in Escherichia coli as a Mistic fusion. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Sayanova O, Haslam RP, Calerón MV, López NR, Worthy C, Rooks P, Allen MJ, Napier JA. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. PHYTOCHEMISTRY 2011; 72:594-600. [PMID: 21316718 DOI: 10.1016/j.phytochem.2011.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
Abstract
The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ahmann K, Heilmann M, Feussner I. Identification of a Δ4-desaturase from the microalga Ostreococcus lucimarinus. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Abstract
Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 182n - 6 to produce 183n - 6 that is elongated to 203n - 6 followed by Δ5 desaturation. Synthesis of EPA from 183n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 225n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 225n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above.
Collapse
|
39
|
Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie 2010; 93:91-100. [PMID: 20709142 DOI: 10.1016/j.biochi.2010.07.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 01/08/2023]
Abstract
Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms' lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | | |
Collapse
|
40
|
Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M. Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:407-16. [PMID: 20400321 DOI: 10.1016/j.plaphy.2010.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/18/2010] [Indexed: 05/03/2023]
Abstract
In order to identify novel genes encoding enzymes involved in the terminal step of triacylglycerol (TAG) formation, a database search was carried out in the genome of the unicellular photoautotrophic green alga Ostreococcus tauri. The search led to the identification of three putative type 2 acyl-CoA:diacylglycerol acyltransferase-like sequences (DGAT; EC 2.3.1.20), and revealed the absence of any homolog to type 1 or type 3 DGAT sequence in the genome of O. tauri. For two of the cDNA sequences (OtDGAT2A and B) enzyme activity was detected by heterologous expression in Saccharomyces cerevisiae mutant strains with impaired TAG metabolism. However, activity of OtDGAT2A was too low for further analysis. Analysis of their amino acid sequences showed that they share limited identity with other DGAT2 from different plant species, such as Ricinus communis and Vernicia fordii with approximately 25 to 30% identity. Lipid analysis of the mutant yeast cells revealed that OtDGAT2B showed broad substrate specificity accepting saturated as well as mono- and poly-unsaturated acyl-CoAs as substrates.
Collapse
Affiliation(s)
- Martin Wagner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Identification and characterization of a novel enzyme related to the synthesis of PUFAs derived from Thraustochytrium aureum ATCC 34304. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0223-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Venegas-Calerón M, Sayanova O, Napier JA. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 2010; 49:108-19. [DOI: 10.1016/j.plipres.2009.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 12/14/2022]
|
43
|
Kitson AP, Stroud CK, Stark KD. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids 2010; 45:209-24. [PMID: 20151220 DOI: 10.1007/s11745-010-3391-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/15/2010] [Indexed: 01/25/2023]
Abstract
Observational evidence suggests that in populations consuming low levels of n-3 highly unsaturated fatty acids, women have higher blood levels of docosahexaenoic acid (DHA; 22:3n-6) as compared with men. Increased conversion of alpha-linolenic acid (ALA; 18:3n-3) to DHA by females has been confirmed in fatty acid stable isotope studies. This difference in conversion appears to be associated with estrogen and some evidence indicates that the expression of enzymes involved in synthesis of DHA from ALA, including desaturases and elongases, is elevated in females. An estrogen-associated effect may be mediated by peroxisome proliferator activated receptor-alpha (PPARalpha), as activation of this nuclear receptor increases the expression of these enzymes. However, because estrogens are weak ligands for PPARalpha, estrogen-mediated increases in PPARalpha activity likely occur through an indirect mechanism involving membrane-bound estrogen receptors and estrogen-sensitive G-proteins. The protein kinases activated by these receptors phosphorylate and increase the activity of PPARalpha, as well as phospholipase A(2) and cyclooxygenase 2 that increase the intracellular concentration of PPARalpha ligands. This review will outline current knowledge regarding elevated DHA production in females, as well as highlight interactions between estrogen signaling and PPARalpha activity that may mediate this effect.
Collapse
Affiliation(s)
- Alex P Kitson
- Laboratory of Nutritional and Nutraceutical Research, Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
44
|
Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE. Characterization of Both Polyunsaturated Fatty Acid Biosynthetic Pathways in Schizochytrium sp. Lipids 2009; 44:621-30. [DOI: 10.1007/s11745-009-3311-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
|
45
|
Cloning and Characterization of the ∆6 Polyunsaturated Fatty Acid Elongase from the Green Microalga Parietochloris incisa. Lipids 2009; 44:545-54. [DOI: 10.1007/s11745-009-3301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/04/2009] [Indexed: 10/20/2022]
|
46
|
Lin YW, Ying TL, Liao LF. Dynamic consequences of mutating the typical HPGG motif of apocytochrome b5 revealed by computer simulation. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2009.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Niu Y, Kong J, Fu L, Yang J, Xu Y. Identification of a novel C20-elongase gene from the marine microalgae Pavlova viridis and its expression in Escherichia coli. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:17-23. [PMID: 18651191 DOI: 10.1007/s10126-008-9116-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/30/2008] [Indexed: 05/26/2023]
Abstract
Pavlova viridis, a species of a unicellular marine microalgae, is rich in the very-long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). A new elongase gene (elkj), with high identity with a functionally characterized C20-elongase of Pavlova lutheri, was isolated via reverse transcriptase-polymerase chain reaction using the primers designed from conserved motifs and 5'/3' rapid amplification of cDNA ends. The coding region of 314 amino acids predicted a protein of 34 kDa, which contained seven transmembrane domains with its C-terminal in the cytoplasm and located in the endoplasmic reticulum. The expression of ELKJ in Escherichia coli was carried out by using green fluorescent protein as an indicator, suggesting the correct insertion in cytoplasmic membrane. Functional analysis demonstrated that elkj encoded a C20-elongase that mediated the elongation of EPA into docosapentaenoic acid (22:5n-3), confirming the two-step conversion from EPA to DHA in marine microalga.
Collapse
Affiliation(s)
- Yan Niu
- State Key Laboratory for Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
48
|
Chi X, Zhang X, Guan X, Ding L, Li Y, Wang M, Lin H, Qin S. Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: Identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J Microbiol 2008; 46:189-201. [DOI: 10.1007/s12275-007-0223-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 01/08/2008] [Indexed: 12/14/2022]
|
49
|
Metabolic Engineering of the Content and Fatty Acid Composition of Vegetable Oils. BIOENGINEERING AND MOLECULAR BIOLOGY OF PLANT PATHWAYS 2008. [DOI: 10.1016/s1755-0408(07)01007-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Abstract
The ability to genetically engineer plants has facilitated the generation of oilseeds synthesizing non-native fatty acids. Two particular classes of fatty acids are considered in this review. First, so-called industrial fatty acids, which usually contain functional groups such as hydroxyl, epoxy, or acetylenic bonds, and second, very long chain polyunsaturated fatty acids normally found in fish oils and marine microorganisms. For industrial fatty acids, there has been limited progress toward obtaining high-level accumulation of these products in transgenic plants. For very long chain polyunsaturated fatty acids, although they have a much more complex biosynthesis, accumulation of some target fatty acids has been remarkably successful. In this review, we consider the probable factors responsible for these different outcomes, as well as the potential for further optimization of the transgenic production of unusual fatty acids in transgenic plants.
Collapse
|