1
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
2
|
Strazzulli A, Perugino G, Mazzone M, Rossi M, Withers SG, Moracci M. Probing the role of an invariant active site His in family GH1 β-glycosidases. J Enzyme Inhib Med Chem 2019; 34:973-980. [PMID: 31072150 PMCID: PMC6522968 DOI: 10.1080/14756366.2019.1608198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The reaction mechanism of glycoside hydrolases belonging to family 1 (GH1) of carbohydrate-active enzymes classification, hydrolysing β-O-glycosidic bonds, is well characterised. This family includes several thousands of enzymes with more than 20 different EC numbers depending on the sugar glycone recognised as substrate. Most GH1 β-glycosidases bind their substrates with similar specificity through invariant amino acid residues. Despite extensive studies, the clear identification of the roles played by each of these residues in the recognition of different glycones is not always possible. We demonstrated here that a histidine residue, completely conserved in the active site of the enzymes of this family, interacts with the C2-OH of the substrate in addition to the C3-OH as previously shown by 3 D-structure determination.
Collapse
Affiliation(s)
- Andrea Strazzulli
- a Department of Biology , University of Naples "Federico II", Complesso Universitario di Monte S. Angelo , Napoli , Italy.,b Task Force on Microbiome Studies, University of Naples Federico II , Naples , Italy
| | - Giuseppe Perugino
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Marialuisa Mazzone
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Mosè Rossi
- c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| | - Stephen G Withers
- d Department of Chemistry , University of British Columbia , Vancouver , Canada
| | - Marco Moracci
- a Department of Biology , University of Naples "Federico II", Complesso Universitario di Monte S. Angelo , Napoli , Italy.,b Task Force on Microbiome Studies, University of Naples Federico II , Naples , Italy.,c Institute of Biosciences and BioResources - National Research Council of Italy , Naples , Italy
| |
Collapse
|
3
|
Lee H, Fischer M, Shoichet BK, Liu SY. Hydrogen Bonding of 1,2-Azaborines in the Binding Cavity of T4 Lysozyme Mutants: Structures and Thermodynamics. J Am Chem Soc 2016; 138:12021-4. [PMID: 27603116 DOI: 10.1021/jacs.6b06566] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein crystallography and calorimetry were used to characterize the binding of 1,2-azaborines to model cavities in T4 lysozyme in direct comparison to their carbonaceous counterparts. In the apolar L99A cavity, affinity for Ab dropped only slightly versus benzene. In the cavity designed to accommodate a single hydrogen bond (L99A/M102Q), Gln102═O···H-N hydrogen bonding for Ab and BEtAb was observed in the crystallographic complexes. The strength of the hydrogen bonding was estimated as 0.94 and 0.64 kcal/mol for Ab and BEtAb, respectively. This work unambiguously demonstrates that 1,2-azaborines can be readily accommodated in classic aryl recognition pockets and establishes one of 1,2-azaborine's distinguishing features from its carbonaceous isostere benzene: its ability to serve as an NH hydrogen bond donor in a biological setting.
Collapse
Affiliation(s)
- Hyelee Lee
- Department of Chemistry, Boston College , Chestnut Hill, Massachusetts 02467, United States
| | - Marcus Fischer
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College , Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
4
|
Tondi D, Venturelli A, Bonnet R, Pozzi C, Shoichet BK, Costi MP. Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. J Med Chem 2014; 57:5449-58. [PMID: 24882105 PMCID: PMC4079326 DOI: 10.1021/jm5006572] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Production
of β-lactamases (BLs) is the most widespread resistance
mechanism adopted by bacteria to fight β-lactam antibiotics.
The substrate spectrum of BLs has become increasingly broad, posing
a serious health problem. Thus, there is an urgent need for novel
BL inhibitors. Boronic acid transition-state analogues are able to
reverse the resistance conferred by class A and C BLs. We describe
a boronic acid analogue possessing interesting and potent broad-spectrum
activity vs class A and C serine-based BLs. Starting from benzo(b)thiophene-2-boronic acid (BZBTH2B), a nanomolar non-β-lactam
inhibitor of AmpC that can potentiate the activity of a third-generation
cephalosporin against AmpC-producing resistant bacteria, we designed
a novel broad-spectrum nanomolar inhibitor of class A and C BLs. Structure-based
drug design (SBDD), synthesis, enzymology data, and X-ray crystallography
results are discussed. We clarified the inhibitor binding geometry
responsible for broad-spectrum activity vs serine-active BLs using
double mutant thermodynamic cycle studies.
Collapse
Affiliation(s)
- Donatella Tondi
- Department of Pharmaceutical Chemistry, University of California San Francisco , 600 16th Street San Francisco, California 94143-2240, United States
| | | | | | | | | | | |
Collapse
|
5
|
Drawz SM, Babic M, Bethel CR, Taracila M, Distler AM, Ori C, Caselli E, Prati F, Bonomo RA. Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design. Biochemistry 2010; 49:329-40. [PMID: 19925018 DOI: 10.1021/bi9015988] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need to develop beta-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed. In the boronic acid series, a chiral cephalothin analogue with a meta-carboxyphenyl moiety corresponding to the C(3)/C(4) carboxylate of beta-lactams showed the lowest K(i) (11 +/- 1 nM). In antimicrobial susceptibility tests, this cephalothin analogue lowered the ceftazidime and cefotaxime minimum inhibitory concentrations (MICs) of Escherichia coli DH10B cells carrying bla(ADC) from 16 to 4 microg/mL and from 8 to 1 microg/mL, respectively. On the other hand, each carbapenem exhibited a K(i) of <20 microM, and timed electrospray ionization mass spectrometry (ESI-MS) demonstrated the formation of adducts corresponding to acyl-enzyme intermediates with both intact carbapenem and carbapenem lacking the C(6) hydroxyethyl group. To improve our understanding of the interactions between the beta-lactamase and the inhibitors, we constructed models of ADC as an acyl-enzyme intermediate with (i) the meta-carboxyphenyl cephalothin analogue and (ii) the carbapenems, imipenem and meropenem. Our first model suggests that this chiral cephalothin analogue adopts a novel conformation in the beta-lactamase active site. Further, the addition of the substituent mimicking the cephalosporin dihydrothiazine ring may significantly improve affinity for the ADC beta-lactamase. In contrast, the ADC-carbapenem models offer a novel role for the R(2) side group and also suggest that elimination of the C(6) hydroxyethyl group by retroaldolic reaction leads to a significant conformational change in the acyl-enzyme intermediate. Lessons from the diverse mechanisms and structures of the boronic acid derivatives and carbapenems provide insights for the development of new beta-lactamase inhibitors against these critical drug resistance targets.
Collapse
Affiliation(s)
- Sarah M Drawz
- Department of Pathology, Case Western Reserve UniversitySchool of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
7
|
Chen Y, McReynolds A, Shoichet BK. Re-examining the role of Lys67 in class C beta-lactamase catalysis. Protein Sci 2009; 18:662-9. [PMID: 19241376 DOI: 10.1002/pro.60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lys67 is essential for the hydrolysis reaction mediated by class C beta-lactamases. Its exact catalytic role lies at the center of several different proposed reaction mechanisms, particularly for the deacylation step, and has been intensely debated. Whereas a conjugate base hypothesis postulates that a neutral Lys67 and Tyr150 act together to deprotonate the deacylating water, previous experiments on the K67R mutants of class C beta-lactamases suggested that the role of Lys67 in deacylation is mainly electrostatic, with only a 2- to 3-fold decrease in the rate of the mutant vs the wild type enzyme. Using the Class C beta-lactamase AmpC, we have reinvestigated the activity of this K67R mutant enzyme, using biochemical and structural studies. Both the rates of acylation and deacylation were affected in the AmpC K67R mutant, with a 61-fold decrease in k(cat), the deacylation rate. We have determined the structure of the K67R mutant by X-ray crystallography both in apo and transition state-analog complexed forms, and observed only minimal conformational changes in the catalytic residues relative to the wild type. These results suggest that the arginine side chain is unable to play the same catalytic role as Lys67 in either the acylation or deacylation reactions catalyzed by AmpC. Therefore, the activity of this mutant can not be used to discredit the conjugate base hypothesis as previously concluded, although the reaction catalyzed by the K67R mutant itself likely proceeds by an alternative mechanism. Indeed, a manifold of mechanisms may contribute to hydrolysis in class C beta-lactamases, depending on the enzyme (wt or mutant) and the substrate, explaining why different mutants and substrates seem to support different pathways. For the WT enzyme itself, the conjugate base mechanism may be well favored.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2550, USA
| | | | | |
Collapse
|
8
|
Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van’t Hoff analysis. Anal Biochem 2008; 383:255-64. [DOI: 10.1016/j.ab.2008.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 12/11/2022]
|
9
|
Morandi S, Morandi F, Caselli E, Shoichet BK, Prati F. Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorg Med Chem 2007; 16:1195-205. [PMID: 17997318 DOI: 10.1016/j.bmc.2007.10.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/11/2007] [Accepted: 10/23/2007] [Indexed: 11/25/2022]
Abstract
Boronic acids have proved to be promising selective inhibitors of beta-lactamases, acting as transition state analogues. Starting from a previously described nanomolar inhibitor of AmpC beta-lactamase, three new inhibitors were designed to gain interactions with highly conserved residues, such as Asn343, and to bind more tightly to the enzyme. Among these, one was obtained by stereoselective synthesis and succeeded in placing its anionic group into the carboxylate binding site of the enzyme, as revealed by X-ray crystallography of the complex inhibitor/AmpC. Nevertheless, it failed at improving affinity, when compared to the lead from which it was derived. The origins of this structural and energetic discrepancy are discussed.
Collapse
Affiliation(s)
- Stefania Morandi
- Dipartimento di Chimica, Università degli studi di Modena e Reggio Emilia, via Campi 183, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
10
|
Chen Y, Minasov G, Roth TA, Prati F, Shoichet BK. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution. J Am Chem Soc 2006; 128:2970-6. [PMID: 16506777 PMCID: PMC1544378 DOI: 10.1021/ja056806m] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Beta-lactamases confer bacterial resistance to beta-lactam antibiotics, such as penicillins. The characteristic class C beta-lactamase AmpC catalyzes the reaction with several key residues including Ser64, Tyr150, and Lys67. Here, we describe a 1.07 A X-ray crystallographic structure of AmpC beta-lactamase in complex with a boronic acid deacylation transition-state analogue. The high quality of the electron density map allows the determination of many proton positions. The proton on the Tyr150 hydroxyl group is clearly visible and is donated to the boronic oxygen mimicking the deacylation water. Meanwhile, Lys67 hydrogen bonds with Ser64Ogamma, Asn152Odelta1, and the backbone oxygen of Ala220. This suggests that this residue is positively charged and has relinquished the hydrogen bond with Tyr150 observed in acyl-enzyme complex structures. Together with previous biochemical and NMR studies, these observations indicate that Tyr150 is protonated throughout the reaction coordinate, disfavoring mechanisms that involve a stable tyrosinate as the general base for deacylation. Rather, the hydroxyl of Tyr150 appears to be well positioned to electrostatically stabilize the negative charge buildup in the tetrahedral high-energy intermediate. This structure, in itself, appears consistent with a mechanism involving either Tyr150 acting as a transient catalytic base in conjunction with a neutral Lys67 or the lactam nitrogen as the general base. Whereas mutagenesis studies suggest that Lys67 may be replaced by an arginine, disfavoring the conjugate base mechanism, distinguishing between these two hypotheses may ultimately depend on direct determination of the pK(a) of Lys67 along the reaction coordinate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California-San Francisco, QB3 Building Room 508D, 1700 4th Street, San Francisco, CA 94143-2550, USA
| | | | | | | | | |
Collapse
|
11
|
Tondi D, Morandi F, Bonnet R, Costi MP, Shoichet BK. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 2005; 127:4632-9. [PMID: 15796528 PMCID: PMC1360654 DOI: 10.1021/ja042984o] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial expression of beta-lactamases is the most widespread resistance mechanism to beta-lactam antibiotics, such as penicillins and cephalosporins. There is a pressing need for novel, non-beta-lactam inhibitors of these enzymes. One previously discovered novel inhibitor of the beta-lactamase AmpC, compound 1, has several favorable properties: it is chemically dissimilar to beta-lactams and is a noncovalent, competitive inhibitor of the enzyme. However, at 26 microM its activity is modest. Using the X-ray structure of the AmpC/1 complex as a template, 14 analogues were designed and synthesized. The most active of these, compound 10, had a K(i) of 1 microM, 26-fold better than the lead. To understand the origins of this improved activity, the structures of AmpC in complex with compound 10 and an analogue, compound 11, were determined by X-ray crystallography to 1.97 and 1.96 A, respectively. Compound 10 was active in cell culture, reversing resistance to the third generation cephalosporin ceftazidime in bacterial pathogens expressing AmpC. In contrast to beta-lactam-based inhibitors clavulanate and cefoxitin, compound 10 did not up-regulate beta-lactamase expression in cell culture but simply inhibited the enzyme expressed by the resistant bacteria. Its escape from this resistance mechanism derives from its dissimilarity to beta-lactam antibiotics.
Collapse
Affiliation(s)
- Donatella Tondi
- Department of Pharmaceutical Chemistry, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | | | | | |
Collapse
|