1
|
Tsikas D. Acetazolamide and human carbonic anhydrases: retrospect, review and discussion of an intimate relationship. J Enzyme Inhib Med Chem 2024; 39:2291336. [PMID: 38078375 DOI: 10.1080/14756366.2023.2291336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Acetazolamide (AZM) is a strong pharmacological sulphonamide-type (R-SO2-NH2, pKa 7.2) inhibitor of the activity of several carbonic anhydrase (CA) isoforms, notably of renal CA II (Ki, 12 nM) and CA IV (Ki, 74 nM). AZM is clinically used for about eighty years in various diseases including epilepsy and glaucoma. Pharmacological AZM increases temporarily the urinary excretion of bicarbonate (HCO3-) and sodium ions (Na+) and sustainably the urinary pH. AZM is excreted almost unchanged over several hours at high rates in the urine. Closely parallel concentrations of circulating and excretory AZM are observed upon administration of therapeutical doses of AZM. In a proof-of-principle study, we investigated the effects of the ingestion of a 250-mg AZM-containing tablet by a healthy volunteer on the urinary excretion of organic and inorganic substances over 5 h (range, 0, 0.5, 1, 1.5, 2, 3, 4, 5 h). Measured analytes included: AZM, amino acids and their metabolites such as guanidinoacetate, i.e. the precursor of creatine, of asymmetrically (ADMA) and symmetrically (SDMA) dimethylated arginine, nitrite (O = N-O-, pKa 3.4) and nitrate (O2N-O-, pKa -1.37), the major metabolites of nitric oxide (NO), the C-H acidic malondialdehyde (MDA; (CHO)2CH2, pKa 4.5), and creatinine for correction of analytes excretion. All analytes were measured by validated isotopologues using gas chromatography-mass spectrometry (GC-MS) methods. AZM excretion in the urine reached its maximum value after 2 h and was fairly stable for the next 3 h. Time series analysis by the ARIMA method was performed. AZM ingestion increased temporarily the urinary excretion of the amino acids Leu + Ile, nitrite and nitrate, decreased temporarily the urinary excretion of other amino acids. AZM decreased sustainably the urinary excretion of MDA, a biomarker of oxidative stress (i.e. lipid peroxidation). Whether this decrease is due to inhibition of the excretion of MDA or attenuation of oxidative stress by AZM is unknown. The acute and chronic effects of AZM on the urinary excretion of electrolytes and physiological substances reported in the literature are discussed in depth in the light of its extraordinary pharmacokinetics and pharmacodynamics. Tolerance development/drug resistance to AZM in chronic use and potential mechanisms are also addressed.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Berrino E, Michelet B, Vitse K, Nocentini A, Bartolucci G, Martin-Mingot A, Gratteri P, Carta F, Supuran CT, Thibaudeau S. Superacid-Synthesized Fluorinated Diamines Act as Selective hCA IV Inhibitors. J Med Chem 2024. [PMID: 39447020 DOI: 10.1021/acs.jmedchem.4c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Carbonic anhydrase (CA) IV is a membrane-bound enzyme involved in important physio-pathological processes, such as excitation-contraction coupling in heart muscle, central nervous system (CNS) extracellular buffering, and mediation of inflammatory response after stroke. Known since the mid-1980s, this isoform is still largely unexplored when compared to other isoforms, mostly for the current lack of inhibitors targeting selectively this isoform. The discovery of selective CA IV inhibitors is thus largely awaited. In this work, we report β-(di) fluoropropyl diamines as effective CA IV inhibitors, opening real perspectives for a new mode of selective inhibition of this isoform. Inhibition data reveal that the essential structure core to ensure a potent and selective inhibition of CA IV is the N-propyldiamine. Molecular modeling studies were employed to understand the binding mode of the synthesized amines. Conformational searches within the active site space carried out in an implicit solvent (water) model were also conducted.
Collapse
Affiliation(s)
- Emanuela Berrino
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Kassandra Vitse
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Alessio Nocentini
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Gianluca Bartolucci
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Paola Gratteri
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| |
Collapse
|
3
|
Okamoto S, Yasuda M, Kawaguchi K, Yasuoka K, Kikukawa Y, Asano S, Tsujii T, Inoue S, Amagase K, Inui TA, Hirano S, Inui T, Marunaka Y, Nakahari T. Ciliary Motility Decreased by a CO 2/HCO 3--Free Solution in Ciliated Human Nasal Epithelial Cells Having a pH Elevated by Carbonic Anhydrase IV. Int J Mol Sci 2024; 25:9069. [PMID: 39201753 PMCID: PMC11354224 DOI: 10.3390/ijms25169069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
An application of CO2/HCO3--free solution (Zero-CO2) did not increase intracellular pH (pHi) in ciliated human nasal epithelial cells (c-hNECs), leading to no increase in frequency (CBF) or amplitude (CBA) of the ciliary beating. This study demonstrated that the pHi of c-hNECs expressing carbonic anhydrase IV (CAIV) is high (7.64), while the pHi of ciliated human bronchial epithelial cells (c-hBECs) expressing no CAIV is low (7.10). An extremely high pHi of c-hNECs caused pHi, CBF and CBA to decrease upon Zero-CO2 application, while a low pHi of c-hBECs caused them to increase. An extremely high pHi was generated by a high rate of HCO3- influx via interactions between CAIV and Na+/HCO3- cotransport (NBC) in c-hNECs. An NBC inhibitor (S0859) decreased pHi, CBF and CBA and increased CBF and CBA in c-hNECs upon Zero-CO2 application. In conclusion, the interactions of CAIV and NBC maximize HCO3- influx to increase pHi in c-hNECs. This novel mechanism causes pHi to decrease, leading to no increase in CBF and CBA in c-hNECs upon Zero-CO2 application, and appears to play a crucial role in maintaining pHi, CBF and CBA in c-hNECs periodically exposed to air (0.04% CO2) with respiration.
Collapse
Affiliation(s)
- Shota Okamoto
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.Y.); (T.-a.I.); (S.H.)
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.Y.); (T.-a.I.); (S.H.)
| | - Kotoku Kawaguchi
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Laboratory of Molecular Physiology, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan
| | - Kasane Yasuoka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Laboratory of Molecular Physiology, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan
| | - Yumi Kikukawa
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Laboratory of Molecular Physiology, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan
| | - Shinji Asano
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Laboratory of Molecular Physiology, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan
| | - Taisei Tsujii
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Laboratory of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (S.I.); (K.A.)
| | - Sana Inoue
- Laboratory of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (S.I.); (K.A.)
| | - Kikuko Amagase
- Laboratory of Pharmacology and Pharmacotherapeutics, Faculty of Pharmacy, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (S.I.); (K.A.)
| | - Taka-aki Inui
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.Y.); (T.-a.I.); (S.H.)
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.Y.); (T.-a.I.); (S.H.)
| | - Toshio Inui
- Saisei Mirai Clinics, 3-34-8 Okubocho, Moriguchi 570-0012, Japan;
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University BKC, Kusatsu 525-8577, Japan; (K.K.); (K.Y.); (Y.K.); (S.A.); (T.T.); (Y.M.)
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
| |
Collapse
|
4
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
5
|
Potential Novel Role of Membrane-Associated Carbonic Anhydrases in the Kidney. Int J Mol Sci 2023; 24:ijms24044251. [PMID: 36835660 PMCID: PMC9961601 DOI: 10.3390/ijms24044251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Carbonic anhydrases (CAs), because they catalyze the interconversion of carbon dioxide (CO2) and water into bicarbonate (HCO3-) and protons (H+), thereby influencing pH, are near the core of virtually all physiological processes in the body. In the kidneys, soluble and membrane-associated CAs and their synergy with acid-base transporters play important roles in urinary acid secretion, the largest component of which is the reabsorption of HCO3- in specific nephron segments. Among these transporters are the Na+-coupled HCO3- transporters (NCBTs) and the Cl--HCO3- exchangers (AEs)-members of the "solute-linked carrier" 4 (SLC4) family. All of these transporters have traditionally been regarded as "HCO3-" transporters. However, recently our group has demonstrated that two of the NCBTs carry CO32- rather than HCO3- and has hypothesized that all NCBTs follow suit. In this review, we examine current knowledge on the role of CAs and "HCO3-" transporters of the SLC4 family in renal acid-base physiology and discuss how our recent findings impact renal acid secretion, including HCO3- reabsorption. Traditionally, investigators have associated CAs with producing or consuming solutes (CO2, HCO3-, and H+) and thus ensuring their efficient transport across cell membranes. In the case of CO32- transport by NCBTs, however, we hypothesize that the role of membrane-associated CAs is not the appreciable production or consumption of substrates but the minimization of pH changes in nanodomains near the membrane.
Collapse
|
6
|
Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport. Biomolecules 2022; 12:biom12121794. [PMID: 36551222 PMCID: PMC9775063 DOI: 10.3390/biom12121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The transmembrane transport of weak acid and base metabolites depends on the local pH conditions that affect the protonation status of the substrates and the availability of co-substrates, typically protons. Different protein designs ensure the attraction of substrates and co-substrates to the transporter entry sites. These include electrostatic surface charges on the transport proteins and complexation with seemingly transport-unrelated proteins that provide substrate and/or proton antenna, or enzymatically generate substrates in place. Such protein assemblies affect transport rates and directionality. The lipid membrane surface also collects and transfers protons. The complexity in the various systems enables adjustability and regulation in a given physiological or pathophysiological situation. This review describes experimentally shown principles in the attraction and facilitation of weak acid and base transport substrates, including monocarboxylates, ammonium, bicarbonate, and arsenite, plus protons as a co-substrate.
Collapse
|
7
|
Nava VE, Khosla R, Shin S, Mordini FE, Bandyopadhyay BC. Enhanced carbonic anhydrase expression with calcification and fibrosis in bronchial cartilage during COPD. Acta Histochem 2022; 124:151834. [PMID: 34954529 DOI: 10.1016/j.acthis.2021.151834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
Pulmonary cartilage plays a crucial structural role determining the physiologic airway compressibility and distensibility, necessary for proper mechanical function. This functionality deteriorates with aging due to increased stiffness of both airway muscle and cartilage, as well as, decreased renewal capacity. Altered airway remodeling has been suggested as a pathogenic driver of chronic obstructive pulmonary disease (COPD) through mechanisms still incompletely understood. Using paraffin-embedded lung tissue sections from archived autopsy material from COPD with non-COPD age matched controls a histopathologic analysis focused on inflammation, fibrosis and calcification was performed with special stains (Masson's trichrome and Von Kossa) and immunohistochemistry for carbonic anhydrase IV (CA IV) and Ki-67. COPD lung tissues showed increased peribronchial inflammation compared to the non-COPD. Coarse amphophilic crystalline deposits in bronchial cartilage were more frequently observed in COPD sections, which were compatible with early dystrophic calcification of the extracellular matrix and chondrocytes. Moreover, Von Kossa staining revealed a significant calcium deposition in the cartilages from COPD in comparison to the controls. Interestingly, Ki-67 immunostains demonstrated a higher overall proliferative rate, including epithelial cells, in COPD. Furthermore, Masson's trichrome staining revealed relatively increased peribronchial collagen deposition associated with a fibrotic stromal response, which may be secondary to the inflammatory milieu in COPD. To further characterize the tissue microenvironment associated with dystrophic calcification, immunohistochemistry for CA IV was used, revealing significantly increased expression in chondrocytes and peribronchial tissue in COPD. Our findings demonstrate that dystrophic calcification of the extracellular matrix and chondrocytes can be linked to CA IV expression in COPD and suggest that pH changes in pulmonary tissue associated with inflammation and calcification may play an active role in COPD.
Collapse
Affiliation(s)
- Victor E Nava
- Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Rahul Khosla
- Pulmonary Section, Medical Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Federico E Mordini
- Cardiology Section, Medical Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA.
| |
Collapse
|
8
|
Peña-Münzenmayer G, Kondo Y, Salinas C, Sarmiento J, Brauchi S, Catalán MA. Activation of the Ae4 (Slc4a9) cation-driven Cl -/HCO 3- exchanger by the cAMP-dependent protein kinase in salivary gland acinar cells. Am J Physiol Gastrointest Liver Physiol 2021; 321:G628-G638. [PMID: 34585968 PMCID: PMC8887885 DOI: 10.1152/ajpgi.00145.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023]
Abstract
Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon β-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.
Collapse
Affiliation(s)
- Gaspar Peña-Münzenmayer
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Fukuoka, Japan
| | - Constanza Salinas
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Brauchi
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Marcelo A Catalán
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
9
|
Nolly MB, Vargas LA, Correa MV, Lofeudo JM, Pinilla AO, Rueda JOV, Guerrero-Gimenez ME, Swenson ER, Damiani MT, Alvarez BV. Carbonic anhydrase IX and hypoxia-inducible factor 1 attenuate cardiac dysfunction after myocardial infarction. Pflugers Arch 2021; 473:1273-1285. [PMID: 34231059 DOI: 10.1007/s00424-021-02592-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/11/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. Prognosis and mortality rate are directly related to infarct size and post-infarction pathological heart remodeling, which can lead to heart failure. Hypoxic MI-affected areas increase the expression of hypoxia-inducible factor (HIF-1), inducing infarct size reduction and improving cardiac function. Hypoxia translocates HIF-1 to the nucleus, activating carbonic anhydrase IX (CAIX) transcription. CAIX regulates myocardial intracellular pH, critical for heart performance. Our objective was to investigate CAIX participation and relation with sodium bicarbonate transporters 1 (NBC1) and HIF-1 in cardiac remodeling after MI. We analyzed this pathway in an "in vivo" rat coronary artery ligation model and isolated cardiomyocytes maintained under hypoxia. Immunohistochemical studies revealed an increase in HIF-1 levels after 2 h of infarction. Similar results were observed in 2-h infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes with a nuclear distribution (confocal microscopy). Immunohistochemical studies showed an increase CAIX in the infarcted area at 2 h, mainly distributed throughout the cell and localized in the plasma membrane at 24 h. Similar results were observed in 2 h in infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes (confocal microscopy). NBC1 expression increased in cardiac tissue after 2 h of infarction (immunoblotting). CAIX and NBC1 interaction increases in cardiac tissue subjected to MI for 2h when CAIX is present (immunoprecipitation). These results suggest that CAIX interacts with NBC1 in our infarct model as a mechanism to prevent acidic damage in hypoxic tissue, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Mariela Beatriz Nolly
- Laboratorio de Bioquímica e Inmunidad, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Lorena Alejandra Vargas
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - María Verónica Correa
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC-PBA, La Plata, 1900, Buenos Aires, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Andrés Oscar Pinilla
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Jorge Omar Velez Rueda
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
| | - Martin E Guerrero-Gimenez
- Laboratorio de Oncología, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Erik Richard Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Maria Teresa Damiani
- Laboratorio de Bioquímica e Inmunidad, IMBECU-CONICET-UNCuyo, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| | - Bernardo Victor Alvarez
- Centro de Investigaciones Cardiovasculares, CIC-CONICET, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, 1900, Buenos Aires, Argentina
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
10
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
11
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
12
|
Redman RS, Bandyopadhyay BC. Immunohistochemical localization of carbonic anhydrase IV in the human parotid gland. Biotech Histochem 2021; 96:565-569. [PMID: 33596759 DOI: 10.1080/10520295.2021.1887936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the hydration and dehydration of carbon dioxide. They are important for regulating ions, fluid and acid-base balance in many tissues. The location of CAs by cell type is important for understanding their roles in these functions. CAs II and VI have been demonstrated using immunohistochemistry (IHC) in the serous acinar cells of human salivary glands and ducts of rat salivary glands. CA IV has been localized by IHC to the ducts of rat salivary glands. CA IV also is present in human parotid glands as shown by real time-polymerase chain reaction (RT-PCR), but this method does not show the distribution of the CA isozymes by cell type. We investigated the cell-specific distribution of CA IV in the human parotid gland. Sections from five formalin fixed, paraffin embedded specimens of human parotid gland were subjected to IHC for CA IV using a commercial antibody. Moderate to strong reactions were found in the cell membranes and cytoplasm of the intercalated, striated and excretory ducts and capillaries, and reactions in the acini were limited to faint areas in some cells. These results indicate that CA IV participates in the regulation of bicarbonate/carbon dioxide fluxes in the ductal system of the human parotid gland.
Collapse
Affiliation(s)
- Robert S Redman
- Oral Pathology Research, Department of Veterans Affairs Medical Center, Washington, DC
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Department of Veterans Affairs Medical Center, Washington, DC, USA
| |
Collapse
|
13
|
The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270:119153. [PMID: 33539911 DOI: 10.1016/j.lfs.2021.119153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Cardiac tissue ischemia/hypoxia increases glycolysis and lactic acid accumulation in cardiomyocytes, leading to intracellular metabolic acidosis. Sodium bicarbonate cotransporters (NBCs) play a vital role in modulating intracellular pH and maintaining sodium ion concentrations in cardiomyocytes. Cardiomyocytes mainly express electrogenic sodium bicarbonate cotransporter (NBCe1), which has been demonstrated to participate in myocardial ischemia/reperfusion (I/R) injury. This review outlines the structural and functional properties of NBCe1, summarizes the signaling pathways and factors that may regulate the activity of NBCe1, and reviews the roles of NBCe1 in the pathogenesis of I/R-induced cardiac diseases. Further studies revealing the regulatory mechanisms of NBCe1 activity should provide novel therapeutic targets for preventing I/R-induced cardiac diseases.
Collapse
|
14
|
Transcriptomic and Ultrastructural Signatures of K +-Induced Aggregation in Phytophthora parasitica Zoospores. Microorganisms 2020; 8:microorganisms8071012. [PMID: 32645882 PMCID: PMC7409359 DOI: 10.3390/microorganisms8071012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.
Collapse
|
15
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
16
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
17
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
18
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
19
|
Transcriptome profiling reveals exposure to predicted end-of-century ocean acidification as a stealth stressor for Atlantic cod larvae. Sci Rep 2019; 9:16908. [PMID: 31729401 PMCID: PMC6858462 DOI: 10.1038/s41598-019-52628-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
Ocean acidification (OA), a direct consequence of increasing atmospheric CO2 concentration dissolving in ocean waters, is impacting many fish species. Little is known about the molecular mechanisms underlying the observed physiological impacts in fish. We used RNAseq to characterize the transcriptome of 3 different larval stages of Atlantic cod (Gadus morhua) exposed to simulated OA at levels (1179 µatm CO2) representing end-of-century predictions compared to controls (503 µatm CO2), which were shown to induce tissue damage and elevated mortality in G. morhua. Only few genes were differentially expressed in 6 and 13 days-post-hatching (dph) (3 and 16 genes, respectively), during a period when maximal mortality as a response to elevated pCO2 occurred. At 36 dph, 1413 genes were differentially expressed, most likely caused by developmental asynchrony between the treatment groups, with individuals under OA growing faster. A target gene analysis revealed only few genes of the universal and well-defined cellular stress response to be differentially expressed. We thus suggest that predicted ocean acidification levels constitute a "stealth stress" for early Atlantic cod larvae, with a rapid breakdown of cellular homeostasis leading to organismal death that was missed even with an 8-fold replication implemented in this study.
Collapse
|
20
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, Dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CGA, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001974. [PMID: 30562113 DOI: 10.1161/circgen.117.001974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is characterized by a complex phenotype that is only partly explained by the biological effects of individual genetic variants. The aim of this study was to use proteomic analysis of myocardial tissue to explore the postgenomic phenotype. METHODS Label-free proteomic analysis was used initially to compare protein profiles in myocardial samples from 11 patients with HCM undergoing surgical myectomy with control samples from 6 healthy unused donor hearts. Differentially expressed proteins of interest were validated in myocardial samples from 65 unrelated individuals (HCM [n=51], controls [n=7], and aortic stenosis [n=7]) by the development and use of targeted multiple reaction monitoring-based triple quadrupole mass spectrometry. RESULTS In this exploratory study, 1586 proteins were identified with 151 proteins differentially expressed in HCM samples compared with controls ( P<0.05). Protein expression profiling showed that many proteins identified in the initial discovery study were associated with metabolism, muscle contraction, calcium regulation, and oxidative stress. Proteins downregulated in HCM versus controls included creatine kinase M-type, fructose-bisphosphate aldolase A, and phosphoglycerate mutase ( P<0.001). Proteins upregulated in HCM included lumican, carbonic anhydrase 3, desmin, α-actin skeletal, and FHL1 (four and a half LIM domain protein 1; P<0.01). Myocardial lumican concentration correlated with the left atrial area (ρ=0.34, P=0.015), late gadolinium enhancement on cardiac magnetic resonance imaging ( P=0.03) and the presence of a pathogenic sarcomere mutation ( P=0.04). CONCLUSIONS The myocardial proteome of HCM provides supporting evidence for dysregulation of metabolic and structural proteins. The finding that lumican is raised in HCM hearts provides insight into the myocardial fibrosis that characterizes this disease.
Collapse
Affiliation(s)
- Caroline J Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris Dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G A McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.).,Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
21
|
Jaquenod De Giusti C, Blanco PG, Lamas PA, Carrizo Velasquez F, Lofeudo JM, Portiansky EL, Alvarez BV. Carbonic anhydrase II/sodium-proton exchanger 1 metabolon complex in cardiomyopathy of ob -/- type 2 diabetic mice. J Mol Cell Cardiol 2019; 136:53-63. [PMID: 31518570 DOI: 10.1016/j.yjmcc.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Heart failure is the leading cause of death among diabetic people. Cellular and molecular entities leading to diabetic cardiomyopathy are, however, poorly understood. Coupling of cardiac carbonic anhydrase II (CAII) and Na+/H+ exchanger 1 (NHE1) to form a transport metabolon was analyzed in obese type 2 diabetic mice (ob-/-) and control heterozygous littermates (ob+/-). Echocardiography showed elevated systolic interventricular septum thickness and systolic posterior wall thickness in ob-/- mice at 9 and 16 weeks. ob-/- mice showed increased left ventricular (LV) weight/tibia length ratio and increased cardiomyocyte cross sectional area as compared to controls, indicating cardiac hypertrophy. Immunoblot analysis showed increased CAII expression in LV samples of ob-/-vs. ob+/- mice, and augmented Ser703 phosphorylation on NHE1 in ob-/- hearts. Reciprocal co-immunoprecipitation analysis showed strong association of CAII and NHE1 in LV samples of ob-/- mice. NHE1-dependent rate of intracellular pH (pHi) normalization after transient acid loading of isolated cardiomyocytes was higher in ob-/- mice vs. ob+/-. NHE transport activity was also augmented in cultured H9C2 rat cardiomyoblasts treated with high glucose/high palmitate, and it was normalized after CA inhibition. We conclude that the NHE1/CAII metabolon complex is exacerbated in diabetic cardiomyopathy of ob-/- mice, which may lead to perturbation of pHi and [Na+] and [Ca2+] handling in these diseased hearts.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina; Established Investigators of CONICET, Argentina
| | - Paula G Blanco
- Servicio de Cardiología, Facultad de Ciencias Veterinarias, UNLP, Argentina; Established Investigators of CONICET, Argentina
| | - Paula A Lamas
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Fernanda Carrizo Velasquez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Juan M Lofeudo
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, UNLP, Argentina; Established Investigators of CONICET, Argentina
| | - Bernardo V Alvarez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina; Established Investigators of CONICET, Argentina.
| |
Collapse
|
22
|
|
23
|
Coats CJ, Heywood WE, Virasami A, Ashrafi N, Syrris P, dos Remedios C, Treibel TA, Moon JC, Lopes LR, McGregor CG, Ashworth M, Sebire NJ, McKenna WJ, Mills K, Elliott PM. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018. [DOI: 10.1161/circgenetics.117.001974] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caroline J. Coats
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Wendy E. Heywood
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Alex Virasami
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Nadia Ashrafi
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Petros Syrris
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Cris dos Remedios
- Department of Anatomy and Histology, Bosch Institute, The University of Sydney, New South Wales, Australia (C.d.R.)
| | - Thomas A. Treibel
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - James C. Moon
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Luis R. Lopes
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| | - Christopher G.A. McGregor
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Michael Ashworth
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - Neil J. Sebire
- Histopathology Unit, Great Ormond Street Hospital for Children, London, United Kingdom (A.V., M.A., N.J.S.)
| | - William J. McKenna
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
| | - Kevin Mills
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom (C.J.C., W.E.H., N.A., K.M.)
| | - Perry M. Elliott
- University College London Institute of Cardiovascular Science, London, United Kingdom (C.J.C., P.S., T.A.T., J.C.M., L.R.L., C.G.A.M., W.J.M., P.M.E.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (T.A.T., J.C.M., L.R.L., P.M.E.)
| |
Collapse
|
24
|
Forero-Quintero LS, Ames S, Schneider HP, Thyssen A, Boone CD, Andring JT, McKenna R, Casey JR, Deitmer JW, Becker HM. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J Biol Chem 2018; 294:593-607. [PMID: 30446621 DOI: 10.1074/jbc.ra118.005536] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Monocarboxylate transporters (MCTs) mediate the proton-coupled exchange of high-energy metabolites, including lactate and pyruvate, between cells and tissues. The transport activity of MCT1, MCT2, and MCT4 can be facilitated by the extracellular carbonic anhydrase IV (CAIV) via a noncatalytic mechanism. Combining physiological measurements in HEK-293 cells and Xenopus oocytes with pulldown experiments, we analyzed the direct interaction between CAIV and the two MCT chaperones basigin (CD147) and embigin (GP70). Our results show that facilitation of MCT transport activity requires direct binding of CAIV to the transporters chaperones. We found that this binding is mediated by the highly conserved His-88 residue in CAIV, which is also the central residue of the enzyme's intramolecular proton shuttle, and a charged amino acid residue in the Ig1 domain of the chaperone. Although the position of the CAIV-binding site in the chaperone was conserved, the amino acid residue itself varied among different species. In human CD147, binding of CAIV was mediated by the negatively charged Glu-73 and in rat CD147 by the positively charged Lys-73. In rat GP70, we identified the positively charged Arg-130 as the binding site. Further analysis of the CAIV-binding site revealed that the His-88 in CAIV can either act as H donor or H acceptor for the hydrogen bond, depending on the charge of the binding residue in the chaperone. Our results suggest that the CAIV-mediated increase in MCT transport activity requires direct binding between CAIV-His-88 and a charged amino acid in the extracellular domain of the transporter's chaperone.
Collapse
Affiliation(s)
- Linda S Forero-Quintero
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Samantha Ames
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Hans-Peter Schneider
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Anne Thyssen
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Jacob T Andring
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Joseph R Casey
- the Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2E1, Canada, and
| | - Joachim W Deitmer
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany
| | - Holger M Becker
- From the Division of General Zoology, Department of Biology, University of Kaiserlautern, D-67653 Kaiserslautern, Germany, .,the Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
| |
Collapse
|
25
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Ciocci Pardo A, Díaz RG, González Arbeláez LF, Pérez NG, Swenson ER, Mosca SM, Alvarez BV. Benzolamide perpetuates acidic conditions during reperfusion and reduces myocardial ischemia-reperfusion injury. J Appl Physiol (1985) 2017; 125:340-352. [PMID: 29357509 DOI: 10.1152/japplphysiol.00957.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During ischemia, increased anaerobic glycolysis results in intracellular acidosis. Activation of alkalinizing transport mechanisms associated with carbonic anhydrases (CAs) leads to myocardial intracellular Ca2+ increase. We characterize the effects of inhibition of CA with benzolamide (BZ) during cardiac ischemia-reperfusion (I/R). Langendorff-perfused isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Other hearts were treated with BZ (5 μM) during the initial 10 min of reperfusion or perfused with acid solution (AR, pH 6.4) during the first 3 min of reperfusion. p38MAPK, a kinase linked to membrane transporters and involved in cardioprotection, was examined in hearts treated with BZ in presence of the p38MAPK inhibitor SB202190 (10 μM). Infarct size (IZ) and myocardial function were assessed, and phosphorylated forms of p38MAPK, Akt, and PKCε were evaluated by immunoblotting. We determined the rate of intracellular pH (pHi) normalization after transient acid loading in the absence and presence of BZ or BZ + SB202190 in heart papillary muscles (HPMs). Mitochondrial membrane potential (ΔΨm), Ca2+ retention capacity and Ca2+-mediated swelling after I/R were also measured. BZ, similarly to AR, reduced IZ, improved postischemic recovery of myocardial contractility, increased phosphorylation of Akt, PKCε, and p38MAPK, and normalized ΔΨm and Ca2+ homeostasis, effects abolished after p38MAPK inhibition. In HPMs, BZ slowed pHi recovery, an effect that was restored after p38MAPK inhibition. We conclude that prolongation of acidic conditions during reperfusion by BZ could be responsible for the cardioprotective benefits of reduced infarction and better myocontractile function, through p38MAPK-dependent pathways. NEW & NOTEWORTHY Carbonic anhydrase inhibition by benzolamide (BZ) maintains acidity, decreases infarct size, and improves postischemic myocardial dysfunction in ischemia-reperfusion (I/R) hearts. Protection afforded by BZ mimicked the beneficial effects elicited by an acidic solution (AR). Increased phosphorylation of p38MAPK occurs in I/R hearts reperfused with BZ or with AR. Mitochondria from I/R hearts possess abnormal Ca2+ handling and a more depolarized membrane potential compared with control hearts, and these changes were restored by treatment with BZ or AR.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Erik R Swenson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Department of Veterans Affairs Puget Sound Health Care System , Seattle, Washington
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| | - Bernardo V Alvarez
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
27
|
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol (1985) 2016; 121:1290-1305. [DOI: 10.1152/japplphysiol.00630.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022] Open
Abstract
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290–1305, 2016. First published October 14, 2016; doi: 10.1152/japplphysiol.00630.2016 .—This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βmin vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40% difference in training intensity did not discriminate between most adaptations.
Collapse
Affiliation(s)
- Cian McGinley
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
| | - David J. Bishop
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Tanaka Y, Inagaki T, Poole DC, Kano Y. pH buffering of single rat skeletal muscle fibers in the in vivo environment. Am J Physiol Regul Integr Comp Physiol 2016; 310:R926-33. [PMID: 26984893 DOI: 10.1152/ajpregu.00501.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023]
Abstract
Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 μM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) μl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to 84.2% of baseline was unimpeded by MCT, NHE, and NBC blockade separately but abolished by All blockade (ΔpHi = -0.60 ± 0.07, 72.8% initial pHi, P < 0.05 vs. CONT). After injection of H(+) into, or superfusion onto, an adjacent fiber pHi of the surrounding fibers decreased progressively for the 20-min observation period (∼7.0, P < 0.05 vs. preinjection/superfusion). In conclusion, these results support that, after an imposed H(+) load, the MCT, NHE, and NBC transporters are not involved in the initial rapid phase of pHi recovery. In contrast, the gradual recovery phase was abolished by inhibiting all three membrane transporter systems simultaneously. The alteration of pHi in surrounding fibers suggest that H(+) uptake by neighboring fibers can help alleviate the pH consequences of myocyte H(+) exudation.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Tadakatsu Inagaki
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan; Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan;
| |
Collapse
|
29
|
Hong JH, Muhammad E, Zheng C, Hershkovitz E, Alkrinawi S, Loewenthal N, Parvari R, Muallem S. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J Physiol 2015; 593:5299-312. [PMID: 26486891 DOI: 10.1113/jp271378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Physiology, College of Medicine, Gachon University, 191 Hambakmeoro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Changyu Zheng
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
30
|
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
|
31
|
Nakada T. The Molecular Mechanisms of Neural Flow Coupling: A New Concept. J Neuroimaging 2015; 25:861-5. [PMID: 25704766 PMCID: PMC5023998 DOI: 10.1111/jon.12219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
Abstract
The phenomenon known as neural flow coupling (NFC) occurs at the capillary level where there are no known pressure controlling structures. Recent developments in advanced magnetic resonance imaging technologies have made possible in vivo direct investigations of water physiology that have shed new insight on the water dynamics of the cortical pericapillary space and their complex functionality in relation to NFC. Neural activities initiate a chain of events that ultimately affect NFC. First, neural activities generate extracellular acidification. Extracellular acidosis in turn produces inhibition of aquaporin-4 (AQP-4) located at the end feet of pericapillary astrocytes, the water channel which regulates water influx into the pericapillary space and, hence, interstitial flow. Reduction of pericapillary water pressure results in a negative balance between pericapillary and intraluminal capillary pressure, allowing for capillary caliber expansion. Proton permeability through the tight junctions of the blood brain barrier is significantly high owing to the Grotthuss proton "tunneling" mechanism and, therefore, carbonic anhydrase (CA) type IV (CA-IV) anchored to the luminal surface of brain capillaries functions as scavenger of extracellular protons. CA-IV inhibition by acetazolamide or carbon dioxide results in the accumulation of extracellular protons, causing AQP-4 inhibition and a secondary increase in rCBF.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research InstituteUniversity of NiigataNiigataJapan
| |
Collapse
|
32
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
33
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
34
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
35
|
Deitmer JW, Theparambil SM, Ruminot I, Becker HM. The role of membrane acid/base transporters and carbonic anhydrases for cellular pH and metabolic processes. Front Neurosci 2015; 8:430. [PMID: 25601823 PMCID: PMC4283522 DOI: 10.3389/fnins.2014.00430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| | | | - Iván Ruminot
- General Zoology, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Holger M Becker
- Zoology/Membrane Transport, FB Biology, University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
36
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
37
|
Kong SC, Giannuzzo A, Gianuzzo A, Novak I, Pedersen SF. Acid-base transport in pancreatic cancer: molecular mechanisms and clinical potential. Biochem Cell Biol 2014; 92:449-59. [PMID: 25372771 DOI: 10.1139/bcb-2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Solid tumors are characterized by a microenvironment that is highly acidic, while intracellular pH (pHi) is normal or even elevated. This is the result of elevated metabolic rates in the highly proliferative cancer cells, in conjunction with often greatly increased rates of net cellular acid extrusion. Studies in various cancers have suggested that while the acid extrusion mechanisms employed are generally the same as those in healthy cells, the specific transporters upregulated vary with the cancer type. The main such transporters include Na(+)/H(+) exchangers, various HCO3(-) transporters, H(+) pumps, and lactate-H(+) cotransporters. The mechanisms leading to their dysregulation in cancer are incompletely understood but include changes in transporter expression levels, trafficking and membrane localization, and posttranslational modifications. In turn, accumulating evidence has revealed that in addition to supporting their elevated metabolic rate, their increased acid efflux capacity endows the cancer cells with increased capacity for invasiveness, proliferation, and chemotherapy resistance. The pancreatic duct exhibits an enormous capacity for acid-base transport, rendering pHi dysregulation a potentially very important topic in pancreatic ductal adenocarcinoma (PDAC). PDAC - accounting for about 90% of all pancreatic cancers - has one of the highest cancer mortality rates known, and new diagnostic and treatment options are highly needed. However, very little is known about whether pH regulation is altered in PDAC and, if so, the possible role of this in cancer development. Here, we review current models for pancreatic acid-base transport and pH homeostasis and summarize current views on acid-base dysregulation in cancer, focusing where possible on the few studies to date in PDAC. Finally, we present new data-mining analyses of acid-base transporter expression changes in PDAC and discuss essential directions for future work.
Collapse
Affiliation(s)
- Su Chii Kong
- a Section for Cell and Developmental Biology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Structure, function, and regulation of the SLC4 NBCe1 transporter and its role in causing proximal renal tubular acidosis. Curr Opin Nephrol Hypertens 2014; 22:572-83. [PMID: 23917030 DOI: 10.1097/mnh.0b013e328363ff43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW There has been significant progress in our understanding of the structural and functional properties and regulation of the electrogenic sodium bicarbonate cotansporter NBCe1, a membrane transporter that plays a key role in renal acid-base physiology. The NBCe1 variant NBCe1-A mediates basolateral electrogenic sodium-base transport in the proximal tubule and is critically required for transepithelial bicarbonate absorption. Mutations in NBCe1 cause autosomal recessive proximal renal tubular acidosis (pRTA). The review summarizes recent advances in this area. RECENT FINDINGS A topological model of NBCe1 has been established that provides a foundation for future structure-functional studies of the transporter. Critical residues and regions have been identified in NBCe1 that play key roles in its structure, function (substrate transport, electrogenicity) and regulation. The mechanisms of how NBCe1 mutations cause pRTA have also recently been elucidated. SUMMARY Given the important role of proximal tubule transepithelial bicarbonate absorption in systemic acid-base balance, a clear understanding of the structure-functional properties of NBCe1 is a prerequisite for elucidating the mechanisms of defective transepithelial bicarbonate transport in pRTA.
Collapse
|
39
|
Kurtz I. NBCe1 as a model carrier for understanding the structure-function properties of Na⁺ -coupled SLC4 transporters in health and disease. Pflugers Arch 2014; 466:1501-16. [PMID: 24515290 DOI: 10.1007/s00424-014-1448-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/17/2023]
Abstract
SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na(+) and/or Cl(-), in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein-protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na(+) and/or Cl(-), and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na(+)-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure-function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl(-)-HCO3 (-) exchanger AE1 whose structural properties have been well-studied. In this review, the structure-function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA, USA,
| |
Collapse
|
40
|
Abstract
Carbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme. In this chapter, we review the various types of interactions between acid/base-coupled membrane carriers and different CA isoforms, as studied in vitro, in intact Xenopus oocytes, and in various mammalian cell types. Furthermore, we discuss recent findings that indicate the significance of these 'transport metabolons' for normal cell functions.
Collapse
|
41
|
Waheed A, Sly WS. Membrane associated carbonic anhydrase IV (CA IV): a personal and historical perspective. Subcell Biochem 2014; 75:157-79. [PMID: 24146379 DOI: 10.1007/978-94-007-7359-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carbonic anhydrase IV is one of 12 active human isozymes and one of four expressed on the extracellular surfaces of certain endothelial and epithelial cells. It is unique in being attached to the plasma membrane by a glycosyl-phosphatiydyl-inositol (GPI) anchor rather than by a membrane-spanning domain. It is also uniquely resistant to high concentrations of sodium dodecyl sulfate (SDS), which allows purification from tissues by inhibitor affinity chromatography without contamination by other isozymes. This unique resistance to SDS and recovery following denaturation is explained by the two disulfide bonds. The 35-kDa human CA IV is a "high activity" isozyme in CO2 hydration activity, like CA II, and has higher activity than other isozymes in catalyzing the dehydration of HCO3 (-). Human CA IV is also unique in that it contains no oligosaccharide chains, where all other mammalian CA IVs are glycoproteins with one to several oligosaccharide side chains.Although CA IV has been shown to be active in mediating CO2 and HCO3 (-) transport in many important tissues like kidney and lung, and in isolated cells from brain and muscle, the gene for CA IV appears not to be essential. The CA IV knockout mouse produced by targeted mutagenesis, though slightly smaller and produced in lower than expected numbers, is viable and has no obvious mutant phenotype. Conversely, several dominant negative mutations in humans are associated with one form of reitinitis pigmentosa (RP-17), which we attribute to unfolded protein accumulation in the choreocapillaris, leading to apoptosis of cells in the overlying retina.
Collapse
Affiliation(s)
- Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, St. Louis, MO, USA,
| | | |
Collapse
|
42
|
Kurtz I, Zhu Q. Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter's structure-functional properties. Front Physiol 2013; 4:350. [PMID: 24391589 PMCID: PMC3867943 DOI: 10.3389/fphys.2013.00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
NBCe1 belongs to the SLC4 family of base transporting membrane proteins that plays a significant role in renal, extrarenal, and systemic acid-base homeostasis. Recent progress has been made in characterizing the structure-function properties of NBCe1 (encoded by the SLC4A4 gene), and those factors that regulate its function. In the kidney, the NBCe1-A variant that is expressed on the basolateral membrane of proximal tubule is the key transporter responsible for overall transepithelial bicarbonate absorption in this nephron segment. NBCe1 mutations impair transepithelial bicarbonate absorption causing the syndrome of proximal renal tubular acidosis (pRTA). Studies of naturally occurring NBCe1 mutant proteins in heterologous expression systems have been very helpful in elucidation the structure-functional properties of the transporter. NBCe1 mutations are now known to cause pRTA by various mechanisms including the alteration of the transporter function (substrate ion interaction, electrogenicity), abnormal processing to the plasma membrane, and a perturbation in its structural properties. The elucidation of how NBCe1 mutations cause pRTA in addition to the recent studies which have provided further insight into the topology of the transporter have played an important role in uncovering its critically important structural-function properties.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA ; Brain Research Institute, UCLA Los Angeles, CA, USA
| | - Quansheng Zhu
- Division of Nephrology, David Geffen School of Medicine, UCLA Los Angeles, CA, USA
| |
Collapse
|
43
|
Klier M, Andes FT, Deitmer JW, Becker HM. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. J Biol Chem 2013; 289:2765-75. [PMID: 24338019 DOI: 10.1074/jbc.m113.537043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3(-). CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane.
Collapse
Affiliation(s)
- Michael Klier
- From the Division of General Zoology, Department of Biology, University of Kaiserslautern D-67653 Kaiserslautern, Germany and
| | | | | | | |
Collapse
|
44
|
Villafuerte FC, Swietach P, Youm JB, Ford K, Cardenas R, Supuran CT, Cobden PM, Rohling M, Vaughan-Jones RD. Facilitation by intracellular carbonic anhydrase of Na+ -HCO3- co-transport but not Na+ / H+ exchange activity in the mammalian ventricular myocyte. J Physiol 2013; 592:991-1007. [PMID: 24297849 PMCID: PMC3948559 DOI: 10.1113/jphysiol.2013.265439] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3- ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein-protein binding (a 'transport metabolon') or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3- or H+ transport via the native acid-extruding proteins, Na+ -HCO3- cotransport (NBC) and Na+ / H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3- ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3- buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3- transport, and hence pHi regulation in the heart.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deitmer JW, Becker HM. Transport metabolons with carbonic anhydrases. Front Physiol 2013; 4:291. [PMID: 24133456 PMCID: PMC3794380 DOI: 10.3389/fphys.2013.00291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/24/2013] [Indexed: 01/02/2023] Open
Affiliation(s)
- Joachim W Deitmer
- General Zoology, University of Kaiserslautern Kaiserslautern, Germany
| | | |
Collapse
|
46
|
Orlowski A, Vargas LA, Aiello EA, Álvarez BV. Elevated carbon dioxide upregulates NBCn1 Na+/HCO3(-) cotransporter in human embryonic kidney cells. Am J Physiol Renal Physiol 2013; 305:F1765-74. [PMID: 24005470 DOI: 10.1152/ajprenal.00096.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The NBCn1 Na(+)/HCO3(-) cotransporter catalyzes the electroneutral movement of 1 Na(+):1 HCO3(-) into kidney cells. We characterized the intracellular pH (pHi) regulation in human embryonic kidney cells (HEK) subjected to NH4Cl prepulse acid loading, and we examined the NBCn1 expression and function in HEK cells subjected to 24-h elevated Pco2 (10-15%). After acid loading, in the presence of HCO3(-), ∼50% of the pHi recovery phase was blocked by the Na(+)/H(+) exchanger inhibitors EIPA (10-50 μM) and amiloride (1 mM) and was fully cancelled by 30 μM EIPA under nominally HCO3(-)-free conditions. In addition, in the presence of HCO3(-), pHi recovery after acid loading was completely blocked when Na(+) was omitted in the buffer. pHi recovery after acidification in HEK cells was repeated in the presence of the NBC inhibitor S0859, and the pHi recovery was inhibited by S0859 in a dose-dependent manner (Ki = 30 μM, full inhibition at 60 μM), which confirmed NBC Na(+)/HCO3(-) cotransporter activation. NBCn1 expression increased threefold after 24-h exposure of cultured HEK cells to 10% CO2 and sevenfold after exposure to 15% CO2, examined by immunoblots. Finally, exposure of HEK cells to high CO2 significantly increased the HCO3(-)-dependent recovery of pHi after acid loading. We conclude that HEK cells expressed the NBCn1 Na(+)/HCO3(-) cotransporter as the only HCO3(-)-dependent mechanism responsible for cellular alkaline loading. NBCn1, which expresses in different kidney cell types, was upregulated by 24-h high-Pco2 exposure of HEK cells, and this upregulation was accompanied by increased NBCn1-mediated HCO3(-) transport.
Collapse
Affiliation(s)
- Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, UNLP, Calle 60 y 120, 1900, La Plata, Argentina.
| | | | | | | |
Collapse
|
47
|
Del Prete S, De Luca V, Vullo D, Scozzafava A, Carginale V, Supuran CT, Capasso C. Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem 2013; 29:532-7. [PMID: 23914926 DOI: 10.3109/14756366.2013.822371] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. CAs are present in many pathogenic species and are involved in the bicarbonate metabolism/biosynthetic reactions involving this ion. Ubiquity of these enzymes suggests a pivotal role in microbial virulence and pathogenicity. Porphyromonas gingivalis is an anaerobic bacterium, which colonizes the oral cavity, being involved in the pathogenesis of periodontitis, an inflammatory disease leading to tooth loss. Recently, we reported an anion inhibitory study on the γ-CA (denominated PgiCA) identified in the genome of this Gram-negative bacterium. In this paper we continue our research on PgiCA, and describe the biochemical characterization of the recombinant protein, its thermal stability, the oligomeric state and the enzyme kinetics. PgiCA is a polypeptide chain formed of 192 amino acids and displays an identity of 30-33% when compared with the prototypical γ-CAs, CAM or CAMH (from Methanosarcina thermophila) or CcmM (from Thermosynechococcus elongatus). A subunit molecular mass of 21 kDa was estimated by SDS-PAGE, while HPLC size exclusion chromatography under native conditions gave an estimated molecular mass of 65 kDa suggesting that the recombinant enzyme self-associate in a homotrimer, as all other γ-CAs studied so far. Enzyme kinetic analysis showed that PgiCA is 62 times more effective as a catalyst compared to CAM, the only other γ-CA characterized in detail kinetically. All these features represent an interesting attractive for the drug design of inhibitors/activators of this new enzyme.
Collapse
|
48
|
Al-Samir S, Papadopoulos S, Scheibe RJ, Meißner JD, Cartron JP, Sly WS, Alper SL, Gros G, Endeward V. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. J Physiol 2013; 591:4963-82. [PMID: 23878365 DOI: 10.1113/jphysiol.2013.251181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have investigated the previously published 'metabolon hypothesis' postulating that a close association of the anion exchanger 1 (AE1) and cytosolic carbonic anhydrase II (CAII) exists that greatly increases the transport activity of AE1. We study whether there is a physical association of and direct functional interaction between CAII and AE1 in the native human red cell and in tsA201 cells coexpressing heterologous fluorescent fusion proteins CAII-CyPet and YPet-AE1. In these doubly transfected tsA201 cells, YPet-AE1 is clearly associated with the cell membrane, whereas CAII-CyPet is homogeneously distributed throughout the cell in a cytoplasmic pattern. Förster resonance energy transfer measurements fail to detect close proximity of YPet-AE1 and CAII-CyPet. The absence of an association of AE1 and CAII is supported by immunoprecipitation experiments using Flag-antibody against Flag-tagged AE1 expressed in tsA201 cells, which does not co-precipitate native CAII but co-precipitates coexpressed ankyrin. Both the CAII and the AE1 fusion proteins are fully functional in tsA201 cells as judged by CA activity and by cellular HCO3(-) permeability (P(HCO3(-))) sensitive to inhibition by 4,4-Diisothiocyano-2,2-stilbenedisulfonic acid. Expression of the non-catalytic CAII mutant V143Y leads to a drastic reduction of endogenous CAII and to a corresponding reduction of total intracellular CA activity. Overexpression of an N-terminally truncated CAII lacking the proposed site of interaction with the C-terminal cytoplasmic tail of AE1 substantially increases intracellular CA activity, as does overexpression of wild-type CAII. These variously co-transfected tsA201 cells exhibit a positive correlation between cellular P(HCO3(-)) and intracellular CA activity. The relationship reflects that expected from changes in cytoplasmic CA activity improving substrate supply to or removal from AE1, without requirement for a CAII-AE1 metabolon involving physical interaction. A functional contribution of the hypothesized CAII-AE1 metabolon to erythroid AE1-mediated HCO3(-) transport was further tested in normal red cells and red cells from CAII-deficient patients that retain substantial CA activity associated with the erythroid CAI protein lacking the proposed AE1-binding sequence. Erythroid P(HCO3(-)) was indistinguishable in these two cell types, providing no support for the proposed functional importance of the physical interaction of CAII and AE1. A theoretical model predicts that homogeneous cytoplasmic distribution of CAII is more favourable for cellular transport of HCO3(-) and CO2 than is association of CAII with the cytoplasmic surface of the plasma membrane. This is due to the fact that the relatively slow intracellular transport of H(+) makes it most efficient to place the CA in the vicinity of the haemoglobin molecules, which are homogeneously distributed over the cytoplasm.
Collapse
Affiliation(s)
- Samer Al-Samir
- G. Gros: Zentrum Physiologie, Vegetative Physiologie 4220, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; V. Endeward: Zentrum Physiologie 4220, Medizinische Hochschule Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. J Mol Cell Cardiol 2013; 61:51-9. [PMID: 23602948 DOI: 10.1016/j.yjmcc.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
50
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|