1
|
Fu S, Tian M, Chen M, Wu Z, Zhang R, Yuan J. MotY modulates proton-driven flagellar motor output in Pseudomonas aeruginosa. BMC Microbiol 2024; 24:461. [PMID: 39516722 PMCID: PMC11546298 DOI: 10.1186/s12866-024-03602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
MotY homologs are present in a variety of monotrichous bacterial strains and are thought to form an additional structural T ring in flagellar motors. While MotY potentially plays an important role in motor torque generation, its impact on motor output dynamics remains poorly understood. In this study, we investigate the role of MotY in P. aeruginosa, elucidating its interactions with the two sets of stator units (MotAB and MotCD) using Förster resonance energy transfer (FRET) assays. Employing a newly developed bead assay, we characterize the dynamic behavior of flagellar motors in motY mutants, identifying MotY as the key functional protein to affect the clockwise bias of naturally unbiased motors in P. aeruginosa. Our findings reveal that MotY enhances stator assembly efficiency without affecting the overall assembly of the flagellar structure. Additionally, we demonstrate that MotY is essential for maintaining motor torque and regulating switching rates. Our study highlights the physiological significance of MotY in fine-tuning flagellar motor function in complex environments.
Collapse
Affiliation(s)
- Sanyuan Fu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, Shandong, 255036, China
| | - Min Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengyu Wu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Chen T, Zhou X, Feng R, Shi S, Chen X, Wei B, Hu Z, Peng T. Novel function of single-target regulator NorR involved in swarming motility and biofilm formation revealed in Vibrio alginolyticus. BMC Biol 2024; 22:253. [PMID: 39506750 PMCID: PMC11542441 DOI: 10.1186/s12915-024-02057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
NorR, as a single-target regulator, has been demonstrated to be involved in NO detoxification in bacteria under anaerobic conditions. Here, the norR gene was identified and deleted in the genome of Vibrio alginolyticus. The results showed that deletion of norR in Vibrio alginolyticus led to lower swarming motility and more biofilm formation on aerobic condition. Moreover, we proved that NorR from E. coli had a similar function in controlling motility. NorR overexpression led to increased resistance to oxidative stress and tetracycline. We also observed a reduced ability of the NorR-overexpressing strain to adapt to iron limitation condition. Transcriptome analysis showed that the genes responsible for bacterial motility and biofilm formation were affected by NorR. The expressions of several sigma factors (RpoS, RpoN, and RpoH) and response regulators (LuxR and MarR) were also controlled by NorR. Furthermore, Chip-qPCR showed that there is a direct binding between NorR and the promoter of rpoS. Based on these results, NorR appears to be a central regulator involved in biofilm formation and swarming motility in Vibrio alginolyticus.
Collapse
Affiliation(s)
- Tongxian Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
- Dongguan Nancheng Business District North School, Dongguan, 523000, China
| | - Xiaoling Zhou
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Ruonan Feng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Shuhao Shi
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiyu Chen
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Bingqi Wei
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, China.
- Dongguan Nancheng Business District North School, Dongguan, 523000, China.
| |
Collapse
|
3
|
Tammara V, Angrover R, Sirur D, Das A. Flagellar motor protein-targeted search for the druggable site of Helicobacter pylori. Phys Chem Chem Phys 2024; 26:2111-2126. [PMID: 38131449 DOI: 10.1039/d3cp05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The deleterious impact of Helicobacter pylori (H. pylori) on human health is contingent upon its ability to create and sustain colony structure, which in turn is dictated by the effective performance of flagella - a multi-protein rotary nanodevice. Hence, to design an effective therapeutic strategy against H. pylori, we here conducted a systematic search for an effective druggable site by focusing on the structure-dynamics-energetics-stability landscape of the junction points of three 1 : 1 protein complexes (FliFC-FliGN, FliGM-FliMM, and FliYC-FliNC) that contribute mainly to the rotary motion of the flagella via the transformation of information along the junctions over a wide range of pH values operative in the stomach (from neutral to acidic). We applied a gamut of physiologically relevant perturbations in the form of thermal scanning and mechanical force to sample the entire quasi - and non-equilibrium conformational spaces available for the protein complexes under neutral and acidic pH conditions. Our perturbation-induced magnification of conformational distortion approach identified pH-independent protein sequence-specific evolution of precise thermally labile segments, which dictate the specific thermal unfolding mechanism of each complex and this complex-specific pH-independent structural disruption notion remains consistent under mechanical stress as well. Complementing the above observations with the relative rank-ordering of estimated equilibrium binding free energies between two protein sequences of a specific complex quantifies the extent of structure-stability modulation due to pH alteration, rationalizes the exceptional stability of H. pylori under acidic pH conditions, and identifies the pH-independent complex-sequence-segment-residue diagram for targeted drug design.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchika Angrover
- The Departments of the University Institute of Biotechnology, Chandigarh University, NH-05, Ludhiana - Chandigarh State Highway, Punjab 140413, India
| | - Disha Sirur
- School of Physical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Ribardo DA, Johnson JJ, Hendrixson DR. Viscosity-dependent determinants of Campylobacter jejuni impacting the velocity of flagellar motility. mBio 2024; 15:e0254423. [PMID: 38085029 PMCID: PMC10790790 DOI: 10.1128/mbio.02544-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion. Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion through diverse environments. These changes may involve increasing power and torque in high-viscosity environments or reducing power and flagellar rotation upon contact with a surface. C. jejuni swimming velocity in low-viscosity environments is comparable to other bacterial flagellates and increases significantly as external viscosity increases. In this work, we provide evidence that the mechanics of the C. jejuni flagellar motor has evolved to naturally promote high swimming velocity in high-viscosity environments. We found that C. jejuni produces VidA and VidB as auxiliary proteins to specifically affect flagellar motor activity in low viscosity to reduce swimming velocity. Our findings provide some of the first insights into different mechanisms that exist in bacteria to alter the mechanics of a flagellar motor, depending on the viscosity of extracellular environments.
Collapse
Affiliation(s)
- Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeremiah J. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Minamino T, Kinoshita M. Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion. EcoSal Plus 2023; 11:eesp00112023. [PMID: 37260402 PMCID: PMC10729930 DOI: 10.1128/ecosalplus.esp-0011-2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 01/28/2024]
Abstract
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Terashima H, Homma M, Kojima S. Site-Directed Cross-Linking Between Bacterial Flagellar Motor Proteins In Vivo. Methods Mol Biol 2023; 2646:71-82. [PMID: 36842107 DOI: 10.1007/978-1-0716-3060-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The bacterial flagellum employs a rotary motor embedded on the cell surface. The motor consists of the stator and rotor elements and is driven by ion influx (typically H+ or Na+) through an ion channel of the stator. Ion influx induces conformational changes in the stator, followed by changes in the interactions between the stator and rotor. The driving force to rotate the flagellum is thought to be generated by changing the stator-rotor interactions. In this chapter, we describe two methods for investigating the interactions between the stator and rotor: site-directed in vivo photo-crosslinking and site-directed in vivo cysteine disulfide crosslinking.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Department of Bacteriology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Kojima S, Homma M, Kandori H. Purification of the Na +-Driven PomAB Stator Complex and Its Analysis Using ATR-FTIR Spectroscopy. Methods Mol Biol 2023; 2646:95-107. [PMID: 36842109 DOI: 10.1007/978-1-0716-3060-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The flagellar motor of marine Vibrio is driven by the sodium-motive force across the inner membrane. The stator complex, consisting of two membrane proteins PomA and PomB, is responsible for energy conversion in the motor. To understand the coupling of the Na+ flux with torque generation, it is essential to clearly identify the Na+-binding sites and the Na+ flux pathway through the stator channel. Although residues essential for Na+ flux have been identified by using mutational analysis, it has been difficult to observe Na+ binding to the PomAB stator complex. Here we describe a method to monitor the binding of Na+ to purified PomAB stator complex using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. This method demonstrates that Na+-binding sites are formed by critical aspartic acid and threonine residues located in the transmembrane segments of PomAB.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
8
|
Feng LJ, Zhang KX, Shi ZL, Zhu FP, Yuan XZ, Zong WS, Song C. Aged microplastics enhance their interaction with ciprofloxacin and joint toxicity on Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114218. [PMID: 36279636 DOI: 10.1016/j.ecoenv.2022.114218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in natural environments undergo complex aging processes, changing their interactions with coexisting antibiotics, and posing unpredictable ecological risks. However, the joint toxicity of aged MPs (aMPs) and antibiotics to bacteria, especially at the molecular level, is unclear. In this study, non-thermal plasma technology was used to simultaneously simulate various radical oxidation and physical reactions that occur naturally in the environment, breaking the limitation of simple aging process in laboratory aging technologies. After aging, we investigated the altered properties of aMPs, their interactions with ciprofloxacin (CIP), and the molecular responses of E. coli exposed to pristine MPs (13.5 mg/L), aMPs (13.5 mg/L), and CIP (2 μg/L) individually or simultaneously. aMPs bound far more CIP to their surfaces than pristine MPs, especially in freshwater ecosystems. Notably, the growth of E. coli exposed to aMPs alone was inhibited, whereas pristine MPs exposure didn't affect the growth of E. coli. Moreover, the most differentially expressed genes in E. coli were induced by the coexposure of aMPs and CIP. Although E. coli depended on chemotaxis to improve its flagellar rotation and escaped the stress of pollutants, the coexposure of aMPs and CIP still caused cell membrane damage, oxidative stress, obstruction of DNA replication, and osmotic imbalance in E. coli. This study filled the knowledge gap between the toxicity of aMPs and pristine MPs coexisting with antibiotics at the transcription level, helping in the accurate assessment of the potential risks of MPs to the environment.
Collapse
Affiliation(s)
- Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei 053000, PR China
| | - Kai-Xin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; School of Eco-Environment, Hebei University, Baoding, Hebei 071002, PR China
| | - Zong-Lin Shi
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei 053000, PR China; Department of Life Science, Hengshui College, Hengshui, Hebei 053000, PR China
| | - Fan-Ping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wan-Song Zong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, PR China.
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
FliL Differentially Interacts with Two Stator Systems To Regulate Flagellar Motor Output in Pseudomonas aeruginosa. Appl Environ Microbiol 2022; 88:e0153922. [PMID: 36286538 PMCID: PMC9680632 DOI: 10.1128/aem.01539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FliL emerged as a modulator of flagellar motor function in several bacterial species, but its function in
Pseudomonas aeruginosa
was unknown. Here, by performing single-motor studies using a bead assay, we elucidated its effects on the flagellar motor in
P. aeruginosa
.
Collapse
|
10
|
A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Nat Commun 2022; 13:5327. [PMID: 36088344 PMCID: PMC9464220 DOI: 10.1038/s41467-022-33075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear. Here, we combine single motor eletrorotation experiments and theoretical modeling to show that mechano-adaptation of the flagellar motor is enabled by multiple mechanosensitive internal states. Dwell time statistics from experiments suggest the existence of at least two bound states with a high and a low unbinding rate, respectively. A first-passage-time analysis of a four-state model quantitatively explains the experimental data and determines the transition rates among all four states. The torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the bound states, possibly via a catch bond mechanism. Similar force-mediated feedback enabled by multiple internal states may apply to adaptation in other macromolecular complexes. Combining experiments with modeling, Wadhwa et al. propose a model for mechano-adaptation in the bacterial flagellar motor, finding that load-dependent transitions between multiple internal states govern the binding and unbinding of subunits.
Collapse
|
11
|
Guo S, Liu J. The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing. Front Microbiol 2022; 13:911114. [PMID: 35711788 PMCID: PMC9195833 DOI: 10.3389/fmicb.2022.911114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
The flagellar motor is a bidirectional rotary nanomachine used by many bacteria to sense and move through environments of varying complexity. The bidirectional rotation of the motor is governed by interactions between the inner membrane-associated stator units and the C-ring in the cytoplasm. In this review, we take a structural biology perspective to discuss the distinct conformations of the stator complex and the C-ring that regulate bacterial motility by switching rotational direction between the clockwise (CW) and counterclockwise (CCW) senses. We further contextualize recent in situ structural insights into the modulation of the stator units by accessory proteins, such as FliL, to generate full torque. The dynamic structural remodeling of the C-ring and stator complexes as well as their association with signaling and accessory molecules provide a mechanistic basis for how bacteria adjust motility to sense, move through, and survive in specific niches both outside and within host cells and tissues.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
Cao Y, Li T, Tu Y. Modeling Bacterial Flagellar Motor With New Structure Information: Rotational Dynamics of Two Interacting Protein Nano-Rings. Front Microbiol 2022; 13:866141. [PMID: 35694287 PMCID: PMC9175137 DOI: 10.3389/fmicb.2022.866141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In this article, we develop a mathematical model for the rotary bacterial flagellar motor (BFM) based on the recently discovered structure of the stator complex (MotA5MotB2). The structure suggested that the stator also rotates. The BFM is modeled as two rotating nano-rings that interact with each other. Specifically, translocation of protons through the stator complex drives rotation of the MotA pentamer ring, which in turn drives rotation of the FliG ring in the rotor via interactions between the MotA ring of the stator and the FliG ring of the rotor. Preliminary results from the structure-informed model are consistent with the observed torque-speed relation. More importantly, the model predicts distinctive rotor and stator dynamics and their load dependence, which may be tested by future experiments. Possible approaches to verify and improve the model to further understand the molecular mechanism for torque generation in BFM are also discussed.
Collapse
Affiliation(s)
- Yuansheng Cao
- Department of Physics, University of California, San Diego, San Diego, CA, United States
| | - Tairan Li
- Yuanpei College, Center for Quantitative Biology, Peking University, Beijing, China
| | - Yuhai Tu
- IBM T. J. Watson Research Center, New York, NY, United States
- *Correspondence: Yuhai Tu
| |
Collapse
|
14
|
Homma M, Kojima S. The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation. Front Microbiol 2022; 13:869187. [PMID: 35572622 PMCID: PMC9093738 DOI: 10.3389/fmicb.2022.869187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial flagellar stator is a unique ion-conducting membrane protein complex composed of two kinds of proteins, the A subunit and the B subunit. The stator couples the ion-motive force across the membrane into rotational force. The stator becomes active only when it is incorporated into the flagellar motor. The periplasmic region of the B subunit positions the stator by using the peptidoglycan-binding (PGB) motif in its periplasmic C-terminal domain to attach to the cell wall. Functional studies based on the crystal structures of the C-terminal domain of the B subunit (MotBC or PomBC) reveal that a dramatic conformational change in a characteristic α-helix allows the stator to conduct ions efficiently and bind to the PG layer. The plug and the following linker region between the transmembrane (TM) and PG-binding domains of the B subunit function in regulating the ion conductance. In Vibrio spp., the transmembrane protein FliL and the periplasmic MotX and MotY proteins also contribute to the motor function. In this review, we describe the functional and structural changes which the stator units undergo to regulate the activity of the stator to drive flagellar rotation.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Manson MD. Rotary Nanomotors in the Rear View Mirror. Front Microbiol 2022; 13:873573. [PMID: 35572653 PMCID: PMC9100566 DOI: 10.3389/fmicb.2022.873573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Rotation is part of our everyday lives. For most of human history, rotation was considered a uniquely human invention, something beyond the anatomical capabilities of organisms. In 1973, Howard Berg made the audacious proposal that the common gut bacterium Escherichia coli swims by rotating helical flagellar filaments. In 1987, Paul Boyer suggested that the FoF1 ATP synthase of E. coli is also a rotary device. Now we know that rotating nanomachines evolved independently at least three times. They power a wide variety of cellular processes. Here, the study of flagellar rotation in E. coli is briefly summarized. In 2020, the Cryo-EM structure of the MotAB stator element of the bacterial flagellum was described. The structure strongly suggests that the MotAB stator rotates to drive flagellar rotation. Similar motors are coupled to other diverse processes. The following articles in this issue review the current knowledge and speculation about rotating biological nanomachines.
Collapse
|
16
|
Abstract
Helicobacter pylori plays a causative role in gastric diseases. The pathogenicity of H. pylori depends on its ability to colonize the stomach guided by motility. FliY is a unique flagellar motor switch component coexisting with the classical FliG, FliM, and FliN switch proteins in some bacteria and has been shown to be essential for flagellation. However, the functional importance of FliY in H. pylori flagellar motor assembly is not well understood. Here, we applied cryo-electron tomography and subtomogram averaging to analyze the in situ structures of flagellar motors from wild-type strain, fliY-null mutant and complementation mutants expressing the N-terminal or C-terminal domain of FliY. Loss of full-length FliY or its C-terminal domain interrupted the formation of an intact C ring and soluble export apparatus, as well as the hook and flagellar filaments. Complementation with FliY C-terminal domain restored all these missing components of flagellar motor. Taken together, these results provide structural insights into the roles of FliY, especially its C-terminal domain in flagellar motor assembly in H. pylori. IMPORTANCEHelicobacter pylori is the major risk factor related with gastric diseases. Flagellar motor is one of the most important virulence factors in H. pylori. However, the assembly mechanism of H. pylori flagellar motor is not fully understood yet. Previous report mainly described the overall structures of flagellum but had not focused on its specific components. Here, we focus on H. pylori flagellar C-ring protein FliY. We directly visualize the flagellar structures of H. pylori wild-type and FliY N-/C-terminal complementary strains by cryo-electron tomography and subtomogram averaging. Our results show that deletion of FliY or its C-terminal domain causes the loss of C ring, whereas deletion of FliY N-terminal does not affect C-ring assembly and flagellar structures. Our results provide direct evidence that C-ring protein FliY, especially its C-terminal domain, plays an indispensable role in H. pylori motor assembly and flagellar formation. This study will deepen our understanding about H. pylori pathogenesis.
Collapse
|
17
|
Ye Y, Jiang P, Huang C, Li J, Chen J, Wang L, Lin Y, Wang F, Liu J. Metformin Alters the Chemotaxis and Flagellar Motility of Escherichia coli. Front Microbiol 2022; 12:792406. [PMID: 35087494 PMCID: PMC8787215 DOI: 10.3389/fmicb.2021.792406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Metformin is a biguanide molecule that is widely prescribed to treat type 2 diabetes and metabolic syndrome. Although it is known that metformin promotes the lifespan by altering intestinal microorganism metabolism, how metformin influences and alters the physiological behavior of microorganisms remains unclear. Here we studied the effect of metformin on the behavior alterations of the model organism Escherichia coli (E. coli), including changes in chemotaxis and flagellar motility that plays an important role in bacterial life. It was found that metformin was sensed as a repellent to E. coli by tsr chemoreceptors. Moreover, we investigated the chemotactic response of E. coli cultured with metformin to two typical attractants, glucose and α-methyl-DL-aspartate (MeAsp), finding that metformin prolonged the chemotactic recovery time to the attractants, followed by the recovery time increasing with the concentration of stimulus. Metformin also inhibited the flagellar motility of E. coli including the flagellar motor rotation and cell swimming. The inhibition was due to the reduction of torque generated by the flagellar motor. Our discovery that metformin alters the behavior of chemotaxis and flagellar motility of E. coli could provide potential implications for the effect of metformin on other microorganisms.
Collapse
Affiliation(s)
- Yingxiang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Panmei Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengyun Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingyun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
18
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
Affiliation(s)
- Maxime Leroux
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
19
|
Dynamics of the Two Stator Systems in the Flagellar Motor of Pseudomonas aeruginosa Studied by a Bead Assay. Appl Environ Microbiol 2021; 87:e0167421. [PMID: 34524895 DOI: 10.1128/aem.01674-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a robust bead assay for studying flagellar motor behavior of Pseudomonas aeruginosa. Using this assay, we studied the dynamics of the two stator systems in the flagellar motor. We found that the two sets of stators function differently, with MotAB stators providing higher total torque and MotCD stators ensuring more stable motor speed. The motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to that of mutants with one set of stators. The bead assay we developed in this investigation can be further used to study P. aeruginosa chemotaxis at the level of a single cell using the motor behavior as the chemotaxis output. IMPORTANCE Cells of Pseudomonas aeruginosa possess a single polar flagellum, driven by a rotatory motor powered by two sets of torque-generating units (stators). We developed a robust bead assay for studying the behavior of the flagellar motor in P. aeruginosa, by attaching a microsphere to shortened flagellar filament and using it as an indicator of motor rotation. Using this assay, we revealed the dynamics of the two stator systems in the flagellar motor and found that the motors in wild-type cells adjust the stator compositions according to the environment, resulting in an optimal performance in environmental exploration compared to that of mutants with one set of stators.
Collapse
|
20
|
Chang Y, Carroll BL, Liu J. Structural basis of bacterial flagellar motor rotation and switching. Trends Microbiol 2021; 29:1024-1033. [PMID: 33865677 DOI: 10.1016/j.tim.2021.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
The bacterial flagellar motor, a remarkable rotary machine, can rapidly switch between counterclockwise (CCW) and clockwise (CW) rotational directions to control the migration behavior of the bacterial cell. The flagellar motor consists of a bidirectional spinning rotor surrounded by torque-generating stator units. Recent high-resolution in vitro and in situ structural studies have revealed stunning details of the individual components of the flagellar motor and their interactions in both the CCW and CW senses. In this review, we discuss these structures and their implications for understanding the molecular mechanisms underlying flagellar rotation and switching.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Brittany L Carroll
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
21
|
Wadhwa N, Tu Y, Berg HC. Mechanosensitive remodeling of the bacterial flagellar motor is independent of direction of rotation. Proc Natl Acad Sci U S A 2021; 118:e2024608118. [PMID: 33876769 PMCID: PMC8054018 DOI: 10.1073/pnas.2024608118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Motility is important for the survival and dispersal of many bacteria, and it often plays a role during infections. Regulation of bacterial motility by chemical stimuli is well studied, but recent work has added a new dimension to the problem of motility control. The bidirectional flagellar motor of the bacterium Escherichia coli recruits or releases torque-generating units (stator units) in response to changes in load. Here, we show that this mechanosensitive remodeling of the flagellar motor is independent of direction of rotation. Remodeling rate constants in clockwise rotating motors and in counterclockwise rotating motors, measured previously, fall on the same curve if plotted against torque. Increased torque decreases the off rate of stator units from the motor, thereby increasing the number of active stator units at steady state. A simple mathematical model based on observed dynamics provides quantitative insight into the underlying molecular interactions. The torque-dependent remodeling mechanism represents a robust strategy to quickly regulate output (torque) in response to changes in demand (load).
Collapse
Affiliation(s)
- Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| | - Yuhai Tu
- T. J. Watson Research Center, IBM, Yorktown Heights, NY 10598
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142
| |
Collapse
|
22
|
Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor. J Bacteriol 2021; 203:JB.00016-21. [PMID: 33619152 PMCID: PMC8092157 DOI: 10.1128/jb.00016-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bacterial flagellum is the motility organelle powered by a rotary motor. The rotor and stator elements of the motor are located in the cytoplasmic membrane and cytoplasm. The stator units assemble around the rotor, and an ion flux (typically H+ or Na+) conducted through a channel of the stator induces conformational changes that generate rotor torque. Electrostatic interactions between the stator protein PomA in Vibrio (MotA in Escherichia coli) and the rotor protein FliG have been shown by genetic analyses, but have not been demonstrated biochemically. Here, we used site-directed photo- and disulfide-crosslinking to provide direct evidence for the interaction. We introduced a UV-reactive amino acid, p-benzoyl-L-phenylalanine (pBPA), into the cytoplasmic region of PomA or the C-terminal region of FliG in intact cells. After UV irradiation, pBPA inserted at a number of positions in PomA formed a crosslink with FliG. PomA residue K89 gave the highest yield of crosslinks, suggesting that it is the PomA residue nearest to FliG. UV-induced crosslinking stopped motor rotation, and the isolated hook-basal body contained the crosslinked products. pBPA inserted to replace residues R281 or D288 in FliG formed crosslinks with the Escherichia coli stator protein, MotA. A cysteine residue introduced in place of PomA K89 formed disulfide crosslinks with cysteine inserted in place of FliG residues R281 and D288, and some other flanking positions. These results provide the first demonstration of direct physical interaction between specific residues in FliG and PomA/MotA.ImportanceThe bacterial flagellum is a unique organelle that functions as a rotary motor. The interaction between the stator and rotor is indispensable for stator assembly into the motor and the generation of motor torque. However, the interface of the stator-rotor interaction has only been defined by mutational analysis. Here, we detected the stator-rotor interaction using site-directed photo- and disulfide-crosslinking approaches. We identified several residues in the PomA stator, especially K89, that are in close proximity to the rotor. Moreover, we identified several pairs of stator and rotor residues that interact. This study directly demonstrates the nature of the stator-rotor interaction and suggests how stator units assemble around the rotor and generate torque in the bacterial flagellar motor.
Collapse
|
23
|
Morimoto YV, Minamino T. Architecture and Assembly of the Bacterial Flagellar Motor Complex. Subcell Biochem 2021; 96:297-321. [PMID: 33252734 DOI: 10.1007/978-3-030-58971-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the central systems responsible for bacterial motility is the flagellum. The bacterial flagellum is a macromolecular protein complex that is more than five times the cell length. Flagella-driven motility is coordinated via a chemosensory signal transduction pathway, and so bacterial cells sense changes in the environment and migrate towards more desirable locations. The flagellum of Salmonella enterica serovar Typhimurium is composed of a bi-directional rotary motor, a universal joint and a helical propeller. The flagellar motor, which structurally resembles an artificial motor, is embedded within the cell envelop and spins at several hundred revolutions per second. In contrast to an artificial motor, the energy utilized for high-speed flagellar motor rotation is the inward-directed proton flow through a transmembrane proton channel of the stator unit of the flagellar motor. The flagellar motor realizes efficient chemotaxis while performing high-speed movement by an ingenious directional switching mechanism of the motor rotation. To build the universal joint and helical propeller structures outside the cell body, the flagellar motor contains its own protein transporter called a type III protein export apparatus. In this chapter we summarize the structure and assembly of the Salmonella flagellar motor complex.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ, Lea SM. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 2020; 5:1553-1564. [PMID: 32929189 PMCID: PMC7610383 DOI: 10.1038/s41564-020-0788-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric A5B2 subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this A5B2 architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.
Collapse
Affiliation(s)
- Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Owen Vickery
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Amy Aron
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Holly Monkhouse
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Thomas Griffiths
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Biochemie et Médecine Moleculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Huang Y, Pei Q, Deng R, Zheng X, Guo J, Guo D, Yang Y, Liang S, Shi C. Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Front Microbiol 2020; 11:610077. [PMID: 33329502 PMCID: PMC7728857 DOI: 10.3389/fmicb.2020.610077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to evaluate the inactivation efficacy of a 405-nm light-emitting diode (LED) against Cronobacter sakazakii biofilm formed on stainless steel and to determine the sensitivity change of illuminated biofilm to food industrial disinfectants. The results showed that LED illumination significantly reduced the population of viable biofilm cells, showing reduction of 2.0 log (25°C), 2.5 log (10°C), and 2.0 log (4°C) between the non-illuminated and LED-illuminated groups at 4 h. Images of confocal laser scanning microscopy and scanning electron microscopy revealed the architectural damage to the biofilm caused by LED illumination, which involved destruction of the stereoscopic conformation of the biofilm. Moreover, the loss of biofilm components (mainly polysaccharide and protein) was revealed by attenuated total reflection Fourier-transformed infrared spectroscopy, and the downregulation of genes involved in C. sakazakii biofilm formation was confirmed by real time quantitative PCR analysis, with greatest difference observed in fliD. In addition, the sensitivity of illuminated-biofilm cells to disinfectant treatment was found to significantly increased, showing the greatest sensitivity change with 1.5 log reduction between non-LED and LED treatment biofilms in the CHX-treated group. These results indicated that 405 nm LED illumination was effective at inactivating C. sakazakii biofilm adhering to stainless steel. Therefore, the present study suggests the potential of 405 nm LED technology in controlling C. sakazakii biofilms in food processing and storage, minimizing the risk of contamination.
Collapse
Affiliation(s)
- Yixiao Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Quanwei Pei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruisha Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoying Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Affiliation(s)
- Natalie S Al-Otaibi
- Department of Molecular Biology and Biotechnology, the University of Sheffield, Sheffield, UK
| | - Julien R C Bergeron
- The Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
27
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
28
|
Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, Taylor NM. Structure and Function of Stator Units of the Bacterial Flagellar Motor. Cell 2020; 183:244-257.e16. [DOI: 10.1016/j.cell.2020.08.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
|
29
|
Structure and Energy-Conversion Mechanism of the Bacterial Na+-Driven Flagellar Motor. Trends Microbiol 2020; 28:719-731. [DOI: 10.1016/j.tim.2020.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
|
30
|
Morimoto YV, Namba K, Minamino T. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Salmonella. Biomolecules 2020; 10:E1255. [PMID: 32872412 PMCID: PMC7564593 DOI: 10.3390/biom10091255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022] Open
Abstract
The bacterial flagellar motor converts the energy of proton flow through the MotA/MotB complex into mechanical works required for motor rotation. The rotational force is generated by electrostatic interactions between the stator protein MotA and the rotor protein FliG. The Arg-90 and Glu-98 from MotA interact with Asp-289 and Arg-281 of FliG, respectively. An increase in the expression level of the wild-type MotA/MotB complex inhibits motility of the gfp-motBfliG(R281V) mutant but not the fliG(R281V) mutant, suggesting that the MotA/GFP-MotB complex cannot work together with wild-type MotA/MotB in the presence of the fliG(R281V) mutation. However, it remains unknown why. Here, we investigated the effect of the GFP fusion to MotB at its N-terminus on the MotA/MotB function. Over-expression of wild-type MotA/MotB significantly reduced the growth rate of the gfp-motBfliG(R281V) mutant. The over-expression of the MotA/GFP-MotB complex caused an excessive proton leakage through its proton channel, thereby inhibiting cell growth. These results suggest that the GFP tag on the MotB N-terminus affects well-regulated proton translocation through the MotA/MotB proton channel. Therefore, we propose that the N-terminal cytoplasmic tail of MotB couples the gating of the proton channel with the MotA-FliG interaction responsible for torque generation.
Collapse
Affiliation(s)
- Yusuke V. Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
- RIKEN Spring-8 Center & Center for Biosystems Dynamics Research (BDR), 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
| |
Collapse
|
31
|
Bacterial flagellar motor as a multimodal biosensor. Methods 2020; 193:5-15. [PMID: 32640316 DOI: 10.1016/j.ymeth.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial Flagellar Motor is one of nature's rare rotary molecular machines. It enables bacterial swimming and it is the key part of the bacterial chemotactic network, one of the best studied chemical signalling networks in biology, which enables bacteria to direct its movement in accordance with the chemical environment. The network can sense down to nanomolar concentrations of specific chemicals on the time scale of seconds. Motor's rotational speed is linearly proportional to the electrochemical gradients of either proton or sodium driving ions, while its direction is regulated by the chemotactic network. Recently, it has been discovered that motor is also a mechanosensor. Given these properties, we discuss the motor's potential to serve as a multifunctional biosensor and a tool for characterising and studying the external environment, the bacterial physiology itself and single molecular motor biophysics.
Collapse
|
32
|
Liu F, Wang F, Liu J. Characterization of chemotaxis and motility response towards fructose in Escherichia coli. Biochem Biophys Res Commun 2020; 527:194-199. [PMID: 32446366 DOI: 10.1016/j.bbrc.2020.04.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
Peritrichously flagellated bacteria such as Escherichia coli (E. coli) perform chemotaxis by a biased random walk toward various chemicals, which was driven by the bacterial flagellar motor. Fructose, a typical monosaccharide that can attract E. coli. However, little is known about the chemotaxis and motility response of E. coli towards fructose. Here, we characterized the chemotaxis behavior of E. coli to different concentrations of fructose from 0 mM to 50 mM by using microfluidics and bead assay. We observed the wild-type cells responded to the stimulus of fructose, which suggested fructose is an attractant to E. coli, while the cells defective in chemotaxis could not sense the stimulus of fructose. The motility of wild-type cells was reduced in various concentrations of fructose, which helped the aggregation of cells near surfaces, in contrast with the result that the fructose showed no effect on the motility of the cells defective in chemotaxis. Similar phenomena are expected to be found in the effect of other monosaccharides to E. coli.
Collapse
Affiliation(s)
- Fanghai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Anhui Province, 230009, PR China.
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Anhui Province, 230009, PR China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Anhui Province, 230009, PR China.
| |
Collapse
|
33
|
Wang R, Chen Q, Zhang R, Yuan J. Measurement of the Internal Frictional Drag of the Bacterial Flagellar Motor by Fluctuation Analysis. Biophys J 2020; 118:2718-2725. [PMID: 32392462 DOI: 10.1016/j.bpj.2020.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor generates the torque that drives the rotation of bacterial flagellar filaments. The torque it generates depends sensitively on the frictional viscous drag on the motor, which includes the frictional viscous drag on the filaments (external load) and the internal frictional viscous drag on the rotor (internal load). The internal load was roughly estimated previously by modeling it as a sphere of a radius of 20 nm rotating in a lipid of viscosity of 100 cp but was never measured experimentally. Here, we measured the internal load by fluctuation analysis of the motor velocity traces. A similar approach should be applicable to other molecular motors.
Collapse
Affiliation(s)
- Renjie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiaopeng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
34
|
Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S, Homma M. Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in Vibrio species. J Bacteriol 2020; 202:JB.00236-20. [PMID: 32482724 PMCID: PMC8404704 DOI: 10.1128/jb.00236-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The bacterial flagellum is an organelle responsible for motility and has a rotary motor comprising the rotor and the stator. Flagellar biogenesis is initiated by the assembly of the MS-ring, a supramolecular complex embedded in the cytoplasmic membrane. The MS-ring consists of a few dozen copies of the transmembrane FliF protein, and is an essential core structure which is a part of the rotor. The number and location of the flagella are controlled by the FlhF and FlhG proteins in some species. However, there is no clarity on the factors initiating MS-ring assembly, and contribution of FlhF/FlhG to this process. Here, we show that FlhF and a C-ring component FliG facilitate Vibrio MS-ring formation. When Vibrio FliF alone was expressed in Escherichia coli cells, MS-ring formation rarely occurred, indicating the requirement of other factors for MS-ring assembly. Consequently, we investigated if FlhF aided FliF in MS-ring assembly. We found that FlhF allowed GFP-fused FliF to localize at the cell pole in a Vibrio cell, suggesting that it increases local concentration of FliF at the pole. When FliF was co-expressed with FlhF in E. coli cells, the MS-ring was effectively formed, indicating that FlhF somehow contributes to MS-ring formation. The isolated MS-ring structure was similar to the MS-ring formed by Salmonella FliF. Interestingly, FliG facilitates MS-ring formation, suggesting that FliF and FliG assist in each other's assembly into the MS-ring and C-ring. This study aids in understanding the mechanism behind MS-ring assembly using appropriate spatial/temporal regulations.Importance Flagellar formation is initiated by the assembly of the FliF protein into the MS-ring complex, embedded in the cytoplasmic membrane. The appropriate spatial/temporal control of MS-ring formation is important for the morphogenesis of the bacterial flagellum. Here, we focus on the assembly mechanism of Vibrio FliF into the MS-ring. FlhF, a positive regulator of the number and location of flagella, recruits the FliF molecules at the cell pole and facilitates MS-ring formation. FliG also facilitates MS-ring formation. Our study showed that these factors control flagellar biogenesis in Vibrio, by initiating the MS-ring assembly. Furthermore, it also implies that flagellar biogenesis is a sophisticated system linked with the expression of certain genes, protein localization and a supramolecular complex assembly.
Collapse
Affiliation(s)
- Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Erika Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- RIKEN Spring-8 Center and Center for Biosystems Dynamic Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Naganawa S, Ito M. MotP Subunit is Critical for Ion Selectivity and Evolution of a K +-Coupled Flagellar Motor. Biomolecules 2020; 10:biom10050691. [PMID: 32365619 PMCID: PMC7277484 DOI: 10.3390/biom10050691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
The bacterial flagellar motor is a sophisticated nanomachine embedded in the cell envelope. The flagellar motor is driven by an electrochemical gradient of cations such as H+, Na+, and K+ through ion channels in stator complexes embedded in the cell membrane. The flagellum is believed to rotate as a result of electrostatic interaction forces between the stator and the rotor. In bacteria of the genus Bacillus and related species, the single transmembrane segment of MotB-type subunit protein (MotB and MotS) is critical for the selection of the H+ and Na+ coupling ions. Here, we constructed and characterized several hybrid stators combined with single Na+-coupled and dual Na+- and K+-coupled stator subunits, and we report that the MotP subunit is critical for the selection of K+. This result suggested that the K+ selectivity of the MotP/MotS complexes evolved from the single Na+-coupled stator MotP/MotS complexes. This finding will promote the understanding of the evolution of flagellar motors and the molecular mechanisms of coupling ion selectivity.
Collapse
Affiliation(s)
- Shun Naganawa
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan;
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan;
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe Saitama 350-8585, Japan
- Correspondence: ; Tel.: +81-276-82-9202
| |
Collapse
|
36
|
Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M. Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus. J Biochem 2019; 166:331-341. [PMID: 31147681 DOI: 10.1093/jb/mvz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
The sodium driven flagellar stator of Vibrio alginolyticus is a hetero-hexamer membrane complex composed of PomA and PomB, and acts as a sodium ion channel. The conformational change in the cytoplasmic region of PomA for the flagellar torque generation, which interacts directly with a rotor protein, FliG, remains a mystery. In this study, we introduced cysteine mutations into cytoplasmic charged residues of PomA, which are highly conserved and interact with FliG, to detect the conformational change by the reactivity of biotin maleimide. In vivo labelling experiments of the PomA mutants revealed that the accessibility of biotin maleimide at position of E96 was reduced with sodium ions. Such a reduction was also seen in the D24N and the plug deletion mutants of PomB, and the phenomenon was independent in the presence of FliG. This sodium ions specific reduction was also detected in Escherichia coli that produced PomA and PomB from a plasmid, but not in the purified stator complex. These results demonstrated that sodium ions cause a conformational change around the E96 residue of loop2-3 in the biological membrane.
Collapse
Affiliation(s)
- Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| |
Collapse
|
37
|
Antelo-Varela M, Bartel J, Quesada-Ganuza A, Appel K, Bernal-Cabas M, Sura T, Otto A, Rasmussen M, van Dijl JM, Nielsen A, Maaß S, Becher D. Ariadne’s Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Anal Chem 2019; 91:11972-11980. [DOI: 10.1021/acs.analchem.9b02869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minia Antelo-Varela
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Jürgen Bartel
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Ane Quesada-Ganuza
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Karen Appel
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Margarita Bernal-Cabas
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Thomas Sura
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Michael Rasmussen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Jan Maarten van Dijl
- University Medical
Center Groningen, Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Allan Nielsen
- Research & Technology, Novozymes A/S, Krogshoejvej 36, Bagsværd DK-2880, Denmark
| | - Sandra Maaß
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Centre of Functional
Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| |
Collapse
|
38
|
Kojima S, Yoneda T, Morimoto W, Homma M. Effect of PlzD, a YcgR homologue of c-di-GMP-binding protein, on polar flagellar motility in Vibrio alginolyticus. J Biochem 2019; 166:77-88. [PMID: 30778544 DOI: 10.1093/jb/mvz014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
YcgR, a cyclic diguanylate (c-di-GMP)-binding protein expressed in Escherichia coli, brakes flagellar rotation by binding to the motor in a c-di-GMP dependent manner and has been implicated in triggering biofilm formation. Vibrio alginolyticus has a single polar flagellum and encodes YcgR homologue, PlzD. When PlzD or PlzD-GFP was highly over-produced in nutrient-poor condition, the polar flagellar motility of V. alginolyticus was reduced. This inhibitory effect is c-di-GMP independent as mutants substituting putative c-di-GMP-binding residues retain the effect. Moderate over-expression of PlzD-GFP allowed its localization at the flagellated cell pole. Truncation of the N-terminal 12 or 35 residues of PlzD abolished the inhibitory effect and polar localization, and no inhibitory effect was observed by deleting plzD or expressing an endogenous level of PlzD-GFP. Subcellular fractionation showed that PlzD, but not its N-terminally truncated variants, was precipitated when over-produced. Moreover, immunoblotting and N-terminal sequencing revealed that endogenous PlzD is synthesized from Met33. These results suggest that an N-terminal extension allows PlzD to localize at the cell pole but causes aggregation and leads to inhibition of motility. In V. alginolyticus, PlzD has a potential property to associate with the polar flagellar motor but this interaction is too weak to inhibit rotation.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takuro Yoneda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Wakako Morimoto
- Department of Biological Science, School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
39
|
Abstract
The bacterial flagellum is a reversible rotating motor powered by ion transport through stator units, which also exert torque on the rotor component to turn the flagellum for motility. Species-specific adaptations to flagellar motors impact stator function to meet the demands of each species to sufficiently power flagellar rotation. We identified another evolutionary adaptation by discovering that FlgX of Campylobacter jejuni preserves the integrity of stator units by functioning as a chaperone to protect stator proteins from degradation by the FtsH protease complex due to the physiology of the bacterium. FlgX is required to maintain a level of stator units sufficient to power the naturally high-torque flagellar motor of C. jejuni for motility in intestinal mucosal layers to colonize hosts. Our work continues to identify an increasing number of adaptations to flagellar motors across bacterial species that provide the mechanics necessary for producing an effective rotating nanomachine for motility. The stator units of the flagellum supply power to the flagellar motor via ion transport across the cytoplasmic membrane and generate torque on the rotor for rotation. Flagellar motors across bacterial species have evolved adaptations that impact and enhance stator function to meet the demands of each species, including producing stator units using different fuel types or various stator units for different motility modalities. Campylobacter jejuni produces one of the most complex and powerful flagellar motors by positioning 17 stator units at a greater radial distance than in most other bacteria to increase power and torque for high velocity of motility. We report another evolutionary adaptation impacting flagellar stators by identifying FlgX as a chaperone for C. jejuni stator units to ensure sufficient power and torque for flagellar rotation and motility. We discovered that FlgX maintains MotA and MotB stator protein integrity likely through a direct interaction with MotA that prevents their degradation. Suppressor analysis suggested that the physiology of C. jejuni drives the requirement for FlgX to protect stator units from proteolysis by the FtsH protease complex. C. jejuni ΔflgX was strongly attenuated for colonization of the natural avian host, but colonization capacity was greatly restored by a single mutation in MotA. These findings suggest that the likely sole function of FlgX is to preserve stator unit integrity for the motility required for host interactions. Our findings demonstrate another evolved adaptation in motile bacteria to ensure the equipment of the flagellar motor with sufficient power to generate torque for motility.
Collapse
|
40
|
Chang Y, Moon KH, Zhao X, Norris SJ, Motaleb MA, Liu J. Structural insights into flagellar stator-rotor interactions. eLife 2019; 8:48979. [PMID: 31313986 PMCID: PMC6663468 DOI: 10.7554/elife.48979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.
Collapse
Affiliation(s)
- Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Ki Hwan Moon
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Xiaowei Zhao
- Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States.,Department of Pathology and Laboratory Medicine, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, United States
| |
Collapse
|
41
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|
42
|
Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 2019; 103:5339-5353. [PMID: 31037382 PMCID: PMC6570709 DOI: 10.1007/s00253-019-09846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
43
|
Abstract
Multisubunit protein complexes are ubiquitous in biology and perform a plethora of essential functions. Most of the scientific literature treats such assemblies as static: their function is assumed to be independent of their manner of assembly, and their structure is assumed to remain intact until they are degraded. Recent observations of the bacterial flagellar motor, among others, bring these notions into question. The torque-generating stator units of the motor assemble and disassemble in response to changes in load. Here, we used electrorotation to drive tethered cells forward, which decreases motor load, and measured the resulting stator dynamics. No disassembly occurred while the torque remained high, but all of the stator units were released when the motor was spun near the zero-torque speed. When the electrorotation was turned off, so that the load was again high, stator units were recruited, increasing motor speed in a stepwise fashion. A model in which speed affects the binding rate and torque affects the free energy of bound stator units captures the observed torque-dependent stator assembly dynamics, providing a quantitative framework for the environmentally regulated self-assembly of a major macromolecular machine.
Collapse
|
44
|
Abstract
Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
45
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
46
|
Abstract
Bacteria, life living at microscale, can spread only by thermal fluctuation. However, the ability of directional movement, such as swimming by rotating flagella, gliding over surfaces via mobile cell-surface adhesins, and actin-dependent movement, could be useful for thriving through searching more favorable environments, and such motility is known to be related to pathogenicity. Among diverse migration mechanisms, perhaps flagella-dependent motility would be used by most species. The bacterial flagellum is a molecular nanomachine comprising a helical filament and a basal motor, which is fueled by an electrochemical gradient of cation across the cell membrane (ion motive force). Many species, such as Escherichia coli, possess flagella on the outside of the cell body, whereas flagella of spirochetes reside within the periplasmic space. Flagellar filaments or helical spirochete bodies rotate like a screw propeller, generating propulsive force. This review article describes the current knowledge of the structure and operation mechanism of the bacterial flagellum, and flagella-dependent motility in highly viscous environments.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University
| |
Collapse
|
47
|
Wang R, Wang F, He R, Zhang R, Yuan J. The Second Messenger c-di-GMP Adjusts Motility and Promotes Surface Aggregation of Bacteria. Biophys J 2018; 115:2242-2249. [PMID: 30447993 DOI: 10.1016/j.bpj.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022] Open
Abstract
Bacteria can use the second messenger c-di-GMP to adjust their motility in response to environmental cues. The protein YcgR, upon binding of c-di-GMP, interacts with the flagellar motor to affect the motor behavior. However, the full feature of the effects of c-di-GMP::YcgR on the flagellar motor remains unclear, and its interacting partners on the motor is still controversial. Here, we characterized the effects of c-di-GMP::YcgR on the torque-speed curve of the flagellar motor, one of the most important properties of the motor, finding that it affects the motor behavior throughout the full range of load conditions from zero to high loads by shifting the motor torque-speed curve downward. We also investigated the interacting partner on the motor through dynamical fluorescent studies, finding that c-di-GMP::YcgR mainly interacts with the motor-switch complex instead of the torque-generating units (stators). To directly test the behavioral consequence of elevated c-di-GMP levels, we measured the distribution of bacteria swimming near a surface, finding that elevated c-di-GMP levels promote bacterial aggregation on surfaces. The effects of c-di-GMP on bacterial motile behavior that we characterized here are consistent with the key role that c-di-GMP plays in the transition between motile and sedentary forms of bacterial life.
Collapse
Affiliation(s)
- Renjie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangbin Wang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
48
|
Tusk SE, Delalez NJ, Berry RM. Subunit Exchange in Protein Complexes. J Mol Biol 2018; 430:4557-4579. [DOI: 10.1016/j.jmb.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
|
49
|
Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018; 109:723-734. [DOI: 10.1111/mmi.14092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science Nagoya University Chikusa‐kuNagoya 464‐8602Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences Osaka University 1‐3 YamadaokaSuita Osaka 565‐0871Japan
- RIKEN Center for Biosystems Dynamics Research & SPring‐8 Center 1‐3 YamadaokaSuita Osaka 565‐0871Japan
| |
Collapse
|
50
|
Lam KH, Xue C, Sun K, Zhang H, Lam WWL, Zhu Z, Ng JTY, Sause WE, Lertsethtakarn P, Lau KF, Ottemann KM, Au SWN. Three SpoA-domain proteins interact in the creation of the flagellar type III secretion system in Helicobacter pylori. J Biol Chem 2018; 293:13961-13973. [PMID: 29991595 PMCID: PMC6130963 DOI: 10.1074/jbc.ra118.002263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/07/2018] [Indexed: 01/07/2023] Open
Abstract
Bacterial flagella are rotary nanomachines that contribute to bacterial fitness in many settings, including host colonization. The flagellar motor relies on the multiprotein flagellar motor-switch complex to govern flagellum formation and rotational direction. Different bacteria exhibit great diversity in their flagellar motors. One such variation is exemplified by the motor-switch apparatus of the gastric pathogen Helicobacter pylori, which carries an extra switch protein, FliY, along with the more typical FliG, FliM, and FliN proteins. All switch proteins are needed for normal flagellation and motility in H. pylori, but the molecular mechanism of their assembly is unknown. To fill this gap, we examined the interactions among these proteins. We found that the C-terminal SpoA domain of FliY (FliYC) is critical to flagellation and forms heterodimeric complexes with the FliN and FliM SpoA domains, which are β-sheet domains of type III secretion system proteins. Surprisingly, unlike in other flagellar switch systems, neither FliY nor FliN self-associated. The crystal structure of the FliYC-FliNC complex revealed a saddle-shaped structure homologous to the FliN-FliN dimer of Thermotoga maritima, consistent with a FliY-FliN heterodimer forming the functional unit. Analysis of the FliYC-FliNC interface indicated that oppositely charged residues specific to each protein drive heterodimer formation. Moreover, both FliYC-FliMC and FliYC-FliNC associated with the flagellar regulatory protein FliH, explaining their important roles in flagellation. We conclude that H. pylori uses a FliY-FliN heterodimer instead of a homodimer and creates a switch complex with SpoA domains derived from three distinct proteins.
Collapse
Affiliation(s)
- Kwok Ho Lam
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chaolun Xue
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Kailei Sun
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huawei Zhang
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Wendy Wai Ling Lam
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and
| | - Zeyu Zhu
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Juliana Tsz Yan Ng
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - William E. Sause
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Kwok Fai Lau
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064
| | - Shannon Wing Ngor Au
- From the Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong, ,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China, and ,To whom correspondence should be addressed. Tel.:
852-3943-4170; E-mail:
| |
Collapse
|