1
|
Hori N, Thirumalai D. Watching ion-driven kinetics of ribozyme folding and misfolding caused by energetic and topological frustration one molecule at a time. Nucleic Acids Res 2023; 51:10737-10751. [PMID: 37758176 PMCID: PMC10602927 DOI: 10.1093/nar/gkad755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Folding of ribozymes into well-defined tertiary structures usually requires divalent cations. How Mg2+ ions direct the folding kinetics has been a long-standing unsolved problem because experiments cannot detect the positions and dynamics of ions. To address this problem, we used molecular simulations to dissect the folding kinetics of the Azoarcus ribozyme by monitoring the path each molecule takes to reach the folded state. We quantitatively establish that Mg2+ binding to specific sites, coupled with counter-ion release of monovalent cations, stimulate the formation of secondary and tertiary structures, leading to diverse pathways that include direct rapid folding and trapping in misfolded structures. In some molecules, key tertiary structural elements form when Mg2+ ions bind to specific RNA sites at the earliest stages of the folding, leading to specific collapse and rapid folding. In others, the formation of non-native base pairs, whose rearrangement is needed to reach the folded state, is the rate-limiting step. Escape from energetic traps, driven by thermal fluctuations, occurs readily. In contrast, the transition to the native state from long-lived topologically trapped native-like metastable states is extremely slow. Specific collapse and formation of energetically or topologically frustrated states occur early in the assembly process.
Collapse
Affiliation(s)
- Naoto Hori
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Department of Physics, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
2
|
Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA (NEW YORK, N.Y.) 2018; 24:1828-1838. [PMID: 30254137 PMCID: PMC6239185 DOI: 10.1261/rna.068361.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 05/22/2023]
Abstract
Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge screening (nonspecific association) or binding (specific association). To measure how different divalent cations modify folding kinetics of the 60 nucleotide Ecoli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence of Mg2+ to observe the folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of intermediates in conformational ensembles along the folding pathway with transition times longer than 10 msec. Rate constants for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states that prefer Mg2+ The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most abundant intracellular divalent ion.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
3
|
Roh JH, Kilburn D, Behrouzi R, Sung W, Briber RM, Woodson SA. Effects of Preferential Counterion Interactions on the Specificity of RNA Folding. J Phys Chem Lett 2018; 9:5726-5732. [PMID: 30211556 PMCID: PMC6351067 DOI: 10.1021/acs.jpclett.8b02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The real-time search for native RNA structure is essential for the operation of regulatory RNAs. We previously reported that a fraction of the Azoarcus ribozyme achieves a compact structure in less than a millisecond. To scrutinize the forces that drive initial folding steps, we used time-resolved SAXS to compare the folding dynamics of this ribozyme in thermodynamically isostable concentrations of different counterions. The results show that the size of the fast-folding population increases with the number of available counterions and correlates with the flexibility of initial RNA structures. Within 1 ms of folding, Mg2+ exhibits a smaller preferential interaction coefficient per charge, ΔΓ+/ Z, than Na+ or [Co(NH3)6]3+. The lower ΔΓ+/ Z corresponds to a smaller yield of folded RNA, although Mg2+ stabilizes native RNA more efficiently than other ions at equilibrium. These results suggest that strong Mg2+-RNA interactions impede the search for globally native structure during early folding stages.
Collapse
Affiliation(s)
- Joon Ho Roh
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Duncan Kilburn
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Reza Behrouzi
- Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Wokyung Sung
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| | - R M Briber
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
4
|
Kilburn D, Behrouzi R, Lee HT, Sarkar K, Briber RM, Woodson SA. Entropic stabilization of folded RNA in crowded solutions measured by SAXS. Nucleic Acids Res 2016; 44:9452-9461. [PMID: 27378777 PMCID: PMC5100557 DOI: 10.1093/nar/gkw597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/21/2016] [Indexed: 01/29/2023] Open
Abstract
Non-coding RNAs must fold into specific structures that are stabilized by metal ions and other co-solutes in the cell's interior. Large crowder molecules such as PEG stabilize a bacterial group I ribozyme so that the RNA folds in low Mg2+ concentrations typical of the cell's interior. To understand the thermodynamic origins of stabilization by crowder molecules, small angle X-ray scattering was used to measure the folding and helix assembly of a bacterial group I ribozyme at different temperatures and in different MgCl2 and polyethylene glycol (PEG) concentrations. The resulting phase diagrams show that perturbations to folding by each variable do not overlap. A favorable enthalpy change drives the formation of compact, native-like structures, but requires Mg2+ ions at all temperatures studied (5–55°C). PEG reduces the entropic cost of helix assembly and increases correlations between RNA segments at all temperatures. The phase diagrams also revealed a semi-compact intermediate between the unfolded and folded ensemble that is locally more flexible than the unfolded state, as judged by SHAPE modification. These results suggest that environmental variables such as temperature and solute density will favor different types of RNA structures.
Collapse
Affiliation(s)
- Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Reza Behrouzi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui-Ting Lee
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Krishnarjun Sarkar
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Abstract
The 60-nt GTPase center (GAC) of 23S rRNA has a phylogenetically conserved secondary structure with two hairpin loops and a 3-way junction. It folds into an intricate tertiary structure upon addition of Mg(2+) ions, which is stabilized by the L11 protein in cocrystal structures. Here, we monitor the kinetics of its tertiary folding and Mg(2+)-dependent intermediate states by observing selected nucleobases that contribute specific interactions to the GAC tertiary structure in the cocrystals. The fluorescent nucleobase 2-aminopurine replaced three individual adenines, two of which make long-range stacking interactions and one that also forms hydrogen bonds. Each site reveals a unique response to Mg(2+) addition and temperature, reflecting its environmental change from secondary to tertiary structure. Stopped-flow fluorescence experiments revealed that kinetics of tertiary structure formation upon addition of MgCl2 are also site specific, with local conformational changes occurring from 5 ms to 4s and with global folding from 1 to 5s. Site-specific substitution with (15)N-nucleobases allowed observation of stable hydrogen bond formation by NMR experiments. Equilibrium titration experiments indicate that a stable folding intermediate is present at stoichiometric concentrations of Mg(2+) and suggest that there are two initial sites of Mg(2+) ion association.
Collapse
|
6
|
Lee HT, Kilburn D, Behrouzi R, Briber RM, Woodson SA. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids Res 2015; 43:1170-6. [PMID: 25541198 PMCID: PMC4333387 DOI: 10.1093/nar/gku1335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 11/13/2022] Open
Abstract
The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg(2+) concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg(2+) concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Duncan Kilburn
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA Center for Neutron Scattering Research, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - Reza Behrouzi
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sarah A Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Wu P, Yu Y, McGhee CE, Tan LH, Lu Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7849-72. [PMID: 25205057 PMCID: PMC4275547 DOI: 10.1002/adma.201304891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 06/02/2014] [Indexed: 05/22/2023]
Abstract
In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Abstract
Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands;
| | | | | | | |
Collapse
|
9
|
Desai R, Kilburn D, Lee HT, Woodson SA. Increased ribozyme activity in crowded solutions. J Biol Chem 2013; 289:2972-7. [PMID: 24337582 DOI: 10.1074/jbc.m113.527861] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg(2+) concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg(2+) threshold at which activity was detected and increased total RNA cleavage at high Mg(2+) concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates.
Collapse
Affiliation(s)
- Ravi Desai
- From the T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
10
|
Lee V, Hawa T. Investigation of the effect of bilayer membrane structures and fluctuation amplitudes on SANS/SAXS profile for short membrane wavelength. J Chem Phys 2013; 139:124905. [DOI: 10.1063/1.4821816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
12
|
Anthony PC, Sim AY, Chu VB, Doniach S, Block SM, Herschlag D. Electrostatics of nucleic acid folding under conformational constraint. J Am Chem Soc 2012; 134:4607-14. [PMID: 22369617 PMCID: PMC3303965 DOI: 10.1021/ja208466h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA folding is enabled by interactions between the nucleic acid and its ion atmosphere, the mobile sheath of aqueous ions that surrounds and stabilizes it. Understanding the ion atmosphere requires the interplay of experiment and theory. However, even an apparently simple experiment to probe the ion atmosphere, measuring the dependence of DNA duplex stability upon ion concentration and identity, suffers from substantial complexity, because the unfolded ensemble contains many conformational states that are difficult to treat accurately with theory. To minimize this limitation, we measured the unfolding equilibrium of a DNA hairpin using a single-molecule optical trapping assay, in which the unfolded state is constrained to a limited set of elongated conformations. The unfolding free energy increased linearly with the logarithm of monovalent cation concentration for several cations, such that smaller cations tended to favor the folded state. Mg(2+) stabilized the hairpin much more effectively at low concentrations than did any of the monovalent cations. Poisson-Boltzmann theory captured trends in hairpin stability measured for the monovalent cation titrations with reasonable accuracy, but failed to do so for the Mg(2+) titrations. This finding is consistent with previous work, suggesting that Poisson-Boltzmann and other mean-field theories fail for higher valency cations where ion-ion correlation effects may become significant. The high-resolution data herein, because of the straightforward nature of both the folded and the unfolded states, should serve as benchmarks for the development of more accurate electrostatic theories that will be needed for a more quantitative and predictive understanding of nucleic acid folding.
Collapse
Affiliation(s)
| | - Adelene Y.L. Sim
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Vincent B. Chu
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Sebastian Doniach
- Department of Applied Physics, Stanford University, Stanford, CA 94305
- Department of Physics, Stanford University, Stanford, CA 94305
| | - Steven M. Block
- Department of Applied Physics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
13
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Dammertz K, Hengesbach M, Helm M, Nienhaus GU, Kobitski AY. Single-Molecule FRET Studies of Counterion Effects on the Free Energy Landscape of Human Mitochondrial Lysine tRNA. Biochemistry 2011; 50:3107-15. [DOI: 10.1021/bi101804t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Martin Hengesbach
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrei Yu. Kobitski
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| |
Collapse
|
15
|
Leipply D, Draper DE. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Biochemistry 2011; 50:2790-9. [PMID: 21361309 DOI: 10.1021/bi101948k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are potentially several ways Mg2+ might promote formation of an RNA tertiary structure: by causing a general "collapse" of the unfolded ensemble to more compact conformations, by favoring a reorganization of structure within a domain to a form with specific tertiary contacts, and by enhancing cooperative linkages between different sets of tertiary contacts. To distinguish these different modes of action, we have studied Mg2+ interactions with the adenine riboswitch, in which a set of tertiary interactions that forms around a purine-binding pocket is thermodynamically linked to the tertiary "docking" of two hairpin loops in another part of the molecule. Each of four RNA forms with different extents of tertiary structure were characterized by small-angle X-ray scattering. The free energy of interconversion between different conformations in the absence of Mg2+ and the free energy of Mg2+ interaction with each form have been estimated, yielding a complete picture of the folding energy landscape as a function of Mg2+ concentration. At 1 mM Mg2+ (50 mM K+), the overall free energy of stabilization by Mg2+ is large, -9.8 kcal/mol, and about equally divided between its effect on RNA collapse to a partially folded structure and on organization of the binding pocket. A strong cooperative linkage between the two sets of tertiary contacts is intrinsic to the RNA. This quantitation of the effects of Mg2+ on an RNA with two distinct sets of tertiary interactions suggests ways that Mg2+ may work to stabilize larger and more complex RNA structures.
Collapse
Affiliation(s)
- Desirae Leipply
- Program in Molecular Biophysics and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
16
|
Lambert D, Leipply D, Draper DE. The osmolyte TMAO stabilizes native RNA tertiary structures in the absence of Mg2+: evidence for a large barrier to folding from phosphate dehydration. J Mol Biol 2010; 404:138-57. [PMID: 20875423 PMCID: PMC3001104 DOI: 10.1016/j.jmb.2010.09.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 12/20/2022]
Abstract
The stabilization of RNA tertiary structures by ions is well known, but the neutral osmolyte trimethylamine oxide (TMAO) can also effectively stabilize RNA tertiary structure. To begin to understand the physical basis for the effects of TMAO on RNA, we have quantitated the TMAO-induced stabilization of five RNAs with known structures. So-called m values, the increment in unfolding free energy per molal of osmolyte at constant KCl activity, are ∼0 for a hairpin secondary structure and between 0.70 and 1.85 kcal mol(-1)m(-1) for four RNA tertiary structures (30-86 nt). Further analysis of two RNAs by small-angle X-ray scattering and hydroxyl radical probing shows that TMAO reduces the radius of gyration of the unfolded ensemble to the same endpoint as seen in titration with Mg(2+) and that the structures stabilized by TMAO and Mg(2+) are indistinguishable. Remarkably, TMAO induces the native conformation of a Mg(2+) ion chelation site formed in part by a buried phosphate, even though Mg(2+) is absent. TMAO interacts weakly, if at all, with KCl, ruling out the possibility that TMAO stabilizes RNA indirectly by increasing salt activity. TMAO is, however, strongly excluded from the vicinity of dimethylphosphate (unfavorable interaction free energy, +211 cal mol(-1)m(-1) for the potassium salt), an ion that mimics the RNA backbone phosphate. We suggest that formation of RNA tertiary structure is accompanied by substantial phosphate dehydration (loss of 66-173 water molecules in the RNA structures studied) and that TMAO works principally by reducing the energetic penalty associated with this dehydration. The strong parallels we find between the effects of TMAO and Mg(2+) suggest that RNA sequence is more important than specific ion interactions in specifying the native structure.
Collapse
Affiliation(s)
- Dominic Lambert
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
17
|
Hennelly SP, Sanbonmatsu KY. Tertiary contacts control switching of the SAM-I riboswitch. Nucleic Acids Res 2010; 39:2416-31. [PMID: 21097777 PMCID: PMC3064774 DOI: 10.1093/nar/gkq1096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions.
Collapse
Affiliation(s)
- Scott P Hennelly
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, USA
| | | |
Collapse
|
18
|
Werner A. Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number. Nucleic Acids Res 2010; 39:e17. [PMID: 21068070 PMCID: PMC3035447 DOI: 10.1093/nar/gkq808] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ribonucleic acids are highly conserved essential parts of cellular life. RNA function is determined to a large extent by its hydrodynamic behaviour. The presented study proposes a strategy to predict the hydrodynamic behaviour of RNA single strands on the basis of the polymer size. By atom-level shell-modelling of high-resolution structures, hydrodynamic radius and diffusion coefficient of evolutionary conserved RNA single strands (ssRNA) were calculated. The diffusion coefficients D of 17–174 nucleotides (nt) containing ssRNA depended on the number of nucleotides N with D = 4.56 × 10−10 N−0.39 m2 s−1. The hydrodynamic radius RH depended on N with RH = 5.00 × 10−10N0.38 m. An average ratio of the radius of gyration and the hydrodynamic radius of 0.98 ± 0.08 was calculated in solution. The empirical law was tested by in solution measured hydrodynamic radii and radii of gyration and was found to be highly consistent with experimental data of evolutionary conserved ssRNA. Furthermore, the hydrodynamic behaviour of several evolutionary unevolved ribonucleic acids could be predicted. Based on atom-level shell-modelling of high-resolution structures and experimental hydrodynamic data, empirical models are proposed, which enable to predict the translational diffusion coefficient and molecular size of short RNA single strands solely on the basis of the polymer size.
Collapse
Affiliation(s)
- Arne Werner
- Experimental Biomolecular Physics, Applied Physics, Royal Institute of Technology, Stockholm, SE-10691, Sweden.
| |
Collapse
|
19
|
Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA. Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J Am Chem Soc 2010; 132:8690-6. [PMID: 20521820 DOI: 10.1021/ja101500g] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crowder molecules in solution alter the equilibrium between folded and unfolded states of biological macromolecules. It is therefore critical to account for the influence of these other molecules when describing the folding of RNA inside the cell. Small angle X-ray scattering experiments are reported on a 64 kDa bacterial group I ribozyme in the presence of polyethylene-glycol 1000 (PEG-1000), a molecular crowder with an average molecular weight of 1000 Da. In agreement with expected excluded volume effects, PEG favors more compact RNA structures. First, the transition from the unfolded to the folded (more compact) state occurs at lower MgCl(2) concentrations in PEG. Second, the radius of gyration of the unfolded RNA decreases from 76 to 64 A as the PEG concentration increases from 0 to 20% wt/vol. Changes to water and ion activities were measured experimentally, and theoretical models were used to evaluate the excluded volume. We conclude that the dominant influence of the PEG crowder on the folding process is the excluded volume effect.
Collapse
Affiliation(s)
- Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
20
|
Roh JH, Guo L, Kilburn JD, Briber RM, Irving T, Woodson SA. Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle X-ray scattering. J Am Chem Soc 2010; 132:10148-54. [PMID: 20597502 PMCID: PMC2918669 DOI: 10.1021/ja103867p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribozymes must fold into compact, native structures to function properly in the cell. The first step in forming the RNA tertiary structure is the neutralization of the phosphate charge by cations, followed by collapse of the unfolded molecules into more compact structures. The specificity of the collapse transition determines the structures of the folding intermediates and the folding time to the native state. However, the forces that enable specific collapse in RNA are not understood. Using time-resolved SAXS, we report that upon addition of 5 mM Mg(2+) to the Azoarcus group I ribozyme up to 80% of chains form compact structures in less than 1 ms. In 1 mM Mg(2+), the collapse transition produces extended structures that slowly approach the folded state, while > or = 1.5 mM Mg(2+) leads to an ensemble of random coils that fold with multistage kinetics. Increased flexibility of molecules in the intermediate ensemble correlates with a Mg(2+)-dependent increase in the fast folding population and a previously unobserved crossover in the collapse kinetics. Partial denaturation of the unfolded RNA with urea also increases the fraction of chains following the fast-folding pathway. These results demonstrate that the preferred collapse mechanism depends on the extent of Mg(2+)-dependent charge neutralization and that non-native interactions within the unfolded ensemble contribute to the heterogeneity of the ribozyme folding pathways at the very earliest stages of tertiary structure formation.
Collapse
Affiliation(s)
- Joon Ho Roh
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- NIST Center for Neutron Scattering Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Liang Guo
- BioCAT, CSRRI and Department of BCPS, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - J. Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M. Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Thomas Irving
- BioCAT, CSRRI and Department of BCPS, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sarah A. Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
21
|
Abstract
Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
22
|
Rambo RP, Tainer JA. Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA (NEW YORK, N.Y.) 2010; 16:638-46. [PMID: 20106957 PMCID: PMC2822928 DOI: 10.1261/rna.1946310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNA(val), and yeast tRNA(phe) that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways.
Collapse
Affiliation(s)
- Robert P Rambo
- Life Science Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Baird NJ, Ferré-D'Amaré AR. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA (NEW YORK, N.Y.) 2010; 16:598-609. [PMID: 20106958 PMCID: PMC2822924 DOI: 10.1261/rna.1852310] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/03/2009] [Indexed: 05/21/2023]
Abstract
Riboswitches are structured mRNA elements that regulate gene expression upon binding specific cellular metabolites. It is thought that the highly conserved metabolite-binding domains of riboswitches undergo conformational change upon binding their cognate ligands. To investigate the generality of such a mechanism, we employed small-angle X-ray scattering (SAXS). We probed the nature of the global metabolite-induced response of the metabolite-binding domains of four different riboswitches that bind, respectively, thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), lysine, and S-adenosyl methionine (SAM). We find that each RNA is unique in its global structural response to metabolite. Whereas some RNAs exhibit distinct free and bound conformations, others are globally insensitive to the presence of metabolite. Thus, a global conformational change of the metabolite-binding domain is not a requirement for riboswitch function. It is possible that the range of behaviors observed by SAXS, rather than being a biophysical idiosyncrasy, reflects adaptation of riboswitches to the regulatory requirements of their individual genomic context.
Collapse
Affiliation(s)
- Nathan J Baird
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
24
|
Mitra S. Using analytical ultracentrifugation (AUC) to measure global conformational changes accompanying equilibrium tertiary folding of RNA molecules. Methods Enzymol 2009; 469:209-36. [PMID: 20946791 DOI: 10.1016/s0076-6879(09)69010-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Analytical ultracentrifugation (AUC) is a powerful technique to determine the global conformational changes in RNA molecules mediated by cations or small molecule ligands. Although most of the developments in the field of AUC have been centered on studies involving protein molecules, the experimental methods as well as the analytical approaches have been successfully adapted and applied to the study of a variety of RNA molecules ranging from small riboswitches to large ribozymes. Most often AUC studies are performed in conjunction with other structural probing techniques that provide complementary information on local changes in the solvent accessibilities at specific regions within RNA molecules. This chapter provides a brief theoretical background, working knowledge of instrumentation, practical considerations for experimental setup, and guidelines for data analysis procedures to enable the design, execution, and interpretation of sedimentation velocity experiments that detect changes in the global dimensions of an RNA molecule during its equilibrium folding.
Collapse
Affiliation(s)
- Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Abstract
RNA folding and binding reactions are mediated by interactions with ions that make up the surrounding aqueous electrolytic milieu. Although Mg(2+) ions are often implicated as being crucial for RNA folding, it is known that folding is feasible in high concentrations of monovalent alkali-halide salts. Experiments have yielded important information regarding the salt dependence of RNA stability. Recent work has shown that molecular simulations based on explicit representations of solvent molecules and monovalent ions can also provide useful insights regarding the ionic atmospheres around model RNA systems. These insights can help rationalize intriguing observations regarding the dependence of RNA stability on cation type providing one pays attention to important considerations that go into the proper design of molecular simulations. These issues are discussed in detail and the methods are applied to an A-form RNA and B-form DNA sequence. The results of these simulations are compared to previous work on a kissing-loop system with analogous sequence. In particular, ionic atmospheres obtained from molecular simulations are compared to those obtained using the nonlinear Poisson Boltzmann model for continuum electrostatics for these three different nucleic acid systems. The comparisons indicate reasonable agreement in terms of coarse-grained observables such as the numbers of counterions accumulated around the solutes. However, details of the ionic atmospheres, captured in terms of spatial free energy density profiles, are quite different between the two approaches. These comparisons suggest the need for improvements in continuum models to capture sequence-specific effects, ion-ion correlation, and the effects of partial dehydration of ions.
Collapse
Affiliation(s)
- Alan A Chen
- Computational and Molecular Biophysics Program, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
26
|
Moghaddam S, Caliskan G, Chauhan S, Hyeon C, Briber RM, Thirumalai D, Woodson SA. Metal ion dependence of cooperative collapse transitions in RNA. J Mol Biol 2009; 393:753-64. [PMID: 19712681 PMCID: PMC2772878 DOI: 10.1016/j.jmb.2009.08.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R(g)) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions.
Collapse
Affiliation(s)
- Sarvin Moghaddam
- Dept. of Materials Science and Engineering, University of Maryland, College Park, MD 20472
| | - Gokhan Caliskan
- T. C. Jenkins Dept. of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| | - Seema Chauhan
- Dept. of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| | - Changbong Hyeon
- Dept. of Chemistry, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - R. M. Briber
- Dept. of Materials Science and Engineering, University of Maryland, College Park, MD 20472
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20472 USA
| | - Sarah A. Woodson
- T. C. Jenkins Dept. of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| |
Collapse
|
27
|
Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme. J Mol Biol 2009; 386:1167-78. [PMID: 19154736 DOI: 10.1016/j.jmb.2008.12.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 12/29/2008] [Indexed: 11/21/2022]
Abstract
Stable RNAs must fold into specific three-dimensional structures to be biologically active, yet many RNAs form metastable structures that compete with the native state. Our previous time-resolved footprinting experiments showed that Azoarcus group I ribozyme forms its tertiary structure rapidly (tau < 30 ms) without becoming significantly trapped in kinetic intermediates. Here, we use stopped-flow fluorescence spectroscopy to probe the global folding kinetics of a ribozyme containing 2-aminopurine in the loop of P9. The modified ribozyme was catalytically active and exhibited two equilibrium folding transitions centered at 0.3 and 1.6 mM Mg2+, consistent with previous results. Stopped-flow fluorescence revealed four kinetic folding transitions with observed rate constants of 100, 34, 1, and 0.1 s-1 at 37 degrees C. From comparison with time-resolved Fe(II)-ethylenediaminetetraacetic acid footprinting of the modified ribozyme under the same conditions, these folding transitions were assigned to formation of the IC intermediate, tertiary folding and docking of the nicked P9 tetraloop, reorganization of the P3 pseudoknot, and refolding of nonnative conformers, respectively. The footprinting results show that 50-60% of the modified ribozyme folds in less than 30 ms, while the rest of the RNA population undergoes slow structural rearrangements that control the global folding rate. The results show how small perturbations to the structure of the RNA, such as a nick in P9, populate kinetic folding intermediates that are not observed in the natural ribozyme.
Collapse
|
28
|
Abstract
The stability of a compact RNA tertiary structure is exquisitely sensitive to the concentrations and types of ions that are present. This review discusses the progress that has been made in developing a quantitative understanding of the thermodynamic parameters and molecular detail that underlie this sensitivity, including the nature of the ion atmosphere, the occurrence of specific ion binding sites, and the importance of the ensemble of partially unfolded states from which folding to the native structure occurs.
Collapse
|
29
|
|
30
|
Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res 2008; 36:1654-64. [PMID: 18263620 PMCID: PMC2275129 DOI: 10.1093/nar/gkm1180] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | |
Collapse
|
31
|
Chauhan S, Woodson SA. Tertiary interactions determine the accuracy of RNA folding. J Am Chem Soc 2008; 130:1296-303. [PMID: 18179212 DOI: 10.1021/ja076166i] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNAs must fold into unique three-dimensional structures to function in the cell, but how each polynucleotide finds its native structure is not understood. To investigate whether the stability of the tertiary structure determines the speed and accuracy of RNA folding, docking of a tetraloop with its receptor in a bacterial group I ribozyme was perturbed by site-directed mutagenesis. Disruption of the tetraloop or its receptor destabilizes tertiary interactions throughout the ribozyme by 2-3 kcal/mol, demonstrating that tertiary interactions form cooperatively in the transition from a native-like intermediate to the native state. Nondenaturing PAGE and RNase T1 digestion showed that base pairs form less homogeneously in the mutant RNAs during the transition from the unfolded state to the intermediate. Thus, tertiary interactions between helices bias the ensemble of secondary structures toward native-like conformations. Time-resolved hydroxyl radical footprinting showed that the wild-type ribozyme folds completely within 5-20 ms. By contrast, only 40-60% of a tetraloop mutant ribozyme folds in 30-40 ms, with the remainder folding in 30-200 s via nonnative intermediates. Therefore, destabilization of tetraloop-receptor docking introduces an alternate folding pathway in the otherwise smooth energy landscape of the wild-type ribozyme. Our results show that stable tertiary structure increases the flux through folding pathways that lead directly and rapidly to the native structure.
Collapse
Affiliation(s)
- Seema Chauhan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
32
|
Chen G, Wen JD, Tinoco I. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. RNA (NEW YORK, N.Y.) 2007; 13:2175-88. [PMID: 17959928 PMCID: PMC2080604 DOI: 10.1261/rna.676707] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
33
|
Casiano-Negroni A, Sun X, Al-Hashimi HM. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 2007; 46:6525-35. [PMID: 17488097 PMCID: PMC3319146 DOI: 10.1021/bi700335n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands, but the mechanism by which this occurs remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+-induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirrors changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46 degrees to 22 degrees ), inter-helical twist angle (from 66 degrees to -18 degrees ), and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that nonspecific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized on the basis of a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions and a globally rigid coaxial conformation that has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs.
Collapse
Affiliation(s)
| | | | - Hashim M. Al-Hashimi
- To whom correspondence should be addressed. H. M. A.: ; telephone (734) 615 3361; fax (734) 647 4865
| |
Collapse
|
34
|
Pyle AM, Fedorova O, Waldsich C. Folding of group II introns: a model system for large, multidomain RNAs? Trends Biochem Sci 2007; 32:138-45. [PMID: 17289393 DOI: 10.1016/j.tibs.2007.01.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/09/2007] [Accepted: 01/30/2007] [Indexed: 01/21/2023]
Abstract
Group II introns are among the largest ribozymes in nature. They have a highly complex tertiary architecture that enables them to catalyze numerous processes, including self-splicing and transposition reactions that have probably contributed to the evolution of eukaryotic genomes. Biophysical analyses show that, despite their large size, these RNAs can fold to their native state through direct pathways that are populated by structurally defined intermediates. In addition, proteins have specific and important roles in this folding process. As a consequence, the study of the group II introns provides a valuable system for both exploring the driving forces behind the folding of multidomain RNA molecules and investigating ribonucleoprotein assembly.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Howard Hughes Medical Institute, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
35
|
Abstract
Group II introns are large autocatalytic RNAs found in organellar genomes of plants and lower eukaryotes, as well as in some bacterial genomes. Interestingly, these ribozymes share characteristic traits with both spliceosomal introns and non-LTR retrotransposons and may have a common evolutionary ancestor. Furthermore, group II intron features such as structure, folding and catalytic mechanism differ considerably from those of other large ribozymes, making group II introns an attractive model system to gain novel insights into RNA biology and biochemistry. This review explores recent advances in the structural and mechanistic characterization of group II intron architecture and self-splicing.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
36
|
Abstract
Metal ions are crucial for nucleic acid folding. From the free energy landscapes, we investigate the detailed mechanism for ion-induced collapse for a paradigm system: loop-tethered short DNA helices. We find that Na+ and Mg2+ play distinctive roles in helix-helix assembly. High [Na+] (>0.3 M) causes a reduced helix-helix electrostatic repulsion and a subsequent disordered packing of helices. In contrast, Mg2+ of concentration >1 mM is predicted to induce helix-helix attraction and results in a more compact and ordered helix-helix packing. Mg2+ is much more efficient in causing nucleic acid compaction. In addition, the free energy landscape shows that the tethering loops between the helices also play a significant role. A flexible loop, such as a neutral loop or a polynucleotide loop in high salt concentration, enhances the close approach of the helices in order to gain the loop entropy. On the other hand, a rigid loop, such as a polynucleotide loop in low salt concentration, tends to de-compact the helices. Therefore, a polynucleotide loop significantly enhances the sharpness of the ion-induced compaction transition. Moreover, we find that a larger number of helices in the system or a smaller radius of the divalent ions can cause a more abrupt compaction transition and a more compact state at high ion concentration, and the ion size effect becomes more pronounced as the number of helices is increased.
Collapse
Affiliation(s)
| | - Shi-Jie Chen
- To whom correspondence should be addressed. Tel: +1 573 882 6626; Fax: +1 573 882 4195;
| |
Collapse
|
37
|
Jiang YF, Xiao M, Yin P, Zhang Y. Monovalent cations use multiple mechanisms to resolve ribozyme misfolding. RNA (NEW YORK, N.Y.) 2006; 12:561-6. [PMID: 16497656 PMCID: PMC1421094 DOI: 10.1261/rna.2188306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent efforts have been made to unravel the independent roles of monovalent cations in RNA folding, primarily using the Tetrahymena ribozyme as a model. Here we report how monovalent cations impact the folding of the Candida ribozyme. Interestingly, this ribozyme requires an order of magnitude less monovalent cations (Na+ and Tris+) to commit to a new folding starting state in which the J3/4:P6 base triple is partially formed and mispairing in the L2.1 and L6 terminal loops is resolved. When Mg2+-induced ribozyme folding proceeded on the same energy landscape, the altered starting state led to a rapid assembly of the correct ribozyme core and a fivefold to 10-fold increase in the ribozyme activity. Moreover, when the ribozyme folding was started from a misfolding-prone state, high millimolar concentrations of monovalent cations moderately elevated the ribozyme activity by efficiently resolving the misfolding of a peripheral element, P5abc.
Collapse
Affiliation(s)
- Yan-Fei Jiang
- State Key Laboratory of Virology and Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | | | | | | |
Collapse
|
38
|
|
39
|
Caliskan G, Hyeon C, Perez-Salas U, Briber RM, Woodson SA, Thirumalai D. Persistence length changes dramatically as RNA folds. PHYSICAL REVIEW LETTERS 2005; 95:268303. [PMID: 16486414 DOI: 10.1103/physrevlett.95.268303] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Indexed: 05/06/2023]
Abstract
We determine the persistence length l(p) for a bacterial group I ribozyme as a function of concentration of monovalent and divalent cations by fitting the distance distribution functions P(r) obtained from small angle x-ray scattering intensity data to the asymptotic form of the calculated P(WLC)(r) for a wormlike chain. The l(p) values change dramatically over a narrow range of Mg(2+) concentration from approximately 21 Angstroms in the unfolded state (U) to approximately 10 Angstroms in the compact (I(C)) and native states. Variations in l(p) with increasing Na(+) concentration are more gradual. In accord with the predictions of polyelectrolyte theory we find l(p) alpha 1/kappa(2) where kappa is the inverse Debye-screening length.
Collapse
Affiliation(s)
- G Caliskan
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
40
|
Su LJ, Waldsich C, Pyle AM. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res 2005; 33:6674-87. [PMID: 16314300 PMCID: PMC1297705 DOI: 10.1093/nar/gki973] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Most RNA molecules collapse rapidly and reach the native state through a pathway that contains numerous traps and unproductive intermediates. The D135 group II intron ribozyme is unusual in that it can fold slowly and directly to the native state, despite its large size and structural complexity. Here we use hydroxyl radical footprinting and native gel analysis to monitor the timescale of tertiary structure collapse and to detect the presence of obligate intermediates along the folding pathway of D135. We find that structural collapse and native folding of Domain 1 precede assembly of the entire ribozyme, indicating that D1 contains an on-pathway intermediate to folding of the D135 ribozyme. Subsequent docking of Domains 3 and 5, for which D1 provides a preorganized scaffold, appears to be very fast and independent of one another. In contrast to other RNAs, the D135 ribozyme undergoes slow tertiary collapse to a compacted state, with a rate constant that is also limited by the formation D1. These findings provide a new paradigm for RNA folding and they underscore the diversity of RNA biophysical behaviors.
Collapse
Affiliation(s)
- Linhui Julie Su
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
| | - Christina Waldsich
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
- Howard Hughes Medical Institute266 Whitney Avenue, Box 208114Yale UniversityNew Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +1 203 432 5733; Fax: +1 203 432 5316;
| |
Collapse
|
41
|
Chauhan S, Caliskan G, Briber RM, Perez-Salas U, Rangan P, Thirumalai D, Woodson SA. RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J Mol Biol 2005; 353:1199-209. [PMID: 16214167 DOI: 10.1016/j.jmb.2005.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 08/31/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Large RNAs collapse into compact intermediates in the presence of counterions before folding to the native state. We previously found that collapse of a bacterial group I ribozyme correlates with the formation of helices within the ribozyme core, but occurs at Mg2+ concentrations too low to support stable tertiary structure and catalytic activity. Here, using small-angle X-ray scattering, we show that Mg2+-induced collapse is a cooperative folding transition that can be fit by a two-state model. The Mg2+ dependence of collapse is similar to the Mg2+ dependence of helix assembly measured by partial ribonuclease T1 digestion and of an unfolding transition measured by UV hypochromicity. The correspondence between multiple probes of RNA structure further supports a two-state model. A mutation that disrupts tertiary contacts between the L9 tetraloop and its helical receptor destabilized the compact state by 0.8 kcal/mol, while mutations in the central triplex were less destabilizing. These results show that native tertiary interactions stabilize the compact folding intermediates under conditions in which the RNA backbone remains accessible to solvent.
Collapse
Affiliation(s)
- Seema Chauhan
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218-2685, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The problem of how ions influence the folding of RNA into specific tertiary structures is being addressed from both thermodynamic (by how much do different salts affect the free energy change of folding) and structural (how are ions arranged on or near an RNA and what kinds of environments do they occupy) points of view. The challenge is to link these different approaches in a theoretical framework that relates the energetics of ion-RNA interactions to the spatial distribution of ions. This review distinguishes three different kinds of ion environments that differ in the extent of direct ion-RNA contacts and the degree to which the ion hydration is perturbed, and summarizes the current understanding of the way each environment relates to the overall energetics of RNA folding.
Collapse
Affiliation(s)
- David E Draper
- Department of Chemistry and 2Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
43
|
Abstract
Metal ions are required to stabilize RNA tertiary structure and to begin the folding process. How different metal ions enable RNAs to fold depends on the electrostatic potential of the RNA and correlated fluctuations in the positions of the ions themselves. Theoretical models, fluorescence spectroscopy, small angle scattering and structural biology reveal that metal ions alter the RNA dynamics and folding transition states. Specifically coordinated divalent metal ions mediate conformational rearrangements within ribozyme active sites.
Collapse
Affiliation(s)
- Sarah A Woodson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218-2685, USA.
| |
Collapse
|
44
|
Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. Crystal structure of a group I intron splicing intermediate. RNA (NEW YORK, N.Y.) 2004; 10:1867-87. [PMID: 15547134 PMCID: PMC1370676 DOI: 10.1261/rna.7140504] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/04/2004] [Indexed: 05/21/2023]
Abstract
A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron's two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a mu-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing.
Collapse
Affiliation(s)
- Peter L Adams
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
45
|
Takamoto K, Das R, He Q, Doniach S, Brenowitz M, Herschlag D, Chance MR. Principles of RNA Compaction: Insights from the Equilibrium Folding Pathway of the P4-P6 RNA Domain in Monovalent Cations. J Mol Biol 2004; 343:1195-206. [PMID: 15491606 DOI: 10.1016/j.jmb.2004.08.080] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 11/28/2022]
Abstract
Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium folding pathway in monovalent ions displays two phases. In the first phase, RNA molecules that are initially in an extended conformation enforced by charge-charge repulsion are relaxed by electrostatic screening to a state with increased flexibility but without formation of long-range tertiary contacts. At higher concentrations of monovalent ions, a state that is nearly identical to the native folded state in the presence of Mg(2+) is formed, with tertiary contacts that involve base and backbone interactions but without the subset of interactions that involve specific divalent metal ion-binding sites. The folding model derived from these and previous results provides a robust framework for understanding the equilibrium and kinetic folding of RNA.
Collapse
Affiliation(s)
- Keiji Takamoto
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Koculi E, Lee NK, Thirumalai D, Woodson SA. Folding of the Tetrahymena ribozyme by polyamines: importance of counterion valence and size. J Mol Biol 2004; 341:27-36. [PMID: 15312760 DOI: 10.1016/j.jmb.2004.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/28/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022]
Abstract
Polyamines are abundant metabolites that directly influence gene expression. Although the role of polyamines in DNA condensation is well known, their role in RNA folding is less understood. Non-denaturing gel electrophoresis was used to monitor the equilibrium folding transitions of the Tetrahymena ribozyme in the presence of polyamines. All of the polyamines tested induce near-native structures that readily convert to the native conformation in Mg(2+). The stability of the folded structure increases with the charge of the polyamine and decreases with the size of the polyamine. When the counterion excluded volume becomes large, the transition to the native state does not go to completion even under favorable folding conditions. Brownian dynamics simulations of a model polyelectrolyte suggest that the kinetics of counterion-mediated collapse and the dimensions of the collapsed RNA chains depend on the structure of the counterion. The results are consistent with delocalized condensation of polyamines around the RNA. However, the effective charge of the counterions is lowered by their excluded volume. The stability of the folded RNA is enhanced when the spacing between amino groups matches the distance between adjacent phosphate groups. These results show how changes in intracellular polyamine concentrations could alter RNA folding pathways.
Collapse
Affiliation(s)
- Eda Koculi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
47
|
Rangan P, Masquida B, Westhof E, Woodson SA. Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. J Mol Biol 2004; 339:41-51. [PMID: 15123419 DOI: 10.1016/j.jmb.2004.03.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/02/2004] [Accepted: 03/03/2004] [Indexed: 11/25/2022]
Abstract
Self-splicing RNAs must evolve to function in their specific exon context. The conformation of a group I pre-tRNA(ile) from the bacterium Azoarcus was probed by ribonuclease T(1) and hydroxyl radical cleavage, and by native gel electrophoresis. Biochemical data and three-dimensional models of the pre-tRNA showed that the tRNA is folded, and that the tRNA and intron sequences form separate tertiary domains. Models of the active site before steps 1 and 2 of the splicing reaction predict that exchange of the external G-cofactor and the 3'-terminal G is accomplished by a slight conformational change in P9.0 of the Azoarcus group I intron. Kinetic assays showed that the pre-tRNA folds in minutes, much more slowly than the intron alone. The dependence of the folding kinetics on Mg(2+) and the concentration of urea, and RNase T(1) experiments showed that formation of native pre-tRNA is delayed by misfolding of P3-P9, including mispairing between residues in P9 and the tRNA. Thus, although the intron and tRNA sequences form separate domains in the native pre-tRNA, their folding is coupled via metastable non-native base-pairs. This could help prevent premature processing of the 5' and 3' ends of unspliced pre-tRNA.
Collapse
Affiliation(s)
- Prashanth Rangan
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|