1
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Jørgensen AS, Larsen O, Uetz-von Allmen E, Lückmann M, Legler DF, Frimurer TM, Veldkamp CT, Hjortø GM, Rosenkilde MM. Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Front Immunol 2019; 10:2156. [PMID: 31572374 PMCID: PMC6753178 DOI: 10.3389/fimmu.2019.02156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
Chemokine receptors play important roles in the immune system and are linked to several human diseases. Targeting chemokine receptors have so far shown very little success owing to, to some extent, the promiscuity of the immune system and the high degree of biased signaling within it. CCR7 and its two endogenous ligands display biased signaling and here we investigate the differences between the two ligands, CCL21 and CCL19, with respect to their biased activation of CCR7. We use bystander bioluminescence resonance energy transfer (BRET) based signaling assays and Transwell migration assays to determine (A) how swapping of domains between the two ligands affect their signaling patterns and (B) how receptor mutagenesis impacts signaling. Using chimeric ligands we find that the chemokine core domains are central for determining signaling outcome as the lack of β-arrestin-2 recruitment displayed by CCL21 is linked to its core domain and not N-terminus. Through a mutagenesis screen, we identify the extracellular domains of CCR7 to be important for both ligands and show that the two chemokines interact differentially with extracellular loop 2 (ECL-2). By using in silico modeling, we propose a link between ECL-2 interaction and CCR7 signal transduction. Our mutagenesis study also suggests a lysine in the top of TM3, K1303.26, to be important for G protein signaling, but not β-arrestin-2 recruitment. Taken together, the bias in CCR7 between CCL19 and CCL21 relies on the chemokine core domains, where interactions with ECL-2 seem particularly important. Moreover, TM3 selectively regulates G protein signaling as found for other chemokine receptors.
Collapse
Affiliation(s)
- Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olav Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Lückmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Thomas M Frimurer
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher T Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jørgensen AS, Rosenkilde MM, Hjortø GM. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective. Gen Comp Endocrinol 2018; 258:4-14. [PMID: 28694053 DOI: 10.1016/j.ygcen.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
Chemokines (chemotactic cytokines) and their associated G protein-coupled receptors (GPCRs) work in a concerted manner to govern immune cell positioning in time and space. Promiscuity of both ligands and receptors, but also biased signaling within the chemokine system, adds to the complexity of how the cell-based immune system is controlled. Bias comes in three forms; ligand-, receptor- and tissue-bias. Biased signaling is increasingly being recognized as playing an important role in contributing to the fine-tuned coordination of immune cell chemotaxis. In the current review we discuss the recent findings related to ligand- and tissue-biased signaling of CCR7 and summarize what is known about bias at other chemokine receptors. CCR7 is expressed by a subset of T-cells and by mature dendritic cells (DCs). Together with its two endogenous ligands CCL19 and CCL21, of which the carboxy terminal tail of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen-specific T-cell mediated immune response. Thus CCR7 and its ligands are key players in initiating cell-based immune responses. CCL19 and CCL21 display differential interaction- and docking-modes for CCR7 leading to stabilization of different CCR7 conformations and hereby preferential activation of distinct intracellular signaling pathways (i.e. ligand bias). In general CCL19 seems to generate a strong temporal signal, whereas CCL21 generates a weaker, but more persistent signal. Tissue differential expression of these two ligands, and the generation of a third ligand "tailless-CCL21", through DC specific protease activity (tissue bias), orchestrates DC and T-cell LN homing and priming, with each ligand serving overlapping, but also distinct roles.
Collapse
Affiliation(s)
- Astrid Sissel Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins—Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An Insilico study. Interdiscip Sci 2017; 10:346-366. [DOI: 10.1007/s12539-017-0212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/20/2022]
|
5
|
Gaieb Z, Lo DD, Morikis D. Molecular Mechanism of Biased Ligand Conformational Changes in CC Chemokine Receptor 7. J Chem Inf Model 2016; 56:1808-22. [PMID: 27529431 DOI: 10.1021/acs.jcim.6b00367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biased ligand binding to G protein-coupled receptors enables functional selectivity of intracellular effectors to mediate cellular function. Despite the significant advances made in characterizing the conformational states (transmembrane helical arrangements) capable of discriminating between G protein and arrestin binding, the role of the ligand in stabilizing such conformations remains unclear. To address this issue, we simulate microsecond dynamics of CC chemokine receptor 7 (CCR7) bound to its native biased ligands, CCL19 and CCL21, and detect a series of molecular switches that are mediated by various ligand-induced allosteric events. These molecular switches involve three tyrosine residues (Y112(3.32), Y255(6.51), and Y288(7.39)), three phenylalanine residues (F116(3.36), F208(5.47), and F248(6.44)), and a polar interaction between Q252(6.48) and R294(7.45) in the transmembrane domain of CCR7. Conformational changes within these switches, particularly hydrogen bond formation between Y112(3.32) and Y255(6.51), lead to global helical movements in the receptor's transmembrane helices and contribute to the transitioning of the receptor to distinct states. Ligand-induced helical movements in the receptor highlight the ability of biased ligands to stabilize the receptor in different states through a dynamic network of allosteric events.
Collapse
Affiliation(s)
- Zied Gaieb
- Department of Bioengineering, ‡Division of Biomedical Sciences, School of Medicine, University of California , Riverside, California 92521, United States
| | - David D Lo
- Department of Bioengineering, ‡Division of Biomedical Sciences, School of Medicine, University of California , Riverside, California 92521, United States
| | - Dimitrios Morikis
- Department of Bioengineering, ‡Division of Biomedical Sciences, School of Medicine, University of California , Riverside, California 92521, United States
| |
Collapse
|
6
|
Hauser MA, Kindinger I, Laufer JM, Späte AK, Bucher D, Vanes SL, Krueger WA, Wittmann V, Legler DF. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses. J Leukoc Biol 2016; 99:993-1007. [PMID: 26819318 DOI: 10.1189/jlb.2vma0915-432rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
The homeostatic chemokines CCL19 and CCL21 and their common cognate chemokine receptor CCR7 orchestrate immune cell trafficking by eliciting distinct signaling pathways. Here, we demonstrate that human CCR7 is N-glycosylated on 2 specific residues in the N terminus and the third extracellular loop. Conceptually, CCR7 glycosylation adds steric hindrance to the receptor N terminus and extracellular loop 3, acting as a "swinging door" to regulate receptor sensitivity and cell migration. We found that freshly isolated human B cells, as well as expanded T cells, but not naïve T cells, express highly sialylated CCR7. Moreover, we identified that human dendritic cells imprint T cell migration toward CCR7 ligands by secreting enzymes that deglycosylate CCR7, thereby boosting CCR7 signaling on T cells, permitting enhanced T cell locomotion, while simultaneously decreasing receptor endocytosis. In addition, dendritic cells proteolytically convert immobilized CCL21 to a soluble form that is more potent in triggering chemotactic movement and does not desensitize the receptor. Furthermore, we demonstrate that soluble CCL21 functionally resembles neither the CCL19 nor the CCL21 phenotype but acts as a chemokine with unique features. Thus, we advance the concept of dendritic cell-dependent generation of micromilieus and lymph node conditioning by demonstrating a novel layer of CCR7 regulation through CCR7 sialylation. In summary, we demonstrate that leukocyte subsets express distinct patterns of CCR7 sialylation that contribute to receptor signaling and fine-tuning chemotactic responses.
Collapse
Affiliation(s)
- Mark A Hauser
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Ilona Kindinger
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Julia M Laufer
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Anne-Katrin Späte
- Department of Chemistry, Chair of Organic Chemistry/Bioorganic Chemistry, University of Konstanz, Konstanz, Germany; and
| | - Delia Bucher
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | - Sarah L Vanes
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany
| | | | - Valentin Wittmann
- Department of Chemistry, Chair of Organic Chemistry/Bioorganic Chemistry, University of Konstanz, Konstanz, Germany; and
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, University of Konstanz, Konstanz, Germany;
| |
Collapse
|
7
|
Hauser MA, Legler DF. Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. J Leukoc Biol 2016; 99:869-82. [PMID: 26729814 DOI: 10.1189/jlb.2mr0815-380r] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022] Open
Abstract
Chemokines are pivotal regulators of cell migration during continuous immune surveillance, inflammation, homeostasis, and development. Chemokine binding to their 7-transmembrane domain, G-protein-coupled receptors causes conformational changes that elicit intracellular signaling pathways to acquire and maintain an asymmetric architectural organization and a polarized distribution of signaling molecules necessary for directional cell migration. Leukocytes rely on the interplay of chemokine-triggered migration modules to promote amoeboid-like locomotion. One of the most important chemokine receptors for adaptive immune cell migration is the CC-chemokine receptor CCR7. CCR7 and its ligands CCL19 and CCL21 control homing of T cells and dendritic cells to areas of the lymph nodes where T cell priming and the initiation of the adaptive immune response occur. Moreover, CCR7 signaling also contributes to T cell development in the thymus and to lymphorganogenesis. Although the CCR7-CCL19/CCL21 axis evolved to benefit the host, inappropriate regulation or use of these proteins can contribute or cause pathobiology of chronic inflammation, tumorigenesis, and metastasis, as well as autoimmune diseases. Therefore, it appears as the CCR7-CCL19/CCL21 axis is tightly regulated at numerous intersections. Here, we discuss the multiple regulatory mechanism of CCR7 signaling and its influence on CCR7 function. In particular, we focus on the functional diversity of the 2 CCR7 ligands, CCL19 and CCL21, as well as on their impact on biased signaling. The understanding of the molecular determinants of biased signaling and the multiple layers of CCR7 regulation holds the promise for potential future therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Hauser
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
8
|
Pallister KB, Mason S, Nygaard TK, Liu B, Griffith S, Jones J, Linderman S, Hughes M, Erickson D, Voyich JM, Davis MF, Wilson E. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria. PLoS One 2015; 10:e0138084. [PMID: 26359669 PMCID: PMC4567263 DOI: 10.1371/journal.pone.0138084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.
Collapse
Affiliation(s)
- Kyler B. Pallister
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Sara Mason
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tyler K. Nygaard
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Bin Liu
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Shannon Griffith
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Jennifer Jones
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Susanne Linderman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Melissa Hughes
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - David Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jovanka M. Voyich
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Mary F. Davis
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Eric Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tan X, Carretero J, Chen Z, Zhang J, Wang Y, Chen J, Li X, Ye H, Tang C, Cheng X, Hou N, Yang X, Wong KK. Loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer. PLoS One 2013; 8:e80885. [PMID: 24260500 PMCID: PMC3829911 DOI: 10.1371/journal.pone.0080885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023] Open
Abstract
Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6-/- mice with KrasG12D mutant mice, which develop lung tumors after activation of mutant KrasG12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. KrasG12D; IL-6-/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than KrasG12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated KrasG12D; p53flox/flox; IL-6-/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than KrasG12D; p53flox/flox mice. Tumors from KrasG12D; IL-6-/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3 (pSTAT3) than KrasG12D mice; however, these changes were not present between tumors from KrasG12D; p53flox/flox; IL-6-/- and KrasG12D; p53flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT (pAKT) were observed in KrasG12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion.
Collapse
Affiliation(s)
- Xiaohong Tan
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julian Carretero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jishuai Zhang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Yanxiao Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Jicheng Chen
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Xiubin Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Hui Ye
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Chuanhao Tang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, China
- Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai, China
- * E-mail: (KKW); (XY)
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, United States of America
- Belfer Institute for Applied Cancer Science, Boston, Massachusetts, United States of America
- * E-mail: (KKW); (XY)
| |
Collapse
|
10
|
Charest-Morin X, Pépin R, Gagné-Henley A, Morissette G, Lodge R, Marceau F. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells. Front Pharmacol 2013; 4:122. [PMID: 24068998 PMCID: PMC3781320 DOI: 10.3389/fphar.2013.00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
The C–C chemokine receptor-7 (CCR7) is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503) labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination). CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry). The immune complexes were apparent in endosomal structures, co-localized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked) inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Chevigné A, Fievez V, Schmit JC, Deroo S. Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 2011; 82:1438-56. [DOI: 10.1016/j.bcp.2011.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/21/2023]
|
12
|
Fleming-Canepa X, Brusnyk C, Aldridge JR, Ross KL, Moon D, Wang D, Xia J, Barber MRW, Webster RG, Magor KE. Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues. Mol Immunol 2011; 48:1950-7. [PMID: 21704378 DOI: 10.1016/j.molimm.2011.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 01/12/2023]
Abstract
Ducks are the natural host and reservoir of influenza viruses. We are interested in their immune responses to these viruses, to understand host-pathogen interactions and to develop effective agricultural vaccines. We identified duck homologues of the chemokines CCL19 and CCL21 and cloned their cognate receptor, CCR7. Conservation of key features, and expression in lymphoid tissues suggests that these chemokines are the direct orthologues of their mammalian counterparts. Mammalian CCL19 and CCL21 are responsible for the homing of dendritic cells and naïve lymphocytes to secondary lymphoid tissues. The contribution of local tertiary lymphoid tissues may be important during influenza infection in ducks. Consistent with leukocyte recruitment, CCL19 and CCL21 transcripts are abundant in lung tissues at 1 day post-infection with highly pathogenic avian influenza A/Vietnam/1203/04 (H5N1) (VN1203). In contrast, expression in lung or intestine tissues infected with low pathogenic A/mallard/BC/500/05 (H5N2) (BC500) is not significant. Recruitment and aggregation of leukocytes is visible in the vicinity of major airways 3 days after infection with VN1203. Chemokine gene expression may serve as a useful marker to evaluate duck immune responses to natural infections and vaccine strains.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu B, Wilson E. The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Eur J Immunol 2010; 40:186-96. [PMID: 19830739 DOI: 10.1002/eji.200939819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several chemokines have been shown to act as antimicrobial proteins, suggesting a direct contribution to innate immune protection. Based on the study of defensins and other antimicrobial peptides, it has been proposed that cationic amino acids in these proteins play a key role in their antimicrobial activity. The primary structure requirements necessary for the antimicrobial activity of chemokines, however, have not yet been elucidated. Using mouse CCL28, we have identified a C-terminal region of highly-charged amino acids (RKDRK) that is essential to the antimicrobial activity of the murine chemokine. Additionally, other positively-charged amino acids in the C-terminus of the protein contribute to the observed antimicrobial effect. Charge reversal and deletion mutations support our hypothesis that C-terminal positively-charged amino acids are essential for the antimicrobial activity of CCL28. Results also demonstrate that although the C-terminal region of the chemokine is essential, it is not sufficient for full antimicrobial activity of CCL28.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
14
|
Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 2009; 106:9649-54. [PMID: 19497875 DOI: 10.1073/pnas.0904361106] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CCL19 and CCL21 are endogenous agonists for the seven-transmembrane receptor CCR7. They are equally active in promoting G protein stimulation and chemotaxis. Yet, we find that they result in striking differences in activation of the G protein-coupled receptor kinase (GRK)/ss-arrestin system. CCL19 leads to robust CCR7 phosphorylation and beta-arrestin2 recruitment catalyzed by both GRK3 and GRK6 whereas CCL21 activates GRK6 alone. This differential GRK activation leads to distinct functional consequences. Although each ligand leads to beta-arrestin2 recruitment, only CCL19 leads to redistribution of beta-arrestin2-GFP into endocytic vesicles and classical receptor desensitization. In contrast, these agonists are both capable of signaling through GRK6 and beta-arrestin2 to ERK kinases. Thus, this mechanism for "ligand bias" whereby endogenous agonists activate different GRK isoforms leads to functionally distinct pools of beta-arrestin.
Collapse
|
15
|
Moxley R, Day E, Brown K, Mahnke M, Zurini M, Schmitz R, Jones CE, Jarai G. Cloning and pharmacological characterization of CCR7, CCL21 and CCL19 from Macaca fascicularis. Eur J Pharm Sci 2009; 37:264-71. [DOI: 10.1016/j.ejps.2009.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/20/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
|
16
|
Ott TR, Lio FM, Olshefski D, Liu XJ, Ling N, Struthers RS. The N-terminal domain of CCL21 reconstitutes high affinity binding, G protein activation, and chemotactic activity, to the C-terminal domain of CCL19. Biochem Biophys Res Commun 2006; 348:1089-93. [PMID: 16904643 DOI: 10.1016/j.bbrc.2006.07.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
CC chemokine receptor 7 (CCR7), which regulates the trafficking of leucocytes to the secondary lymphoid organs, has two endogenous chemokine ligands: CCL19 and CCL21. Although both ligands possess similar affinities for the receptor and similar abilities to promote G protein activation and chemotaxis, they share only 25% sequence identity. Here, we show that substituting N-terminal six amino acids of CCL21 (SDGGAQ) for the corresponding N-terminal domain of CCL19 (GTNDAE) results in a chimeric chemokine that exhibits high affinity binding and G protein activation of CCR7. These data demonstrate that despite dissimilar sequences, the amino terminal hexapeptide of these two chemokines is capable of performing similar roles resulting in receptor activation.
Collapse
Affiliation(s)
- Thomas R Ott
- Department of Endocrinology, Neurocrine Biosciences, San Diego, CA 92130, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kumar S, Choi WT, Dong CZ, Madani N, Tian S, Liu D, Wang Y, Pesavento J, Wang J, Fan X, Yuan J, Fritzsche WR, An J, Sodroski JG, Richman DD, Huang Z. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development. ACTA ACUST UNITED AC 2006; 13:69-79. [PMID: 16426973 DOI: 10.1016/j.chembiol.2005.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/27/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ott TR, Pahuja A, Nickolls SA, Alleva DG, Struthers RS. Identification of CC chemokine receptor 7 residues important for receptor activation. J Biol Chem 2004; 279:42383-92. [PMID: 15284247 DOI: 10.1074/jbc.m401097200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding pocket of family A GPCRs that bind small biogenic amines is well characterized. In this study we identify residues on CC chemokine receptor 7 (CCR-7) that are involved in agonist-mediated receptor activation but not in high affinity ligand binding. The mutations also affect the ability of the ligands to induce chemotaxis. Two of the residues, Lys3.33(137) and Gln5.42(227), are consistent with the binding pocket described for biogenic amines, while Lys3.26(130) and Asn7.32(305), are found at, or close to, the cell surface. Our observations are in agreement with findings from other peptide and chemokine receptors, which indicate that receptors that bind larger ligands contain contact sites closer to the cell surface in addition to the conventional transmembrane binding pocket. These findings also support the theory that chemokine receptors require different sets of interactions for high affinity ligand binding and receptor activation.
Collapse
Affiliation(s)
- Thomas R Ott
- Department of Exploratory Discovery, Neurocrine Biosciences, San Diego, California 92130, USA
| | | | | | | | | |
Collapse
|
19
|
Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS. Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 2004; 279:23214-22. [PMID: 15054093 DOI: 10.1074/jbc.m402125200] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many members of the chemokine receptor family of G protein-coupled receptors utilize multiple endogenous ligands. However, differences between the signaling properties of multiple chemokines through a single receptor have yet to be well characterized. In this study we investigated the early signaling events of CCR7 initiated by its two endogenous ligands, CCL19 and CCL21. Both CCL19 and CCL21 induce G protein activation and calcium mobilization with equal potency. However, only activation by CCL19, not CCL21, promotes robust desensitization of endogenous CCR7 in the human T cell lymphoma cell line H9. Desensitization occurs through the induction of receptor phosphorylation and beta-arrestin recruitment (shown in HEK293 cells expressing CCR7-FLAG). The sites of CCL19-induced phosphorylation were mapped by mutating to alanines the serines and threonines found within kinase phosphorylation consensus sequences in the carboxyl terminus of CCR7. A cluster of sites, including Thr-373-376 and Ser-378 is important for CCL19-mediated phosphorylation of the receptor, whereas residues serine 356, 357, 364, and 365 are important for basal receptor phosphorylation by protein kinase C. Activation of CCR7 by both ligands leads to signaling to the ERK1/2 mitogen-activated protein kinase pathway. However, CCL19 promotes 4-fold more ERK1/2 phosphorylation than does CCL21. The mechanism by which CCL19 activates ERK1/2 was determined to be beta-arrestin-dependent, because it is reduced both by depletion of beta-arrestin-2 with small interfering RNA and by elimination of the phosphorylation sites in the tail of the receptor. Taken together, these findings demonstrate that CCL19 and CCL21 place CCR7 in functionally distinct conformations that are independent of their G protein-coupling potency: one that allows the efficient desensitization of the receptor and activation of ERK1/2, and another that is impaired in these functions.
Collapse
Affiliation(s)
- Trudy A Kohout
- Department of Exploratory Discovery, Neurocrine Biosciences Inc., San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|