1
|
Mokdad A, Ang E, Desciak M, Ott C, Vilbert A, Beddow O, Butuc A, Larsen RW, Reynolds MF. Photoacoustic Calorimetry Studies of O 2-Sensing FixL and (R200, I209) Variants from Sinorhizobium meliloti Reveal Conformational Changes Coupled to Ligand Photodissociation from the Heme-PAS Domain. Biochemistry 2024; 63:116-127. [PMID: 38127721 PMCID: PMC10765370 DOI: 10.1021/acs.biochem.3c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
FixL is an oxygen-sensing heme-PAS protein that regulates nitrogen fixation in the root nodules of plants. In this paper, we present the first photothermal studies of the full-length wild-type FixL protein from Sinorhizobium meliloti and the first thermodynamic profile of a full-length heme-PAS protein. Photoacoustic calorimetry studies reveal a quadriphasic relaxation for SmFixL*WT and the five variant proteins (SmFixL*R200H, SmFixL*R200Q, SmFixL*R200E, SmFixL*R200A, and SmFixL*I209M) with four intermediates from <20 ns to ∼1.5 μs associated with the photodissociation of CO from the heme. The altered thermodynamic profiles of the full-length SmFixL* variant proteins confirm that the conserved heme domain residues R200 and I209 are important for signal transduction. In contrast, the truncated heme domain, SmFixLH128-264, shows only a single, fast monophasic relaxation at <50 ns associated with the fast disruption of a salt bridge and release of CO to the solvent, suggesting that the full-length protein is necessary to observe the conformational changes that propagate the signal from the heme domain to the kinase domain.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue SCA 400, Tampa, Florida 33620, United States
| | - EuTchen Ang
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Michael Desciak
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Christine Ott
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Avery Vilbert
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Olivia Beddow
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Artiom Butuc
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| | - Randy W. Larsen
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue SCA 400, Tampa, Florida 33620, United States
| | - Mark F. Reynolds
- Department
of Chemistry and Biochemistry, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, Pennsylvania 19131, United States
| |
Collapse
|
2
|
pH dependence of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL. J Inorg Biochem 2015; 153:88-102. [PMID: 26499393 DOI: 10.1016/j.jinorgbio.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Abstract
Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH5 and 11. KD determinations were made at integral pH values, with the strongest binding at pH9 for both ligands. KD for the cyanide complexes of BjFixLH and SmFixLH is 0.15±0.09 and 0.50±0.20μM, respectively, and 0.70±0.01mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of 443±8 and 252±61M(-1)s(-1) for cyano complexes of BjFixLH and SmFixLH and (5.0±0.3)×10(4) and (7.0±1.4)×10(4)M(-1)s(-1) for the imidazole complexes. The dissociation rate constants are essentially independent of pH above pH5; (1.2±0.3)×10(-4) and (1.7±0.3)×10(-4)s(-1) for the cyano complexes of BjFixLH and SmFixLH, and (73±19) and (77±14) s(-1) for the imidazole complexes. Two ionizable groups in FixLH affect the rate of ligand binding. The more acidic group, identified as the heme 6 propionic acid, has a pKa of 7.6±0.2 in BjFixLH and 6.8±0.2 in SmFixLH. The second ionization is due to formation of hydroxy-FixLH with pKa values of 9.64±0.05 for BjFixLH and 9.61±0.05 for SmFixLH. Imidazole binding is limited by the rate of heme pocket opening with maximum observed values of 680 and 1270s(-1) for BjFixLH and SmFixLH, respectively.
Collapse
|
3
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
4
|
Gonzalez WG, Miksovska J. Submillisecond conformational changes in proteins resolved by photothermal beam deflection. J Vis Exp 2014:e50969. [PMID: 24638228 DOI: 10.3791/50969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Photothermal beam deflection together with photo-acoustic calorimetry and thermal grating belongs to the family of photothermal methods that monitor the time-profile volume and enthalpy changes of light induced conformational changes in proteins on microsecond to millisecond time-scales that are not accessible using traditional stop-flow instruments. In addition, since overall changes in volume and/or enthalpy are probed, these techniques can be applied to proteins and other biomacromolecules that lack a fluorophore and or a chromophore label. To monitor dynamics and energetics of structural changes associated with Ca(2+) binding to calcium transducers, such neuronal calcium sensors, a caged calcium compound, DM-nitrophen, is employed to photo-trigger a fast (τ < 20 μsec) increase in free calcium concentration and the associated volume and enthalpy changes are probed using photothermal beam deflection technique.
Collapse
Affiliation(s)
- Walter G Gonzalez
- Department of Chemistry and Biochemistry, Florida International University
| | | |
Collapse
|
5
|
Liebl U, Lambry JC, Vos MH. Primary processes in heme-based sensor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1684-92. [PMID: 23485911 DOI: 10.1016/j.bbapap.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 12/22/2022]
Abstract
A wide and still rapidly increasing range of heme-based sensor proteins has been discovered over the last two decades. At the molecular level, these proteins function as bistable switches in which the catalytic activity of an enzymatic domain is altered mostly by binding or dissociation of small gaseous ligands (O2, NO or CO) to the heme in a sensor domain. The initial "signal" at the heme level is subsequently transmitted within the protein to the catalytic site, ultimately leading to adapted expression levels of specific proteins. Making use of the photolability of the heme-ligand bond that mimics thermal dissociation, early processes in this intra-protein signaling pathway can be followed using ultrafast optical spectroscopic techniques; they also occur on timescales accessible to molecular dynamics simulations. Experimental studies performed over the last decade on proteins including the sensors FixL (O2), CooA (CO) and soluble guanylate cyclase (NO) are reviewed with an emphasis on emerging general mechanisms. After heme-ligand bond breaking, the ligand can escape from the heme pocket and eventually from the protein, or rebind directly to the heme. Remarkably, in all sensor proteins the rebinding, specifically of the sensed ligand, is highly efficient. This "ligand trap" property possibly provides means to smoothen the effects of fast environmental fluctuations on the switching frequency. For 6-coordinate proteins, where exchange between an internal heme-bound residue and external gaseous ligands occurs, the study of early processes starting from the unliganded form indicates that mobility of the internal ligand may facilitate signal transfer. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
6
|
Nuernberger P, Lee KF, Bonvalet A, Bouzhir-Sima L, Lambry JC, Liebl U, Joffre M, Vos MH. Strong Ligand–Protein Interactions Revealed by Ultrafast Infrared Spectroscopy of CO in the Heme Pocket of the Oxygen Sensor FixL. J Am Chem Soc 2011; 133:17110-3. [DOI: 10.1021/ja204549n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Origins of aging mass loss in recombinant N-terminus and C-terminus deletion mutants of the heme-PAS biosensor domain BjFixLH(140-270). J Inorg Biochem 2011; 105:609-15. [PMID: 21443850 DOI: 10.1016/j.jinorgbio.2011.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Nine recombinant FixL heme domains from Bradyrhizobium japonicum previously were shown to exhibit mass instability independent of many environmental factors (J.D. Satterlee, C. Suquet, A. Bidwai, J. Erman, L. Schwall, R. Jimenez, Biochemistry 47 (2008) 1540-1553). Two of those recombinant proteins were produced in remote laboratories. Mass losses begin appearing at completion of isolation and comprise a substantial proportion of samples within 1-3 days of storage and handling. Thus, degradation occurs during the time frame of experiments and crystallization. Detailed understanding of this instability is desired in order to formulate stable heme-PAS sensor domains for experimentation and for a mechanistic interpretation. However, mass spectra of the full length heme-PAS domain, BjFixLH(140-270), are complex by 1-3 days following isolation due to broad features and a high density of overlapping peaks, so that individual peak assignments are at present ambiguous. This stymies direct, quantitative interpretation of the source of the observed mass losses. To solve this dilemma amino-terminal primary sequencing and MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry monitoring of three terminal variants of BjFixLH(140-270) have been achieved. The working hypothesis, that the experimentally observed mass losses originate in the PAS protein sequence termini, has been substantiated. This establishes a basis for interpreting the more complex results from aging full length BjFixLH(140-270).
Collapse
|
8
|
Time resolved thermodynamics associated with ligand photorelease in heme peroxidases and globins: Open access channels versus gated ligand release. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1065-76. [PMID: 21278003 DOI: 10.1016/j.bbapap.2011.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
|
9
|
Ultrafast dynamics of ligands within heme proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:15-31. [PMID: 17996720 DOI: 10.1016/j.bbabio.2007.10.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 10/10/2007] [Accepted: 10/15/2007] [Indexed: 11/21/2022]
Abstract
Physiological bond formation and bond breaking events between proteins and ligands and their immediate consequences are difficult to synchronize and study in general. However, diatomic ligands can be photodissociated from heme, and thus in heme proteins ligand release and rebinding dynamics and trajectories have been studied on timescales of the internal vibrations of the protein that drive many biochemical reactions, and longer. The rapidly expanding number of characterized heme proteins involved in a large variety of functions allows comparative dynamics-structure-function studies. In this review, an overview is given of recent progress in this field, and in particular on initial sensing processes in signaling proteins, and on ligand and electron transfer dynamics in oxidases and cytochromes.
Collapse
|
10
|
Mokdad A, Nissen M, Satterlee JD, Larsen RW. Evidence for fast conformational change upon ligand dissociation in the HemAT class of bacterial oxygen sensors. FEBS Lett 2007; 581:4512-8. [PMID: 17765225 DOI: 10.1016/j.febslet.2007.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
Here we report the results of transient absorption and photoacoustic calorimetry studies of CO photodissociation from the heme domain of the bacterial oxygen sensor HemAT-Bs. The results indicate that CO photolysis is accompanied by an overall DeltaH of -19 kcal mol(-1) and DeltaV of +4 ml mol(-1) as well as a red-shifted kinetic difference spectrum all occurring in <50 ns. Analysis of the DeltaH/DeltaV reveals that a conformational change takes place with a DeltaH(conf) of -40 kcal mol(-1) and DeltaV(conf) of -22 ml mol(-1). These thermodynamic changes are consistent with an increase in the solvent accessible surface area of the protein upon ligand dissociation, as observed in the X-ray structure of the ferric CN-bound and CN free forms of HemAT-Bs.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620, United States
| | | | | | | |
Collapse
|
11
|
|
12
|
Oertling WA, Cornellison CD, Treff NR, Watanabe J, Pressler MA, Small JR. Photoacoustic characterization of protein dynamics following CO photodetachment from fully reduced bovine cytochrome c oxidase. J Inorg Biochem 2007; 101:635-43. [PMID: 17280717 DOI: 10.1016/j.jinorgbio.2006.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
We report a protein conformational change following carbon monoxide photodetachment from fully reduced bovine cytochrome c oxidase that is hypothesized to be associated with changes in ligand mobility through a dioxygen access channel in the protein. Although not resolved by earlier photoacoustic or optical studies on this adduct, utilization of slightly lower temperatures revealed a process with a kinetic lifetime of about 70 ns at 10 degrees C. We measure an enthalpy change of about 8 kcal/mol in 0.050 M HEPES buffer that becomes less endothermic (DeltaH approximately 2 kcal/mol) at higher ionic strength. The volume contraction of about -0.7 mL/mol associated with the process almost doubles in higher ionic strength buffer systems. Measurements of samples in phosphate buffer systems are similar and appear to display the same subtle ionic strength dependence. Both the isolation of this photoacoustic signal component and the possible dependence on ionic strength of the thermodynamic parameters derived from its analysis appear analogous to and consistent with prior photoacoustic results monitoring CO photodetachment from the camphor complex of cytochrome P-450. Accordingly, we consider a similar model in which a conformational change results in movement of an exposed charged group or groups towards the interior of the protein, out of contact with solvent, as in the closing of a salt bridge.
Collapse
Affiliation(s)
- W Anthony Oertling
- Department of Chemistry and Biochemistry, 226 Science Building, Eastern Washington University, Cheney, WA 99004-2440, USA.
| | | | | | | | | | | |
Collapse
|