1
|
Loth K, Largillière J, Coste F, Culard F, Landon C, Castaing B, Delmas AF, Paquet F. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure. Sci Rep 2019; 9:14253. [PMID: 31582767 PMCID: PMC6776556 DOI: 10.1038/s41598-019-50211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France. .,UFR Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France.
| | - Justine Largillière
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France.
| |
Collapse
|
2
|
Loth K, Landon C, Paquet F. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:215-217. [PMID: 25212183 DOI: 10.1007/s12104-014-9577-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
| | | | | |
Collapse
|
3
|
|
4
|
Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B, Landon C. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea. PLoS One 2014; 9:e88809. [PMID: 24558431 PMCID: PMC3928310 DOI: 10.1371/journal.pone.0088809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
- * E-mail:
| | - Olivier Delalande
- Faculté des Sciences Pharmaceutiques et Biologiques, Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique UMR 6290, Université de Rennes1, Rennes, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| |
Collapse
|
5
|
Paquet F, Loth K, Meudal H, Culard F, Genest D, Lancelot G. Refined solution structure and backbone dynamics of the archaeal MC1 protein. FEBS J 2010; 277:5133-45. [PMID: 21078128 DOI: 10.1111/j.1742-4658.2010.07927.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations. Structural variations of the arm (11 residues) induced large shape anisotropy variations on the nanosecond time scale that ruled out the use of the model-free formalism to analyze the relaxation data. The backbone dynamics analysis of MC1 was achieved by comparison with 20 ns molecular dynamics trajectories. Two β-bulges showed that hydrogen bond formation correlated with ϕ and ψ dihedral angle transitions. These jumps were observed on the nanosecond time scale, in agreement with a large decrease in (15)N-NOE for Gly17 and Ile89. One water molecule bridging NH(Glu87) and CO(Val57) through hydrogen bonding contributed to these dynamics. Nanosecond slow motions observed in loops LP3 (35-42) and LP5 (67-77) reflected the lack of stable hydrogen bonds, whereas the other loops, LP1 (10-14), LP2 (22-24), and LP4 (50-53), were stabilized by several hydrogen bonds. Dynamics are often directly related to function. Our data strongly suggest that residues belonging to the flexible regions of MC1 could be involved in the interaction with DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France.
| | | | | | | | | | | |
Collapse
|
6
|
Buré C, Goffinont S, Delmas AF, Cadene M, Culard F. Oxidation-sensitive Residues Mediate the DNA Bending Abilities of the Architectural MC1 Protein. J Mol Biol 2008; 376:120-30. [DOI: 10.1016/j.jmb.2007.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/13/2007] [Accepted: 11/13/2007] [Indexed: 11/13/2022]
|
7
|
TraM protein of plasmid R1: In vitro selection of the target region reveals two consensus 7bp binding motifs spaced by a 4bp linker of defined sequence. Plasmid 2008; 59:20-35. [DOI: 10.1016/j.plasmid.2007.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/18/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
|
8
|
Weidenbach K, Glöer J, Ehlers C, Sandman K, Reeve JN, Schmitz RA. Deletion of the archaeal histone in Methanosarcina mazei Gö1 results in reduced growth and genomic transcription. Mol Microbiol 2007; 67:662-71. [PMID: 18086209 DOI: 10.1111/j.1365-2958.2007.06076.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HMm is the only archaeal histone in Methanosarcina mazei Göl and recombinant HMm, synthesized by expression of MM1825 in Escherichia coli, has been purified and confirmed to have the DNA binding and compaction properties characteristic of an archaeal histone. Insertion of a puromycin resistance conferring cassette (pac) into MM1825 was not lethal but resulted in mutants (M. mazei MM1825::pac) that have impaired ability to grow on methanol and trimethylamine. Loss of HMm also resulted in increased sensitivity to UV light and decreased transcript levels for approximately 25% of all M. mazei genes. For most genes, the transcript decrease was 3- to 10-fold, but transcripts of MM483 (small heat-shock protein), MM1688 (trimethylamine:corrinoid methyl transferase) and MM3195 (transcription regulator), were reduced 100-, 100- and 25-fold, respectively, in M. mazei MM1825::pac cells. Transcripts of only five adjacent genes that appear to constitute an aromatic amino acid biosynthetic operon were elevated in M. mazei MM1825::pac cells. Complementary synthesis of HMm from a plasmid transformed into M. mazei MM1825::pac restored wild-type growth and transcript levels.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Arcesi L, La Penna G, Perico A. Generalized electrostatic model of the wrapping of DNA around oppositely charged proteins. Biopolymers 2007; 86:127-35. [PMID: 17330872 DOI: 10.1002/bip.20711] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histonelike proteins in prokaryotes and histone octamers in eukaryotes carry large positive charges, which are responsible of strong electrostatic interactions with DNA. As a result, DNA wraps around proteins and genetic information is condensed. We describe a generalized model of these electrostatic interactions mediated by salt that explains the wrapping of DNA around the nucleosome octamer, around remodeling factors in eukaryotes and around histonelike proteins in prokaryotes. It comes out that small changes in protein dimension and charge produce large effects in the supramolecular DNA-protein architecture.
Collapse
Affiliation(s)
- Luca Arcesi
- Consiglio Nazionale delle Ricerche, Institute for Macromolecular Studies, Genova, Via De Marini 6, 16149 Genova, Italy
| | | | | |
Collapse
|
10
|
Alazard R, Mourey L, Ebel C, Konarev PV, Petoukhov MV, Svergun DI, Erard M. Fine-tuning of intrinsic N-Oct-3 POU domain allostery by regulatory DNA targets. Nucleic Acids Res 2007; 35:4420-32. [PMID: 17576670 PMCID: PMC1935007 DOI: 10.1093/nar/gkm453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 'POU' (acronym of Pit-1, Oct-1, Unc-86) family of transcription factors share a common DNA-binding domain of approximately 160 residues, comprising so-called 'POUs' and 'POUh' sub-domains connected by a flexible linker. The importance of POU proteins as developmental regulators and tumor-promoting agents is due to linker flexibility, which allows them to adapt to a considerable variety of DNA targets. However, because of this flexibility, it has not been possible to determine the Oct-1/Pit-1 linker structure in crystallographic POU/DNA complexes. We have previously shown that the neuronal POU protein N-Oct-3 linker contains a structured region. Here, we have used a combination of hydrodynamic methods, DNA footprinting experiments, molecular modeling and small angle X-ray scattering to (i) structurally interpret the N-Oct-3-binding site within the HLA DRalpha gene promoter and deduce from this a novel POU domain allosteric conformation and (ii) analyze the molecular mechanisms involved in conformational transitions. We conclude that there might exist a continuum running from free to 'pre-bound' N-Oct-3 POU conformations and that regulatory DNA regions likely select pre-existing conformers, in addition to molding the appropriate DBD structure. Finally, we suggest that a specific pair of glycine residues in the linker might act as a major conformational switch.
Collapse
Affiliation(s)
- Robert Alazard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Christine Ebel
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Peter V. Konarev
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Maxim V. Petoukhov
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Dmitri I. Svergun
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Monique Erard
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, Institut de Biologie Structurale, UMR 5075 CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble, France and European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, D-22603 Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
- *To whom correspondence should be addressed. +33 (0) 562175496+33 (0) 562175994
| |
Collapse
|