1
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Ishii Y, Takasu S, Kuroda K, Matsushita K, Kijima A, Nohmi T, Ogawa K, Umemura T. Combined application of comprehensive analysis for DNA modification and reporter gene mutation assay to evaluate kidneys of gpt delta rats given madder color or its constituents. Anal Bioanal Chem 2014; 406:2467-75. [DOI: 10.1007/s00216-014-7621-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/13/2022]
|
3
|
Shim EJ, Przybylski JL, Wetmore SD. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J Phys Chem B 2010; 114:2319-26. [PMID: 20095611 DOI: 10.1021/jp9113656] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deglycosylation of nucleotides occurs during many essential biological processes, including DNA repair, and is initiated by a variety of nucleophiles. In the present work, density functional theory (B3LYP) was used to investigate the thermodynamics and kinetics of the glycosidic bond cleavage reaction in the model nucleoside forms of guanine and its major oxidation product, 8-oxoguanine. Base excision facilitated by four different nucleophiles (hydroxyl anion (fully activated water), formate-water complex (partially activated water), lysine, and proline) was considered, which spans nucleophiles involved in a collection of spontaneous and enzyme-catalyzed processes. Because some enzymes that catalyze deglycosylation can accommodate more than one orientation of the base with respect to the sugar moiety, the effects of the (anti/syn) base orientation on the barrier height were also considered. We find that the nucleophile has a very large effect on the overall (gas-phase) reaction energetics. Although this effect decreases in different (polar) environments, the nucleophile has the greatest influence on the overall reaction as compared to whether the base is damaged or to the base orientation. Furthermore, the effects are significant in environments that most closely resemble (nonpolar) enzymatic active sites. Our results provide a greater understanding of the relative effects of the nucleophile, damage to the nucleobase, and the nucleobase orientation with respect to the sugar moiety on the deglycosylation pathway, which provide qualitative explanations for relative base excision rates observed in some biological systems.
Collapse
Affiliation(s)
- Eun Jung Shim
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | | | | |
Collapse
|
4
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1136-50. [PMID: 19631767 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
6
|
Abstract
Cellular metabolism constantly generates by-products that are wasteful or even harmful. Such compounds are excreted from the cell or are removed through hydrolysis to normal cellular metabolites by various 'house-cleaning' enzymes. Some of the most important contaminants are non-canonical nucleoside triphosphates (NTPs) whose incorporation into the nascent DNA leads to increased mutagenesis and DNA damage. Enzymes intercepting abnormal NTPs from incorporation by DNA polymerases work in parallel with DNA repair enzymes that remove lesions produced by modified nucleotides. House-cleaning NTP pyrophosphatases targeting non-canonical NTPs belong to at least four structural superfamilies: MutT-related (Nudix) hydrolases, dUTPase, ITPase (Maf/HAM1) and all-alpha NTP pyrophosphatases (MazG). These enzymes have high affinity (Km's in the micromolar range) for their natural substrates (8-oxo-dGTP, dUTP, dITP, 2-oxo-dATP), which allows them to select these substrates from a mixture containing a approximately 1000-fold excess of canonical NTPs. To date, many house-cleaning NTPases have been identified only on the basis of their side activity towards canonical NTPs and NDP derivatives. Integration of growing structural and biochemical data on these superfamilies suggests that their new family members cleanse the nucleotide pool of the products of oxidative damage and inappropriate methylation. House-cleaning enzymes, such as 6-phosphogluconolactonase, are also part of normal intermediary metabolism. Genomic data suggest that house-cleaning systems are more abundant than previously thought and include numerous analogous enzymes with overlapping functions. We discuss the structural diversity of these enzymes, their phylogenetic distribution, substrate specificity and the problem of identifying their true substrates.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|