1
|
Zhang L, Wang Y, Dai H, Zhou J. Structural and functional studies revealed key mechanisms underlying elongation step of protein translation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:749-756. [PMID: 32400848 DOI: 10.1093/abbs/gmaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/12/2022] Open
Abstract
The ribosome is an ancient and universally conserved macromolecular machine that synthesizes proteins in all organisms. Since the discovery of the ribosome by electron microscopy in the mid-1950s, rapid progress has been made in research on it, regarding its architecture and functions. As a machine that synthesizes polypeptides, the sequential addition of amino acids to a growing polypeptide chain occurs during a phase called the elongation cycle. This is the core step of protein translation and is highly conserved between bacteria and eukarya. The elongation cycle involves codon recognition by aminoacyl tRNAs, catalysis of peptide bond formation, and the most complex operation of translation-translocation. In this review, we discuss the fundamental results from structural and functional studies over the past decades that have led to understanding of the three key questions underlying translation.
Collapse
Affiliation(s)
- Ling Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Dai
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Kazemi M, Socan J, Himo F, Åqvist J. Mechanistic alternatives for peptide bond formation on the ribosome. Nucleic Acids Res 2019; 46:5345-5354. [PMID: 29746669 PMCID: PMC6009655 DOI: 10.1093/nar/gky367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/26/2018] [Indexed: 02/04/2023] Open
Abstract
The peptidyl transfer reaction on the large ribosomal subunit depends on the protonation state of the amine nucleophile and exhibits a large kinetic solvent isotope effect (KSIE ∼8). In contrast, the related peptidyl-tRNA hydrolysis reaction involved in termination shows a KSIE of ∼4 and a pH-rate profile indicative of base catalysis. It is, however, unclear why these reactions should proceed with different mechanisms, as the experimental data suggests. One explanation is that two competing mechanisms may be operational in the peptidyl transferase center (PTC). Herein, we explored this possibility by re-examining the previously proposed proton shuttle mechanism and testing the feasibility of general base catalysis also for peptide bond formation. We employed a large cluster model of the active site and different reaction mechanisms were evaluated by density functional theory calculations. In these calculations, the proton shuttle and general base mechanisms both yield activation energies comparable to the experimental values. However, only the proton shuttle mechanism is found to be consistent with the experimentally observed pH-rate profile and the KSIE. This suggests that the PTC promotes the proton shuttle mechanism for peptide bond formation, while prohibiting general base catalysis, although the detailed mechanism by which general base catalysis is excluded remains unclear.
Collapse
Affiliation(s)
- Masoud Kazemi
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden.,Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jaka Socan
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Theoretical study of a proton wire mechanism for the peptide bond formation in the ribosome. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wallace CJA, Hedges REM. Nitrogen isotopic discrimination in dietary amino acids: The threonine anomaly. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2442-2446. [PMID: 27598395 DOI: 10.1002/rcm.7732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The "Threonine Anomaly" relates to an observation made 25 years ago on the change in Thr nitrogen isotopic ratio in mammalian metabolism. Unlike all other amino acids, Thr in body protein is found to be depleted (rather than enriched) in 15 N relative to dietary Thr. Interpreting isotopic discrimination has become a useful source of ecological and palaeodietary information and it is desirable that the underlying processes are understood. METHODS The principal enzyme of threonine catabolism, suggested to be responsible for the anomaly, threonine dehydratase, was prepared from rat liver. A time course of incubation of the enzyme with pure threonine was followed, and samples of residual threonine prepared for isotopic analysis by combustion in an automated carbon and nitrogen analyser coupled to a continuous flow isotope ratio mass spectrometer. RESULTS We show experimentally, in vitro, that the enzymic reaction catabolising Thr cannot be responsible for its 15 N depletion. Plots of delta 15 N against both reaction time course and percentage completion show in fact an accelerating enrichment. CONCLUSIONS A previously advanced suggestion that the unique catabolic mechanism for threonine was responsible for the anomalous depletion in 15 N is clearly not the case. We therefore offer alternative explanations, based on threonine's role at an organismal rather than cellular level. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carmichael J A Wallace
- Department of Biochemistry, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
| | - Robert E M Hedges
- University of Oxford, Research Laboratory for Archaeology, South Parks Road, Oxford, OX1 3QJ, UK
| |
Collapse
|
5
|
Świderek K, Marti S, Tuñón I, Moliner V, Bertran J. Peptide Bond Formation Mechanism Catalyzed by Ribosome. J Am Chem Soc 2015; 137:12024-34. [PMID: 26325003 PMCID: PMC4582011 DOI: 10.1021/jacs.5b05916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favorable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708-8719), but the reaction mechanisms are noticeably different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behavior of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, (Poland)
| | - Sergio Marti
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot, (Spain)
| | - Vicent Moliner
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
| | - Juan Bertran
- Departament de Química; Universitat Autònoma de Barcelona, 08193 Bellaterra, (Spain)
| |
Collapse
|
6
|
A theoretical model investigation of peptide bond formation involving two water molecules in ribosome supports the two-step and eight membered ring mechanism. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Weissman BP, Li NS, York D, Harris M, Piccirilli JA. Heavy atom labeled nucleotides for measurement of kinetic isotope effects. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1737-45. [PMID: 25828952 DOI: 10.1016/j.bbapap.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 02/01/2023]
Abstract
Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Darrin York
- Center for Integrative Proteomics Research, Biology at the Interface with the Mathematical and Physical Sciences (BioMaPS) Institute for Quantitative Biology, The State University of New Jersey, Piscataway, NJ, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Michael Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph A Piccirilli
- Department of Chemistry, University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
De Luca A, Laugier S, Tea I, Robins RJ, Saulnier PJ, Torremocha F, Piguel X, Maréchaud R, Hankard R, Hadjadj S. Impact on bulk 15N natural isotopic abundance in hair of kidney function in type 2 diabetic nephropathy. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.clnme.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
10
|
Świderek K, Tuñón I, Martí S, Moliner V, Bertrán J. Role of Solvent on Nonenzymatic Peptide Bond Formation Mechanisms and Kinetic Isotope Effects. J Am Chem Soc 2013; 135:8708-19. [DOI: 10.1021/ja403038t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarzyna Świderek
- Institute of Applied Radiation
Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Departament de Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Sergio Martí
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Juan Bertrán
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra,
Spain
| |
Collapse
|
11
|
Poupin N, Huneau JF, Mariotti F, Tomé D, Bos C, Fouillet H. Isotopic and modeling investigation of long-term protein turnover in rat tissues. Am J Physiol Regul Integr Comp Physiol 2012; 304:R218-31. [PMID: 23135789 DOI: 10.1152/ajpregu.00310.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fractional synthesis rates (FSR) of tissue proteins (P) are usually measured using labeled amino acid (AA) tracer methods over short periods of time under acute, particular conditions. By combining the long-term and non-steady-state (15)N labeling of AA and P tissue fractions with compartmental modeling, we have developed a new isotopic approach to investigate the degree of compartmentation of P turnover in tissues and to estimate long-term FSR values under sustained and averaged nutritional and physiological conditions. We measured the rise-to-plateau kinetics of nitrogen isotopic enrichments (δ(15)N) in the AA and P fractions of various tissues in rats for 2 mo following a slight increase in diet δ(15)N. Using these δ(15)N kinetics and a numerical method based on a two-compartment model, we determined reliable FSR estimates for tissues in which P turnover is adequately represented by such a simple precursor-product model. This was the case for kidney, liver, plasma, and muscle, where FSR estimates were 103, 101, 58, and 11%/day, respectively. Conversely, we identified tissues, namely, skin and small intestine, where P turnover proved to be too complex to be represented by a simple two-compartment model, evidencing the higher level of subcompartmentation of the P and/or AA metabolism in these tissues. The present results support the value of this new approach in gaining cognitive and practical insights into tissue P turnover and propose new and integrated FSR values over all individual precursor AA and all diurnal variations in P kinetics.
Collapse
Affiliation(s)
- Nathalie Poupin
- 1INRA (Institut National de la Recherche Agronomique), CRNH-IdF (Centre de Recherche en Nutrition Humaine d’Ile de France), UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Aqvist J, Lind C, Sund J, Wallin G. Bridging the gap between ribosome structure and biochemistry by mechanistic computations. Curr Opin Struct Biol 2012; 22:815-23. [PMID: 22884263 DOI: 10.1016/j.sbi.2012.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022]
Abstract
The wealth of structural and biochemical data now available for protein synthesis on the ribosome presents major new challenges for computational biochemistry. Apart from technical difficulties in modeling ribosome systems, the complexity of the overall translation cycle with a multitude of different kinetic steps presents a formidable problem for computational efforts where we have only seen the beginning. However, a range of methodologies including molecular dynamics simulations, free energy calculations, molecular docking and quantum chemical approaches have already been put to work with promising results. In particular, the combined efforts of structural biology, biochemistry, kinetics and computational modeling can lead towards a quantitative structure-based description of translation.
Collapse
Affiliation(s)
- Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
13
|
Kingery DA, Strobel SA. Analysis of enzymatic transacylase Brønsted studies with application to the ribosome. Acc Chem Res 2012; 45:495-503. [PMID: 22122380 DOI: 10.1021/ar100162b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preferential binding of an enzyme to the transition state relative to the ground state is a key strategy for enzyme catalysis. When there is a difference between the ground and transition state charge distributions, enzymes maximize electrostatic interactions to achieve this enhanced transition state binding. Although the transition state is difficult to observe directly by structural methods, the chemical details of this transient species can be characterized by studies of substituent effects (Brønsted, Hammett, Swain-Scott, etc.) and isotope effects. Brønsted analysis can provide an estimate of transition state charges for the nucleophile and leaving group of a reaction. This Account will discuss the theoretical basis of Brønsted analysis and describe its practical application to the study of transacylase enzyme systems including the peptidyl transferase reaction of the ribosome. The Brønsted coefficient is derived from the linear free energy relationship (LFER) that correlates the acidity (pK(a)) of a reactive atom to the log of its rate constant. The Brønsted coefficient establishes the change in atomic charge as the reaction proceeds from the ground state to the transition state. Bonding events alter the electrostatics of atoms and the extent of bonding can be extrapolated from transition state charges. Therefore, well-defined nucleophile and leaving group transition state charges limit the number of mechanisms that are consistent with a particular transition state. Brønsted results are most informative when interpreted in the context of other mechanistic data, especially for enzymatic studies where an active site may promote a transition state that differs significantly from a prediction based on uncatalyzed solution reactions. Here we review Brønsted analyses performed on transacylases to illustrate how these data enhanced the enzymatic mechanistic studies. Through a systematic comparison of five enzymes, we reveal a wide spectrum of Brønsted values that are possible for what otherwise appear to be similar chemical reactions. The variations in the Brønsted coefficients predict different transition states for the various enzymes. This Account explores an overriding theme in the enzymatic mechanisms that catalysis enhances commensurate bond formation and proton abstraction events. The extent of the two bonding events in relationship to each other can be inferred from the Brønsted coefficient. When viewed in the context of recent ribosomal studies, this interpretation provides mechanistic insights into peptide bond formation.
Collapse
Affiliation(s)
- David A. Kingery
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Scott A. Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
14
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Quantum-Mechanical Study on the Mechanism of Peptide Bond Formation in the Ribosome. J Am Chem Soc 2012; 134:5817-31. [DOI: 10.1021/ja209558d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
15
|
Abstract
The ability of RNA to both store genetic information and catalyse chemical reactions has led to the hypothesis that it predates DNA and proteins. While there is no doubt that RNA is capable of storing the genetic information of a primitive organism, only two classes of reactions-phosphoryl transfer and peptide bond formation-have been observed to be catalysed by RNA in nature. However, these naturally occurring ribozymes use a wide range of catalytic strategies that could be applied to other reactions. Furthermore, RNA can bind several cofactors that are used by protein enzymes to facilitate a wide variety of chemical processes. Despite its limited functional groups, these observations indicate RNA is a versatile molecule that could, in principle, catalyse the myriad reactions necessary to sustain life.
Collapse
Affiliation(s)
- David A Hiller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
16
|
Świderek K, Tuñón I, Martí S, Moliner V, Bertrán J. Do zwitterionic species exist in the non-enzymatic peptide bond formation? Chem Commun (Camb) 2012; 48:11253-5. [DOI: 10.1039/c2cc35409h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Poupin N, Bos C, Mariotti F, Huneau JF, Tomé D, Fouillet H. The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats. PLoS One 2011; 6:e28046. [PMID: 22132207 PMCID: PMC3222673 DOI: 10.1371/journal.pone.0028046] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source.
Collapse
Affiliation(s)
- Nathalie Poupin
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Cécile Bos
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - François Mariotti
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Jean-François Huneau
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Daniel Tomé
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
| | - Hélène Fouillet
- INRA, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- AgroParisTech, CRNH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Kuhlenkoetter S, Wintermeyer W, Rodnina MV. Different substrate-dependent transition states in the active site of the ribosome. Nature 2011; 476:351-4. [PMID: 21804565 DOI: 10.1038/nature10247] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/03/2011] [Indexed: 11/09/2022]
Abstract
The active site of the ribosome, the peptidyl transferase centre, catalyses two reactions, namely, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the release-factor-dependent hydrolysis of peptidyl-tRNA. Unlike peptide bond formation, peptide release is strongly impaired by mutations of nucleotides within the active site, in particular by base exchanges at position A2602 (refs 1, 2). The 2'-OH group of A76 of the peptidyl-tRNA substrate seems to have a key role in peptide release. According to computational analysis, the 2'-OH may take part in a concerted 'proton shuttle' by which the leaving group is protonated, in analogy to similar current models of peptide bond formation. Here we report kinetic solvent isotope effects and proton inventories (reaction rates measured in buffers with increasing content of deuterated water, D(2)O) of the two reactions catalysed by the active site of the Escherichia coli ribosome. The transition state of the release factor 2 (RF2)-dependent hydrolysis reaction is characterized by the rate-limiting formation of a single strong hydrogen bond. This finding argues against a concerted proton shuttle in the transition state of the hydrolysis reaction. In comparison, the proton inventory for peptide bond formation indicates the rate-limiting formation of three hydrogen bonds with about equal contributions, consistent with a concerted eight-membered proton shuttle in the transition state. Thus, the ribosome supports different rate-limiting transition states for the two reactions that take place in the peptidyl transferase centre.
Collapse
Affiliation(s)
- Stephan Kuhlenkoetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
19
|
A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature 2011; 476:236-9. [PMID: 21765427 PMCID: PMC3154986 DOI: 10.1038/nature10248] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/03/2011] [Indexed: 01/18/2023]
Abstract
The chemical step of natural protein synthesis, peptide bond formation, is catalysed by the large subunit of the ribosome. Crystal structures have shown that the active site for peptide bond formation is composed entirely of RNA. Recent work has focused on how an RNA active site is able to catalyse this fundamental biological reaction at a suitable rate for protein synthesis. On the basis of the absence of important ribosomal functional groups, lack of a dependence on pH, and the dominant contribution of entropy to catalysis, it has been suggested that the role of the ribosome is limited to bringing the substrates into close proximity. Alternatively, the importance of the 2'-hydroxyl of the peptidyl-transfer RNA and a Brønsted coefficient near zero have been taken as evidence that the ribosome coordinates a proton-transfer network. Here we report the transition state of peptide bond formation, based on analysis of the kinetic isotope effect at five positions within the reaction centre of a peptidyl-transfer RNA mimic. Our results indicate that in contrast to the uncatalysed reaction, formation of the tetrahedral intermediate and proton transfer from the nucleophilic nitrogen both occur in the rate-limiting step. Unlike in previous proposals, the reaction is not fully concerted; instead, breakdown of the tetrahedral intermediate occurs in a separate fast step. This suggests that in addition to substrate positioning, the ribosome is contributing to chemical catalysis by changing the rate-limiting transition state.
Collapse
|
20
|
Leung EKY, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. The Mechanism of Peptidyl Transfer Catalysis by the Ribosome. Annu Rev Biochem 2011; 80:527-55. [DOI: 10.1146/annurev-biochem-082108-165150] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nikolai Suslov
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
| | - Nicole Tuttle
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| | - Raghuvir Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Joseph Anthony Piccirilli
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
21
|
Krishnakumar KS, Michel BY, Nguyen-Trung NQ, Fenet B, Strazewski P. Intrinsic pKa values of 3′-N-α-l-aminoacyl-3′-aminodeoxyadenosines determined by pH dependent 1H NMR in H2O. Chem Commun (Camb) 2011; 47:3290-2. [DOI: 10.1039/c0cc05136e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hiller DA, Zhong M, Singh V, Strobel SA. Transition states of uncatalyzed hydrolysis and aminolysis reactions of a ribosomal P-site substrate determined by kinetic isotope effects. Biochemistry 2010; 49:3868-78. [PMID: 20359191 PMCID: PMC2864349 DOI: 10.1021/bi901458x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ester bond of peptidyl-tRNA undergoes nucleophilic attack in solution and when catalyzed by the ribosome. To characterize the uncatalyzed hydrolysis reaction, a model of peptide release, the transition state structure for hydrolysis of a peptidyl-tRNA mimic was determined. Kinetic isotope effects were measured at several atoms that potentially undergo a change in bonding in the transition state. Large kinetic isotope effects of carbonyl (18)O and alpha-deuterium substitutions on uncatalyzed hydrolysis indicate the transition state is nearly tetrahedral. Kinetic isotope effects were also measured for aminolysis by hydroxylamine to study a reaction similar to the formation of a peptide bond. In contrast to hydrolysis, the large leaving group (18)O isotope effect indicates the C-O3' bond has undergone significant scission in the transition state. The smaller carbonyl (18)O and alpha-deuterium effects are consistent with a later transition state. The assay developed here can also be used to measure isotope effects for the ribosome-catalyzed reactions. These uncatalyzed reactions serve as a basis for determining what aspects of the transition states are stabilized by the ribosome to achieve a rate enhancement.
Collapse
Affiliation(s)
- David A Hiller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511 USA
| | | | - Vipender Singh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511 USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06511 USA
| |
Collapse
|
23
|
The transition state for peptide bond formation reveals the ribosome as a water trap. Proc Natl Acad Sci U S A 2010; 107:1888-93. [PMID: 20080677 DOI: 10.1073/pnas.0914192107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent progress in elucidating the peptide bond formation process on the ribosome has led to notion of a proton shuttle mechanism where the 2'-hydroxyl group of the P-site tRNA plays a key role in mediating proton transfer between the nucleophile and leaving group, whereas ribosomal groups do not actively participate in the reaction. Despite these advances, the detailed nature of the transition state for peptidyl transfer and the role of several trapped water molecules in the peptidyl transferase center remain major open questions. Here, we employ high-level quantum chemical ab initio calculations to locate and characterize global transition states for the reaction, described by a molecular model encompassing all the key elements of the reaction center. The calculated activation enthalpy as well as structures are in excellent agreement with experimental data and point to feasibility of an eight-membered "double proton shuttle" mechanism in which an auxiliary water molecule, observed both in computer simulations and crystal structures, actively participates. A second conserved water molecule is found to be of key importance for stabilizing developing negative charge on the substrate oxyanion and its presence is catalytically favorable both in terms of activation enthalpy and entropy. Transition states calculated both for six- and eight-membered mechanisms are invariably late and do not involve significant charge development on the attacking amino group. Predicted kinetic isotope effects consistent with this picture are similar to those observed for uncatalyzed ester aminolysis reactions in solution.
Collapse
|
24
|
An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. ACTA ACUST UNITED AC 2008; 15:493-500. [PMID: 18482701 DOI: 10.1016/j.chembiol.2008.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 11/20/2022]
Abstract
The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the Brønsted coefficient of the alpha-amino nucleophile with a series of puromycin derivatives. Both 50S subunit- and 70S ribosome-catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that, at the transition state, the nucleophile is neutral in the ribosome-catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution.
Collapse
|
25
|
Zhong M, Strobel SA. Synthesis of isotopically labeled P-site substrates for the ribosomal peptidyl transferase reaction. J Org Chem 2007; 73:603-11. [PMID: 18081346 DOI: 10.1021/jo702070m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isotopomers of the ribosomal P-site substrate, the trinucleotide peptide conjugate CCA-pcb (Zhong, M.; Strobel, S. A. Org. Lett. 2006, 8, 55-58), have been designed and synthesized in 26-35 steps. These include individual isotopic substitution at the alpha-hydrogen, carbonyl carbon, and carbonyl oxygen of the amino acid, the O2' and O3' of the adenosine, and a remote label in the N3 and N4 of both cytidines. These isotopomers were synthesized by coupling cytidylyl-(3',5')-cytidine phosphoramidite isotopomers as the common synthetic intermediates, with isotopically substituted A-Phe-cap-biotin (A-pcb). The isotopic enrichment is higher than 99% for 1-13C (Phe), 2-2H (Phe), and 3,4-15N2 (cytidine), 93% for 2'/3'-18 O (adenosine), and 64% for 1-18 O (Phe). A new synthesis of highly enriched [1-18 O2]phenylalanine has been developed. The synthesis of [3'-18 O]adenosine was improved by Lewis acid aided regioselective ring opening of the epoxide and by an economical SN2-SN2 method with high isotopic enrichment (93%). Such substrates are valuable for studies of the ribosomal peptidyl transferase reaction by complete kinetic isotope effect analysis and of other biological processes catalyzed by nucleic acid related enzymes, including polymerases, reverse transcriptases, ligases, nucleases, and ribozymes.
Collapse
Affiliation(s)
- Minghong Zhong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
26
|
Cassano AG, Wang B, Anderson DR, Previs S, Harris ME, Anderson VE. Inaccuracies in selected ion monitoring determination of isotope ratios obviated by profile acquisition: nucleotide 18O/16O measurements. Anal Biochem 2007; 367:28-39. [PMID: 17560863 PMCID: PMC2045637 DOI: 10.1016/j.ab.2007.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Precise and accurate measurements of isotopologue distributions (IDs) in biological molecules are needed for determination of isotope effects, quantitation by isotope dilution, and quantification of isotope tracers employed in both metabolic and biophysical studies. While single ion monitoring (SIM) yields significantly greater sensitivity and signal/noise than profile-mode acquisitions, we show that small changes in the SIM window width and/or center can alter experimentally determined isotope ratios by up to 5%, resulting in significant inaccuracies. This inaccuracy is attributed to mass granularity, the differential distribution of digital data points across the m/z ranges sampled by SIM. Acquiring data in the profile mode and fitting the data to an equation describing a series of equally spaced and identically shaped peaks eliminates the inaccuracies associated with mass granularity with minimal loss of precision. Additionally a method of using the complete ID profile data that inherently corrects for "spillover" and for the natural-abundance ID has been used to determine 18O/16O ratios for 5',3'-guanosine bis-[18O1]phosphate and TM[18O1]P with precisions of approximately 0.005. The analysis protocol is also applied to quadrupole time-of-flight tandem mass spectrometry using [2-(18)O] arabinouridine and 3'-UM[18O1]P which enhances signal/noise and minimizes concerns for background contamination.
Collapse
Affiliation(s)
- Adam G. Cassano
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Benlian Wang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - David R. Anderson
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Stephen Previs
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Michael E. Harris
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Vernon E. Anderson
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
27
|
Abstract
Peptide bond formation on the ribosome takes place in an active site composed of RNA. Recent progress of structural, biochemical, and computational approaches has provided a fairly detailed picture of the catalytic mechanism of the reaction. The ribosome accelerates peptide bond formation by lowering the activation entropy of the reaction due to positioning the two substrates, ordering water in the active site, and providing an electrostatic network that stabilizes the reaction intermediates. Proton transfer during the reaction appears to be promoted by a concerted proton shuttle mechanism that involves ribose hydroxyl groups on the tRNA substrate.
Collapse
Affiliation(s)
- Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Witten, Germany
| | | |
Collapse
|
28
|
Anderson RM, Kwon M, Strobel SA. Toward ribosomal RNA catalytic activity in the absence of protein. J Mol Evol 2007; 64:472-83. [PMID: 17417708 DOI: 10.1007/s00239-006-0211-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 10/16/2006] [Indexed: 11/28/2022]
Abstract
The ribosome is the ribonucleoprotein particle responsible for translation of genetic information into proteins. The RNA component of the ribosome has been implicated as the catalytic entity for peptide bond formation based on protease resistance and structural data indicating an all-RNA active site. Nevertheless, peptidyl transfer by ribosomal RNA (rRNA) alone has not been demonstrated. In an attempt to show such activity we generated a minimal construct that comprises much of the 23S rRNA peptidyl transferase center, including the central loop and the A- and P-loops. This minimal rRNA domain was inactive in peptide bond formation under all conditions tested. The RNA was subsequently subjected to six rounds of in vitro selection designed to enrich for this activity. The result was a mutated rRNA sequence that could catalyze the covalent linkage of an A-site and P-site substrate; however, the product did not contain a peptide bond. The current study is an example of an in vitro derived alternate function of rRNA mutants and illustrates the evolutionary possibility that the protoribosome may have used amino acids as substrates before it gained the ability to join them into peptides. Though peptidyl transferase activity in the absence of protein remains elusive, the ease with which alternate catalytic activity was selected from rRNA with a small number of mutations suggests that rRNA may have inherent activity. This study represents a step on the path toward isolating that native activity.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
29
|
Wohlgemuth I, Beringer M, Rodnina MV. Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep 2006; 7:699-703. [PMID: 16799464 PMCID: PMC1500836 DOI: 10.1038/sj.embor.7400732] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 11/09/2022] Open
Abstract
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - Marina V Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
- Tel: +49 2302 926205; Fax: +49 2302 926117; E-mail:
| |
Collapse
|
30
|
Bieling P, Beringer M, Adio S, Rodnina MV. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Nat Struct Mol Biol 2006; 13:423-8. [PMID: 16648860 DOI: 10.1038/nsmb1091] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 03/30/2006] [Indexed: 11/09/2022]
Abstract
Ribosomes catalyze the formation of peptide bonds between aminoacyl esters of transfer RNAs within a catalytic center composed of ribosomal RNA only. Here we show that the reaction of P-site formylmethionine (fMet)-tRNA(fMet) with a modified A-site tRNA substrate, Phelac-tRNA(Phe), in which the nucleophilic amino group is replaced with a hydroxyl group, does not show the pH dependence observed with small substrate analogs such as puromycin and hydroxypuromycin. This indicates that acid-base catalysis by ribosomal residues is not important in the reaction with the full-size substrate. Rather, the ribosome catalyzes peptide bond formation by positioning the tRNAs, or their 3' termini, through interactions with rRNA that induce and/or stabilize a pH-insensitive conformation of the active site and provide a preorganized environment facilitating the reaction. The rate of peptide bond formation with unmodified Phe-tRNA(Phe) is estimated to be >300 s(-1).
Collapse
Affiliation(s)
- Peter Bieling
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
[reaction: see text] CCA-pcb (cytidylyl-(3'5')-cytidylyl-(3'5')-3'(2')-O-(N-(6-D-(+)-biotinoylaminohexanoyl)-L-phenylalanyl)adenosine), a ribosomal P-site substrate, was synthesized by phosphoramidite chemistry in 26 steps with an overall yield of 18%, starting from biotin. The synthesis relies on the judicious selection of orthogonal silyl protecting groups for the 5'-hydroxyls and acid-labile protecting groups (DMTr, AcE, and MeE) at other reactive sites to ensure the intactness of the labile ester. Both 3'-esterification and nucleotide coupling were accomplished by in situ activation with imidazolium ions.
Collapse
Affiliation(s)
- Minghong Zhong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
32
|
Brunelle JL, Youngman EM, Sharma D, Green R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA (NEW YORK, N.Y.) 2006; 12:33-9. [PMID: 16373492 PMCID: PMC1370883 DOI: 10.1261/rna.2256706] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site.
Collapse
Affiliation(s)
- Julie L Brunelle
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 702A PCTB, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
33
|
Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 2005; 20:437-48. [PMID: 16285925 DOI: 10.1016/j.molcel.2005.09.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/19/2005] [Accepted: 09/06/2005] [Indexed: 11/22/2022]
Abstract
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.
Collapse
Affiliation(s)
- T Martin Schmeing
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Schmeing TM, Huang KS, Strobel SA, Steitz TA. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 2005; 438:520-4. [PMID: 16306996 DOI: 10.1038/nature04152] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 08/23/2005] [Indexed: 11/09/2022]
Abstract
The large ribosomal subunit catalyses the reaction between the alpha-amino group of the aminoacyl-tRNA bound to the A site and the ester carbon of the peptidyl-tRNA bound to the P site, while preventing the nucleophilic attack of water on the ester, which would lead to unprogrammed deacylation of the peptidyl-tRNA. Here we describe three new structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with peptidyl transferase substrate analogues that reveal an induced-fit mechanism in which substrates and active-site residues reposition to allow the peptidyl transferase reaction. Proper binding of an aminoacyl-tRNA analogue to the A site induces specific movements of 23S rRNA nucleotides 2618-2620 (Escherichia coli numbering 2583-2585) and 2541(2506), thereby reorienting the ester group of the peptidyl-tRNA and making it accessible for attack. In the absence of the appropriate A-site substrate, the peptidyl transferase centre positions the ester link of the peptidyl-tRNA in a conformation that precludes the catalysed nucleophilic attack by water. Protein release factors may also function, in part, by inducing an active-site rearrangement similar to that produced by the A-site aminoacyl-tRNA, allowing the carbonyl group and water to be positioned for hydrolysis.
Collapse
Affiliation(s)
- T Martin Schmeing
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|